
Discovering Periodic Patterns in System Logs⋆

Marcin Zimniak1, Janusz R. Getta2, and Wolfgang Benn1

1 Faculty of Computer Science, TU Chemnitz, Germany
{marcin.zimniak,benn}@cs.tu-chemnitz.de

2 School of Computer Science and Software Engineering,
University of Wollongong, Australia

jrg@uow.edu.au

Abstract. Historical information stored in the software system logs, au-
dit trails, traces of user applications, etc. can be analysed to discover the
patterns in periodic variations of levels and structures of the past work-
loads. These patterns allow for the estimation of intensities and struc-
tures of the future workloads. The correctly anticipated future workloads
are used to improve performance of software systems through appropriate
allocation of computing resources and through restructuring of associ-
ated system support. This work defines a concept of periodic pattern and
presents the algorithms that find the periodic patterns in the traces of
elementary and complex operations on data recorded in the system logs.

1 Introduction

The typical approaches to performance tuning of software systems either find
the software components that have significant impact on performance or find
a group of software components whose simultaneous processing contributes to
the performance bottlenecks [1]. Optimization of software components restruc-
tures associated system support. It relocates data containers to the faster storage
devices, runs processes on the faster processors, adds more resources and com-
putational power, increases the priorities of performance critical processes, etc.
Optimization through elimination of bottlenecks restructures the functionality
of software components involved in the collisions during their simultaneous pro-
cessing.

Automated performance tuning of software systems [2] implements an “ob-
server” module that automatically changes a level of system support or resolves
the collisions whenever it is necessary. An important factor is the ability of an
“observer” to anticipate the low workload times when re-balancing of system
support or elimination of bottlenecks can be done. An important question is

⋆ Copyright c© 2014 by the paper’s authors. Copying permitted only for private and

academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

156

whether it is possible to predict the future characteristics of workloads from in-
formation about the past behaviour of a software system. A promising approach
is to utilize the periodic repetitions of data processing caused by the “repetitive
nature”of real world processes. For example, students enrolling courses at the
beginning of each session, accountants processing financial data at the end of fi-
nancial year, footballers playing games every week, etc. trigger the repetitions of
the same data processing cycles. An objective of this work is to provide efficient
algorithms for discovery of periodic patterns in the traces of elementary and
complex operations on data recorded in the system logs. We assume an abstract
model of computations where a system log is represented by a sequence of nested
n-ary operations on data later on called a workload trace. A workload trace is
sequence of groups of operations computed in the same periods of time. A work-
load trace is “reduced” by elimination of all nested operations that provide the
arguments for only one higher level operation. Then, the processing patterns of
“children” operations are the same as the patterns of “parent” operations.

The paper is organized in the following way. The next section refers to the
previous works in the related research areas. Section 3 defines the basic concepts
and a model of workload trace. A concept of periodic pattern in a system work-
load is defined in Section 4 and discovering of elementary periodic patterns is
explained in Section 5. Section 6 concludes the paper.

2 Related work

Data mining techniques that inspired the works on periodic patterns came from
the works on mining association rules [3] and later on from mining frequent
episodes [4] and its extensions on mining complex events.

The problem seems to be very similar to a typical periodicity mining in time
series [5], where analysis is performed on the long sequences of elementary data
items discretized into a number of ranges and associated with the timestamps. In
our case, the input data is a sequence of complex data processing statements, e.g.
SQL statements and due to its internal structure cannot be treated in the same
way as analysis of elementary data elements in time series or genetic sequences.

The recent approaches, which addressed full periodicity, partial periodicity,
perfect and imperfect periodicity [6], and asynchronous periodicity [7] are all
based on fixed size and adjacent time units and fixed length of discovered pat-
terns.

Our problem is also similar to a problem of mining cyclic association rules [8]
where an objective is to find the periodic executions of the largest sets of items
that have enough support.

Invocation of operation on data along the various points in time can be easily
described by temporal predicates within a formal scope of temporal deductive
database systems [9]. The reviews of data mining techniques based on analysis of
ordered set of operations on data performed by the user applications are available
in [10], [11]. The model of periodicity considered in this paper is consistent with
the model proposed in [12].

157

3 Basic concepts

The operations processed by the software components c1, . . . , cn are recorded in
an operation trace. A trace of a software component ci is a finite sequence of
pairs <pi1 :ti1 , . . . , pin

:tin
> where each tij

is a timestamp when an operation pij

has been processed.
A system trace A is a sequence of interleaved trails of software components

processed in a certain period of time. For example, a sequence <pi1 :ti1 , pj1 :tj1 ,
pi2 :ti2 , pj2 :tj2> is a sample system trace from the processing of software com-
ponents ci, and cj .

Let <tstart, tend> be a period of time over which a system trace is recorded.
A time unit is a pair <t, τ> where t is a start point of a unit and τ is a length of
the unit. A nonempty sequence U of n disjoint time units <t(i), τ (i)> i = 1, . . . , n
over <tstart, tend> is any sequence of time units that satisfies the following prop-
erties: tstart ≤ t(1) and t(i) + τ (i) ≤ t(i+1) and t(n) + τ (n) ≤ tend.

A multiset M is defined as a pair <S, f> where S is a set of values and
f : S → N+ is a function that determines multiplicity of each element in S and
N+ is a set of positive integers. In the rest of this paper we shall denote a multiset
<{T1, . . . , Tm}, f> where f(Ti) = ki for i = 1, . . . , m as (T k1

1 . . . T km
m). We shall

denote an empty multiset <∅, f> as ∅ and we shall abbreviate a multiset (T k)
to T k and T 1 to T .

A workload trace of an operation T is a sequence WT of |U | multisets of
operations such that WT [i] =<{T }, fi> and fi(T) = |T.timestamp(i)| ∀i =
1, . . . , |U | i.e. fi(T) is equal to the total number of times an operation T was
processed in the i-th time unit U [i].

Let T be a set of all operations obtained from a system trace A. A workload

trace of A is denoted by WA and WA[i] =
⊎

T∈T

WT [i], ∀i = 1, . . . , |U |, i.e. it is a

sum of workload traces of all operations processed in U .

4 Periodic patterns

A periodic pattern is a tuple <T , U , b, p, e> where T is a nonempty sequence of
multisets of operations, U is a sequence of disjoint time units, b ≥ 1 is a number
of time unit in U where the repetitions of T start, p ≥ 1 is the total number of
time units after which processing of T is repeated in every processing cycle, e > b
is a number of time unit in U where the processing of T is performed for the last
time. A sequence of multisets T may contain one or more empty multisets. The
positional parameters b, p, and e of a periodic pattern must satisfy a property
(e − b)mod p = 0. A value c = e−b

p
+ 1 is called as the total number of cycles in

the periodic pattern.
Let Text be a sequence of multisets of operations obtained from T and ex-

tended on the right with e − b empty multisets. Then, a workload trace of a

periodic pattern <T , U , b, p, e> with the total number of cycles c = e−b
p

+ 1

is a sequence WT of e − b + |T | multisets of operations such that WT [i] =

158

Text[g(i)] ⊎ Text[g(i − p)] ⊎ Text[g(i − 2 ∗ p)] ⊎ . . . Text[g(i − (c − 1) ∗ p)] for
i = 1, . . . , e − b + |T | where a function g is computed such that if x > 0
then g(x) = x else g(x) = x + e − b + |T |.

For example, <∅TV , U , 1, 1, 3> is a periodic pattern where processing of a
sequence of operations ∅TV starts in the time units 1, 2, and 3 and its workload
trace is a sequence of multisets ∅T (V T)(V T)V . The periodic pattern has 3 cycles.

Let |WT | be the total number of elements in WT . Let v be the total number
of elements in WT such that WT [i] ⊑ WA[b + i − 1] for i = 1, . . . , e − b + |T |.
Then, we say that a periodic pattern <T , U , b, p, e> is valid in a system trace

A with a support 0 < σ ≤ 1 if WT [1] ⊑ WA[b] and WT [e− b+ |T |] ⊑ WA[e+ |T |]
and σ ≤ v/|WT |.

For example, a periodic pattern <(T 2V)∅W, U, 2, 3, 8> has a workload trace
(T 2V)∅W (T 2V)∅W (T 2V)∅W . The pattern is valid in a system trace A with
support σ = 1 if every element of its workload trace is included in a workload
trace WA from position 2 to position 10.

A periodic pattern <T , U, b, p, e> such that T = T i1 ...T in where ik, n ≥ 1
and p ≥ |T | is called as a homogeneous periodic pattern. For example, a periodic
pattern <T 7T 2T 11, U, 10, 4, 22> is a homogeneous periodic pattern, which has
four cycles.

5 Discovering periodic patterns

A method for discovering periodic patterns in database audit trails proposed
in [12] iterates over the dimensions of syntax trees of SQL statements retrieved
from an audit trail and the dimensions of positional parameters b, p, and e. The
algorithm finds only homogeneous periodic patterns such that T = T k and its
computational complexity is approximately O(k ∗ n3) where 0 < k < 1/8 and n
is the total number of time units of an audit trail.

An approach to mining periodic patterns proposed in this paper is based on
two algorithms. The first algorithm finds in a workload trace WA the longest
subsequence WT of nonempty multisets, which is included in the largest number
of times in the trace WA. Then, WT is passed to the second algorithm to gen-
erate the candidate periodic patterns and to return the candidate pattern with
the highest support to the first algorithm. Next, the first algorithm saves the
periodic pattern, it removes from WA a workload trace of the pattern, and it
repeats itself until it is possible to find a new WT which has at least two separate
subsequences.

Algorithm 1

Let T be a set of all operations included in a workload trace WA. The following
algorithm iteratively performs the following steps over the operations T ∈ T. At
the beginning a set of periodic patterns P is empty.

(1) We transform WT into a sequence of numbers (words with length equal to
|U |), < fi(T) > , such that fi(T) ∈ N0, ∀i = 1, . . . , |U |, W ′

T := WT .

159

(2) If there are no empty multisets in W ′
T then we transform W ′

T as follows,
W ′

T := W ′
T − (workload trace of < T, 1, 1, |U | >) the smallest number of

kimin
times such that in the result of transformation we obtain at least one

empty multiset, i.e. there is at least one zero in a sequence (word) < f ′
i(T) >.

We add a periodic pattern to a set P , P := P∪ < T kimin , 1, 1, |U | >.
(3) We find in W ′

T all longest sub-sequences {Wi(W
′
T)} in a sense of inclusion of

multisets over their components and such that there exists the largest num-
ber of the same sub-sequences whose length is equal to max || < f ′

ij
(T), ...,

f ′
ik

(T) > ||.
(4) For each individual Wi(W

′
T) we apply Algorithm 2 described below and

from all periodic patterns found we pick a pattern with the largest value of
support σ.

(5) If from a step (4) we get pphom then P := P ∪ pphom and W ′
T := W ′

T −
(workload trace of pphom) and we return to step (3). If a step (4) returns
no solutions then we progress to the next step.

(6) It is possible to remove from any valid periodic pattern any leading or trailing
sequence of T and still get a periodic pattern valid in the same workload
trace. We search W ′

T for shorter homogeneous periodic patterns pphom
′. We

insert each pphom
′ found into P and W ′

T := W ′
T − (workload trace of pphom

′).
We return to step (3).

Algorithm 2

An input to the second algorithm is a workload trace WT , a given sequence of
multisets of operations T , the locations of the first (f) and the last (t) instances
of T in WT . The parameters of a candidate periodic pattern in WT must satisfy
the following linear Diophantine equation:

c ∗ |T | + (c − 1) ∗ d = e − b + |T | (1)

where d is a distance between the instances of T in the pattern and c is the total
number of cycles in the pattern. To solve the equation we assume that b = f ,
e = t. Let dmin (dmax) be the shortest (the longest) distance between any two
locations where T is included in WT . The algorithm consists of the following
steps.

(1) We make a set of candidate periodic patterns P empty.
(2) We iterate over the values of d = dmin, dmin + 1, . . . , dmax.

(2.1) For a given value of d we find the following values of c and r:

c =
e − b

|T | + d
+ 1 (2)

r = (e − b) mod (|T | + d) (3)

(2.2) Let p = |T | + d. We create the periodic patterns <T , b, p, b + p ∗ (c − 1)>,
<T , b + 1, p, b + p ∗ (c− 1) + 1>, . . . , <T , b + r, p, b + p ∗ (c− 1) + r>. We
append the periodic patterns found to a set of candidate periodic patterns
P . If available we pick the next value of d and we return to step (2.1).

(3) A set of candidate homogeneous periodic patterns P is returned to the first
algorithm.

160

6 Summary and conclusions

Discovering the complex periodic patterns in the system logs is a difficult and
time consuming task. This work defines a concept of periodic pattern and shows
how to find the periodic patterns in the the system logs. An approach described
here shows that it is easier to find the simple periodic patterns and later on to
compose them into the complex ones instead of directly searching for all complex
patterns. The discovered periodic patterns can be used to model future workload
after the old applications are replaced with the new ones or the new applications
are added to a system. It is also easier to reconcile the new audit trails with the
collections of periodic patterns discovered from the previous system logs than to
integrate the complete logs.

References

1. Osterhage, W.: Computer Performance Optimization. Springer-Verlag (2013)
2. Bruno, N., ed.: Automated Physical Database Design and Tuning. CRC Press

Taylor and Francis Group (2011)
3. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of

items in large databases. In: Proceedings of The 1993 ACM SIGMOD Intl. Conf.
on Management of Data. (1993) 207–216

4. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1 (1997) 259–289

5. Rasheeed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity mining in time series
databases using suffix trees. IEEE Transactions on Knowledge and Data Engineer-
ing 23(1) (2011) 79–94

6. Huang, K.Y., Chang, C.H.: SMCA: A general model for mining asynchronous
periodic patterns in temporal databases. IEEE Transactions on Knowledge and
Data Engineering 17(6) (2005) 774–785

7. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series
data. IEEE Trans. on Knowl. and Data Eng. 15(3) (March 2003) 613–628

8. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: Pro-
ceedings of the Fourteenth International Conference on Data Engineering. (1998)
412–421

9. Baudinet, M., Chomicki, J., Wolper, P.: Temporal deductive databases (1992)
10. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana, Academy

Proceedings in Engineering Sciences 31(2) (2006) 173–198
11. Roddick, J.F., Society, I.C., Spiliopoulou, M., Society, I.C.: A survey of temporal

knowledge discovery paradigms and methods. IEEE Transactions on Knowledge
and Data Engineering 14 (2002) 750–767

12. Zimniak, M., Getta, J., Benn, W.: Deriving composite periodic patterns from
database audit trails. In: The 6th Asian Conference on Intelligent Information and
Database Systems. (2014) 310–321

161

