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ABSTRACT
Nowadays, millions of landscape images are uploaded on
photosharing platforms such as Flickr or Panoramio. More
and more of these images are also accurately geotagged via
GPS devices mounted on personal cameras. Each image re-
sults from a twofold spatial choice: the choice of the location
and the choice of the picture subject.

In this study, our focus is on landscape images in large
touristic areas. Firstly, our goal is to learn which geographic
features play a role in the choice of the location of shared
images. For our analysis, we extract a series of geographic
features from a Digital Elevation Model (DEM) and a To-
pographic Landscape Model (TLM) and model the photo-
graphic suitability as a density estimation problem in the
space of the geographic features. Secondly, each combina-
tion of geographic features of a region is associated with a
probability to be a location suitable for a photography. The
resulting map is useful to promote tourism, to evaluate the
landscape attractiveness or with a more technical objective
as a prior in close-range photogrammetry.

This study shows that databases of geotagged pictures can
be used to understand tourists behaviour also in rural ar-
eas, even if most of current researches are adressed to cities.
The application to a touristic region in the Swiss Alps shows
that the proposed method suits well this Geographic One-
Class Data problem and is more accurate than both stan-
dard KPCA and One-Class SVM to model the suitability
for touristic photography at locations unseen during train-
ing. As expected, picture locations are mostly correlated
with geographic features extracted from the digital elevation
model, as well as with those related to accessibility (distance
to roads, paths). However, the force of this study is the com-
bination of the geographic features via a kernel method to
model more accurately suitable picture locations.
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1. INTRODUCTION
With the advent of ”Web 2.0”, the number of collabora-

tive databases has dramatically increased. Very often, the
databases objects are geotagged, meaning that an attribute
related to its geographic location is available.
In this paper, we focus on collective pictures databases.
Pictures uploaded on the Web via a photosharing platform
(Flickr, Panoramio, Instagram...) have a time stamp, some
textual tags describing its content and sometimes a world
coordinate representing the geographic position. We are
specially interested to the geotag which can be attributed
in several ways. Most of the images are located with a click
on a map. The accuracy of the localization is related to the
zoom level used and to the ability to recognize an area in
an aerial view. On the contrary, more and more cameras
have a GPS device able to track very accurately the latitude
and longitude coordinates. As stated in [7], the location
of a picture is the result of a spatial choices: the choice of
the location (the place where the photograph stands) and
the choice of the subject (the object at which the camera
points). This study focuses on the first choice: it benefits
from the GPS accuracy to learn which geographic features
describe the locations chosen.
Such a study aims at providing a map of the suitability to
be picture location. This map can be useful in several ways.
First, it could be used to promote tourism in areas sharing
similar geographic feature with famous regions. Second, it
can be used to assess landscape attractiveness, a measure
needed in environmental planning [13]. Finally, shared pho-
tographies in landscape areas could be a valuable source to
extract information about natural phenomena (displacement
of glaciers [18], landscape change [3], local meteorology...):
to meet this goal they require to be located and oriented ac-
curately. Recent research shows that landscape images pose
estimation (computation of the location and orientation of
a camera in the computer vision vocabulary) requires priors
which can be provided by GIS data: horizon and 3D models
[1, 2, 4], aerial views [17], sun position [11]. The proposed
map can thus be used to extract the most probable picture
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locations in a neighborhood.
However, the collaborative database are more widely used

to analyse people behaviour and general trends in the tourists
movements in urban areas [23, 16, 7]. Picture locations
drawn on a map are difficult to read and require a more ap-
propriate geovisualization. In [16, 7], spatial density maps
(also called heat maps) are used to extract easily the most
attractive areas (see for instance the site sightsmap.com).
The textual geotags associated to a world coordinate also
give many opportunities. For instance, authors in [8] use
the tags to draw the geographic boundaries of fuzzy regions.
They compare how Kernel Density Estimation (KDE) and
Support Vector Machines (SVM) are accurate in the extrac-
tion of areas such as the Alps. Heat and density maps are
well suited for large scale mapping. However, once zooming
in, the contours of the high density regions become inaccu-
rate, mainly because of the inaccuracy of the clicked geotags
and the use of a smoothing radius. For instance, locations
such cliffs can be considered highly attractive for photogra-
phers just because they are within the influence radius of
popular places, while, in reality, they are inaccessible.

In order to interpolate probability values in each location
of the map and not only in areas where picture are found,
we propose to compute density in a space generated from
geographic features rather than the space of latitude and
longitude. To this goal, we require precise image locations
which are provided by the GPS embedded in recent cameras
and appropriate geographic features. Such geographic fea-
tures are extracted with a GI Software either from a Digital
Elevation Model (DEM) or from a Topographic Landscape
Model (TLM: roads, lakes, forests).

By modeling the density of pictures in the space of ge-
ographic features, we estimate the probability of being a
picture location over all the territory considered. This set-
ting is equivalent to a One-Class problem (OC) where there
is a set of positive data but no negative data: the locations
of landscape photographies compose the positive set, the set
of “attractive places”. However, for the map locations with
no pictures, we don’t know if the absence of photographies
is due to the inappropriateness of the location (a “bad” or
negative place) or simply to the lack of pictures in an “at-
tractive” location. This type of problems is also common in
geographic classification problems, such as change detection
from satellite images [14, 5]. Since in our case we consider a
OC classification problem applied to geographical informa-
tion sciences, Guo [9] called these kinds of data Geographic
One-Class Data (GOCD).
During the last years, Kernel methods have been widely used
for OC problems. In this study, we consider the following
OC models: the One-class SVM (OCSVM) [21], the Support
Vector Data Description (SVDD) [24] and the Kernel PCA
(KPCA) [10]. All of them use the kernel trick to project
the original data on a hypersphere in Rd. In the high di-
mensional space, the data are more likely separated by a
linear model [20]. Guo [9] compares OCSVM, Maximum En-
tropy (MAXTENT) [12] and Positive and Unlabelled Learn-
ing (PUL) [6] for GOCD problems. The two last methods
provided the most accurate results. However, in our case
study, the hypothesis which states that “the probability of
a negative data being labelled is null” is not valid, thus ex-
cluding the use of PUL models. Indeed, our set of image
locations contains some outliers, for instance pictures taken
from a cable car or pictures not related to landscapes. Since

such outliers are present, some of the labelled data belong
to the negative class.

We will therefore focus on non-parametric methods for
distribution support estimation. Such methods do not re-
quire knowledge about the distribution of the data and fit
well with our problem. Besides support vector methods,
another straightforward method is the Kernel Density Esti-
mation (KDE, also known as Parzen window) [15, 19]: KDE
estimates the density of data by applying a local smoothing
filter [26].

In this paper, we propose a KDE-based strategy to es-
timate the probability distribution function (PDF) of the
data. We estimate the support of the data both in the orig-
inal space of geographic features and in the feature space
spanned by KPCA. The PDFs of the labeled vs the unla-
beled data are used to define a Bayesian criterion, which
measures the probability for a map location to be an image
location (given its geographic features). To fit the free pa-
rameters of KDE and KPCA we define a performance mea-
sure to ensure that most of the locations with photographies
are classified as positives and most of the unlabeled loca-
tions are classified as negative. We compare the proposed
approaches with OCSVM and KPCA on a real dataset of
touristic pictures taken in the Swiss Alps.

2. METHODOLOGY

2.1 Geographic features extraction
The geographic features are extracted using a GIS soft-

ware for an ensemble of N cells on a grid with 100m reso-
lution. The considered features are summarized in table 1
and are computed for each cell zj of the grid forming the
unlabeled set zu = {zj}N

i=1 and for the n image locations
zi, forming the labeled set zl = {zi}n

i=1. Each zi and zj are
thus represented by a d-dimensional vector formed by the d
geographic features.

The first set of features is extracted from the DEM (Alti-
tude, slope, curvature and visible sky). Then, for the TLM
based features, the distances from the cell to the nearest
forest, lake, road and cable car are computed. All the geo-
graphic features are mean centered and scaled unit variance.

2.2 GOCD with Kernel density Estimation
The KDE function in equation (1) is used to evaluate the

density of a data set from the observations of the positive
class zl. Once the density has been estimated, we can eval-
uate the density for an unknown location zj .

f̂(zj , zl) =
1

nh

n∑
i=1

K
(zj − zi

h

)
(1)

where K(x) is a local smoothing operator, or kernel func-
tion. Among the different kernel functions, we used the
Gaussian function:

K(x) = (2π)−d/2exp(−1

2
x2) (2)

where h is the bandwidth of the kernel function. Scott’s
rule is used to compute the bandwidth [22]:

h = n
−1

d+4 σzl (3)

where σzl is the covariance of the positive dataset. This
rule uses the dimension d of the dataset and the number
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of positive data n to estimate a reasonable h. The choice
of the appropriate kernel function has less influence on the
results than the choice of the proper bandwidth. Indeed, if
the bandwidth is too small, the density is over-fitted to the
positive data set and its generalization power is weak. On
the contrary, if the bandwidth is too large, the density will
be oversmoothed and its small peaks will disappear.

We consider the following scheme to describe our GOCD
problem. Let Y ∈ 0, 1 be the event (or class) “is a picture
location”: Y = 1 for a cell being on a picture location and
Y = 0 otherwise. The probability of a cell being a “picture
location”, given its geographic features zj , is

P (Y = 1|zj) =
p(zj |Y = 1)P (Y = 1)

p(zj)
(4)

P (Y = 1|zj) is the value we want to compute for each cell of
the map. The data density p(zj) is estimated with a KDE

on a random set of unlabeled cells: f̂(zj , zu), the conditional
probability p(zj |Y = 1) is estimated from a KDE on the

labeled data only: f̂(zj , zl) and P (Y = 1) is a unknown
constant c. We are observing:

P (Y = 1|zj)

c
=

p(zj |Y = 1)

p(zj)
(5)

A threshold can be set on the cell probability from equa-
tion 5 under which it is assumed to be drawn from the
generic distribution p(zj), while above it is assumed drawn
from the distribution of the labeled data p(zj , Y = 1). In
practice, we set the threshold to one.

To chose the best set of parameters for the method, a
performance measure need to be defined. To this end, our
labelled set is divided in three subsets, the first one to train
the KDE and the second to select the parameters. We want
the estimated densities of the training and testing sets to be

Table 1: Geographic features descriptions and ab-
breviations

Abbr. Description Source

Z Altitude DEM,
Swisstopo

Slope Slope in percent DEM,
Swisstopo

Curv Curvature DEM,
Swisstopo

Sky Visible sky ratio, unobstructed
hemisphere as a percentage.

DEM,
Swisstopo

DRoad Distance to the nearest road. TLM,
Swisstopo

BRoad Presence or absence of roads
(paths) in the cell.

TLM,
Swisstopo

DFor Distance to the nearest forest
boundary, negative if the location
is within a forest.

TLM,
Swisstopo

DLake Distance to the nearest lake. TLM,
Swisstopo

DLift Distance to the nearest cable car -
chair lift.

TLM,
Swisstopo

similar, nevertheless both should differ from the random set
density. Indeed, if the density of the random set and the one
issued from the labeled set are similar, the ratio for equation
5 will tend to one. This means that the geographic features
where badly chosen and are not able to distinguish properly
the random data from the labelled ones. In [9] the positive
and unlabeled score presented in equation 6 is maximized:

Fpu =
r2

rpos
(6)

Where r is the recall (the proportion of correctly predicted
data in the testing set) and rpos is the ratio of positive pre-
dicted locations in the random set.

In this study, we propose another criterion, more adapted
for the density estimation process: we want to ensure that
the bandwidth h fits well for both the training and testing
sets and thereby their density should be similar. We want
to maximize C in equation 7:

C =
s2

R

s2
T − s2

t

=
s2

R

(sT − st)(sT + st)
(7)

Where sR is 1 − rpos; sT = (1 − rT ) with rT being the
recall for the training set and st = (1−rt), with rt being the
recall for the testing set. Thus, C is very similar to Fpu but
the component (sT − st) ensures that the PDF estimation
of the training and testing set are similar.

2.3 KDE and KDE(KPCA)
In order to take into account the possible correlation be-

tween the geographic features and the non-linearity in the
data distribution, we propose to estimate the density of the
data either in the original space or in a feature space spanned
by the mapping φ(.) induced by the KPCA. Hoffmann [10]
states that the density function is proportional to the spher-
ical potential in the feature space. The spherical potential
measures the distance between φ(z): the projection of the
point z in the feature space, and the center of the data φ0(z).
However, the spherical potential can’t be used to estimate
the density of the unlabeled data, because if the kernel pro-
jection works well to separate the labeled set zl from the
unlabeled set zu, their gravity centers φ0(zl) and φ0(zu) do
not correspond. Consequently, we run the KDE on the non-
linear features extracted from KPCA.

2.4 Comparing approaches: One-Class SVM
and KPCA

The kernel functions project the data on a hypersphere
which has the same dimension number than the number of
training data. OCSVM searches for a hyperplan with two
constraints. First, the intersection between the plan and the
sphere enclose a ratio of the points equal to 1− µ, where µ
is the ratio of the outliers. Second, the plan has to be as
far as possible from the origin. SVDD [24] searches for the
minimal sphere which encloses the points. For “RBF” func-
tions, OCSVM and SVDD can produce similar results [10].
KPCA applies a PCA on the projection of the data on the
sphere. The reconstruction error in the feature space is used
to separate positive and negative data. It appears that this
boundary encloses more tightly the data, resulting in best
results than OCSVM and SVDD.

As in [9], we use the positive and unlabeled F -score pre-
sented in equation 6 to evaluate the performance and select

24



the best set of parameters for these two methods. Indeed,
for One-Class problems, the commonly used performance
measures, based on the ratio of false positives cannot be
applied.

3. RESULTS
First, we will present the data and geographic features

considered and how the image locations differ from the dis-
tribution of the random locations. Then, we conducted
some experiment using different combination and different
amount of geographic features. Finally, we will present the
resulting probability maps.

3.1 Data
The experiments consider one of the political regions of

Switzerland located in the Swiss Alps: “Valais - Wallis”. The
area is bounded by the Geneva Lake to the West and by the
highest summits of Switzerland. It encloses some of the most
touristic spots in Switzerland: Zermatt, the Matterhorn and
the Aletsch glacier. The altitude gradient is important be-
tween the lowest area on the Geneva lake shore (450m) and
the highest summit the “Dufourspitze” (4634m). The area
is a valley, whose bottom hosts small to mid-sized villages.
Climbing the flanks, the low altitudes are generally covered
with vineyards (500-700m); then forest, mountain villages
and resorts are found in the range from 700 to 1400m; above
1400m pastures and slopes dedicated to ski give access to the
highest peaks, playground for the alpinists.

The Swiss Topographic Agency (Swisstopo) provides a
DEM; among the available resolutions of 25m and 200m,
we retained the first. Swisstopo also provides a TLM con-
taining vector layers of several territorial objects. For this
study, we selected the roads, other transportation facilities,
forest and lake layers. The image locations are extracted
from the Flickr database and were provided by [25]. Those
images are filtered to keep only those located outside built

Figure 1: DEM hillshade rendering of the area under
study overlaid by the Flickr image locations used:
points colors depict whether the image is considered
during training (blue), testing (green) or validation
(yellow).

areas and geotagged with a GPS device. As stated above,
we want to learn which are the good places in term of land-
scape features: images taken in built areas tend to capture
the presence of a village or a touristic attraction rather than
a natural landscape. The set of image locations retained
contains 2683 points, which are then separated in the three
subsets represented in figure 1. The first set, in blue, is used
to train the methods; the second one, in green, is used to fit
the free parameters of the methods; the third one, in yellow,
is used for the validation to compute independent statistics
of the results. To generate those three sets, a grid with a
5km side is generated over the area. Then, each grid cell
is randomly attributed to one of the subsets, in order to
obtain spatially uncorrelated set of approximatively equal
size. Finally, we also select 10 sets of random locations with
the same number of locations as in the training set. These
random sets will be used in the next sections to select sig-
nificant geographic features and to compare the distribution
of the labeled and unlabeled data.

3.2 Geographic features selection
In order to measure the significance of these features, the

unlabeled data and the picture location distributions are
compared. For each of the geographic feature chosen, their
distribution diverge (tested by a Kolmogorov-Smirnov test
with α = 1%). Despite their statistical differences, some
features are more discriminative than others. The following
list presents the geographic features selected and explains
how their value are different at true image locations.

• Altitude (Z): Since we are focusing on landscape
photography, few images are taken between 450 and
1500m. In contrary, the range between 1800 to 2200m,
where the ski slopes are found is very attractive. There
is a small mode above 4000m representing pictures
taken by alpinists at high altitude, figure 2 (a).

• Curvature (Curv): Positive curvatures (convex area)
are more represented; indeed the ridges are more at-
tractive than the valley.

• Slope: The flatter areas from 5% to 30%) are pre-
ferred.

• Visible Sky (Sky): This feature confirms the result
observed with the curvature: cells with a high ratio of
visible sky (>90%) are more often chosen.

• Distance to nearest lake (DLake): People tend
to take more pictures in a radius of 200m around the
lakes.

• Distance to nearest road (DRoad) and presence
of roads (BRoad): The cells close to roads and paths
are more active. Approximately 70% of the pictures
are taken in a cell containing a road or a path, figure
2 (b).

• Distance to the nearest forest (DFor): The ran-
dom and image distributions are very similar.

• Distance to the nearest cable car (DLift): Half
of the pictures are taken within a range of 1500m sur-
rounding a lift.
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(a) (b)

Figure 2: Distribution of the random and real locations for (a) Altitude, (b) Distance to the nearest road

3.3 Numerical results
In table 2, we report 10 experiments, obtained by consid-

ering different combination of geographic feature for GOCD.
In this table only the best experiments are presented (C
>= 20). Thus, the less-significant geographic features are
less represented (DLift, DFor). The best combination of ge-
ographic features is altitude, slope, visible sky, curvature,
distance to the nearest road and the binary roads (Exp. 9
in Table 2). The superiority of this experiment is observed
for the two methods proposed but the KDE(KPCA) has the
best result on the independent validation set, corresponding
to a recall of 0.85. The KDE in the original space obtains
slightly lower performance with a recall at 0.78. Thereby,
it appears that the KDE and KDE(KPCA) have a similar
behavior for the combination of few significant geographic
feature (Exp. 1-4, 6, 7). However, if more features (Exp. 8 -
10) or binary features (Exp. 5) are added, the KDE(KPCA)
is more suitable to describe the data relations between geo-
graphic features, resulting to better results. Both KDE and
KDE(KPCA) are more suited than KPCA and OCSVM for
this problem. By inserting the unlabeled data in the clas-
sification process, we ensure that less unlabeled data are
classified positive and thus less data in the independent val-
idation set are misclassified.

3.4 Evaluation on one of the most attractive
area in the Alps: Zermatt.

On the map in figure 3 (a), probabilities for the Zermatt
area are presented. The filled dots are the training loca-
tions, the triangles are the testing locations while the empty
circles are the validation locations. Image locations are su-
perposed to the results of KDE(KPCA) and correspond to
the estimate of p(Y=1|z) at each location. A misclassifica-
tion corresponds to a circle that would be located on an area
of low probability (blue). The validation set is very specific
in this area: the pictures on the south are above 4000m
and accessible via a cable car (arrow A on the map in fig-
ure 3 (a)). This area is also a skiing region during winter
and summer. First, some of the misclassified data are found
along the cable car and are easily explicable. Indeed, these

pictures aren’t taken from the ground (but from the lift) and
thus these locations aren’t related to the geographic features.
This also explains why the “DLift” geographic feature is not
in the set of the best geographic features. Another set of lo-
cations, on the south of the “Breithorn” are badly classified
(arrow B on the map in figure 3 (a)). They are shot on the
way to this peak which is one of the most easily accessible
4000 summit in the Alps. However, the path to the summit
is not in the roads / paths database. From this map, we
can understand the geographic features related to the image
locations. First, the mountain paths are easily recognizable
in the figure. Indeed, they are always more attractive than
the other locations. However, the paths on steep slopes are
less probable than the other ones. Then, the ridges (Gorner-
grat), passes and summits (Matterhorn) are more attractive
than other areas.

At the scale of the whole area, as seen in figure 4, it is in-
teresting to note that the method is able to extract different
behaviours. For instance, the paths are expected to have a
large probability. By combining the geographic features, it
appears that it is true at medium altitude. However, in the
valley, where the roads have more traffic, locations between
the roads are preferred. Moreover, at higher altitude, where
ski slopes are found, people are more disposed to move away
from the path. It is intuitive that the mountain peaks are
good places to shot pictures. The strength of our method
is to rank the peaks according to their altitude and shape.
Finally, the less attractive locations are the steep slopes, bot-
tom of deep valleys and flat areas at high altitude (glacier).
Indeed, these regions are hardly accessible.

4. CONCLUSION
The GPS measured positions of shared images are more

accurate than locations provided by the user. In this paper,
we propose to use the GPS coordinates of a set of land-
scape pictures to train a classifier of likely and unelikely
image locations. Every map location is described with ge-
ographic features extracted from a DEM and a TLM. The
method proposed projects the geographic features in a space
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Table 2: This table summarizes the results of our experiments. C is the score proposed in equation 7 to
evaluate our methods: KDE and KDE(KPCA) , Fpu is the score from equation 6 used to evaluate KPCA
and OCSVM. For the method using KPCA the number of Principal Component Npc used is shown. nu is
the ratio of outlier in OCSVM. R(V ) is the ratio of validation data correctly classified, this ratio is used to
evaluate the methods. In bold, the best performing algorithm per experiment. Underlined the three best
experiments over all tests.

Geographic Proposed Competing

Exp. features KDE KDE(KPCA) KPCA OCSVM

considered C R(V) Npc C R(V) Npc Fpu R(V) Fpu ν R(V)

1 Z, slope, Sky,
DRoad

33.3 0.83 4 34.5 0.83 3 1.94 0.45 1.66 0.4 0.41

2 Z, slope, Sky,
Broad

19.2 0.73 4 24.86 0.72 5 2.43 0.4 1.19 0.45 0.48

3 Z, slope, Sky,
DRoad, Curv

20.43 0.83 7 35.6 0.86 6 1.59 0.57 1.23 0.35 0.52

4 Z, slope, Sky,
DRoad, DLake

27.23 0.78 5 26.95 0.78 6 2.10 0.01 1.3 0.35 0.42

5 Z, slope, Sky,
DRoad, BRoad

29.6 0.78 7 46.27 0.84 4 3.12 0.45 1.89 0.45 0.37

6 Z, slope, Sky,
DRoad, DFor

18.8 0.69 4 25.7 0.55 4 1.52 0.55 1.18 0.25 0.64

7 Z, slope, Sky,
DRoad, DLift

20.7 0.75 5 23.54 0.7 2 2.11 0.42 1.21 0.2 0.59

8 Z, slope, Sky,
DRoad, Curv,
DLake

21.85 0.79 7 34.44 0.86 6 1.52 0.53 1.16 0.25 0.63

9 Z, slope, Sky,
DRoad, Curv,
BRoad

35.26 0.78 7 51.74 0.85 5 2.31 0.55 1.44 0.35 0.52

10 Z, slope, Sky,
DRoad, Curv,
Broad, DLake

22.31 0.73 8 31.72 0.81 2 2.39 0.43 1.2 0.3 0.51

of higher dimension using a KPCA. Then, the spatial prob-
ability density function of the picture locations and random
locations are estimated with a density function (KDE). The
relation between them is used to compute the probability of
each map cell to be a likely location given the geographic
features. The recall on the independent validation set sur-
passes the KPCA and OCVM classification in their regular
implementation.

This preliminary study could be refined in several ways.
First, the geographic features computed were selected from a
priori expected correlations. However, other geographic fea-
tures could also be correlated to the image locations (orien-
tation, DEM based features at finer or coarser scales, rivers,
cable car departure and arrival stations only etc.). Second,
our studies focus on a small area in the Alps, a similar ap-
proach could be applied to the entire Alps. Indeed, a bigger
amount of picture locations would refine our results and in-
crease their robustness and generalization power at a larger
scale. Third, in this work we avoided the KDE bandwidth
setting using the Scott’s rule. A more appropriate band-
width could improve the results. Finally, the improvement
between the proposed method (KDE and KDE(KPCA)) and

the standard ones (OCSVM, KPCA) is mainly due to the
insertion of the unlabeled data in the classification process.
Our method is easy to implement and shows good results
without fine tuning.

We proved that the locations of a map are not equiprob-
able relative to landscape image locations. By describing
each map location with geographic features, one can extract
the most probable regions. The generated map differs from
the density maps based on the Northing and Easting of the
picture locations in two ways: firstly, using the geographic
features, probabilities are also computed for region with-
out image locations. Second, by taking into account the
locations accessibility, the computed probabilities are more
realistic. The force of our method is to learn attractive com-
binations of geographic features with the density estimation.
Indeed, the relation between a geographic feature and an the
picture location are intuitive (eg. paths are more probable,
convex area are preferred...), but their combinations is more
powerful to classify correctly picture locations.

Currently, there is a huge interest in computer vision for
the pose estimation of shared images at a local or worldwide
scale. Our results show that it is possible to use geographic
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Figure 3: Resulting maps: (a) Image locations are superimposed to the topographic map. Blue dots compose
the training set, green triangles are the testing set, yellow circles are the validation set. ”A” shows the cable
car; ”B” shows the way to the Breithorn. (b) Image locations are superimposed to probability map. Colour
code is linked to the probability for a cell to be a picture location. Cells close to zero are similar to the
random set, cells close to one are similar to the training set. Filled dots compose the training set, triangles
are the testing set, empty circles are the validation set.

features as a prior knowledge to either discredit some un-
likely poses or to promote the more probable ones.
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