
Contextual Entity Resolution Approach
for Genealogical Data

Hossein Rahmani1, Bijan Ranjbar-Sahraei1, Gerhard Weiss1, and Karl Tuyls2

1Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
{h.rahmani,b.ranjbarsahraei,gerhard.weiss}@maastrichtuniversity.nl

2University of Liverpool, Ashton Building, Liverpool L69 3BX, United Kingdom
k.tuyls@liverpool.ac.uk

Abstract. Due to huge amount of inaccurate information and different
types of ambiguity in the available digitized genealogical data, apply-
ing Entity Resolution techniques for determining the records referring
to the same entity should be considered as the first and still very im-
portant step in analysis of this type of data. Traditional methods, use
a standard string similarity measure to calculate the similarity among
references, neglecting the contextual information available for each ref-
erence, and then introduce the most similar pairs as matches. In this
paper, first, we introduce a novel blocking strategy to reduce the number
of potential candidate pairs. Second, we propose a contextual similarity
measure which not only considers the string similarity among references
but also contextual information available for them. Third, we evaluate
our proposed method extensively from different perspectives and among
many discussed patterns, the “early child death” pattern discovered to
be prominent.

Keywords: Entity Resolution, Contextual Similarity, Genealogy

1 Problem Definition

The work discussed in this paper has been developed as part of a larger project,
the MISS1 (Mining Social Structures from Genealogical Data) Project, which is
funded by the NWO (Netherlands Organisation for Scientific Research) Associa-
tion. MISS project uses the historical certificates of BHIC2 (Brabants Historical
Information Center) to unravel the genealogical connections and also mine the
social structures from a prosopographical [8] point of view.

There are three important certificate types used in this project, namely
“Birth”, “Death” and “Marriage”. Section 2 describes these certificate types in

Copyright c© 2014 by the paper’s authors. Copying permitted only for private and
academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

1 http://swarmlab.unimaas.nl/catch/
2 http://www.bhic.nl

168



detail. The digitized version of these certificates, however, is not at all flawless;
many names are duplicate, have several alternative spellings, or even contain
mistakes. The main challenge in this project is to find an approach which can
resolve when two references refer to same entity in spite of errors and inconsis-
tencies in the input certificates. We model this project as a system which takes
large number of error-prone and inconsistent certificates as input and as an out-
put, generates the graph of individuals in which each node represents an entity
and each edge shows the family relationship among two connected entities. Two
main goals of this project are 1) Detecting and eliminating duplicate references
referring to same entity (Known in literature in many different ways such as
Record Linkage [12, 18], the Merge/Purge prblem [6], Duplicate Detection [10,
16], Hardening Soft Databases [1], Reference Matching [9] and Entity Resolution
[5, 4]), and 2) Re-constructing family relationships among individuals.

2 Input Data

We consider three certificate types “Birth”, “Death” and “Marriage” as input
of our system. Table 1 shows the considered features for each certificate type.
As shown in Table 1 Birth certificates include 3 individual references (i.e., child,
father and mother). The Death certificates include 4 individual references (i.e.,
deceased, father, mother and relative of deceased). Finally, the Marriage certifi-
cates include 6 references (i.e., groom, bride and father and mother of each).

Table 1: Considered features for each certificate type.
Birth Certificate FirstName, LastName, Gender, BirthDate, BirthPlace,

FatherFirstName, FatherLastName,
MotherFirstName, MotherLastName

Death Certificate FirstName, LastName, Gender,
BirthDate, BirthPlace, DeathDate, DeathPlace,
FatherFirstName, FatherLastName,
MotherFirstName, MotherLastName
RelativeFirstName, RelativeLastName, RelationType

Marriage Certificate GroomFirstName, GroomLastName, GroomAge,
BrideFirstName, BrideLastName, BrideAge,
GroomFatherFirstName, GroomFatherLastName,
GroomMotherFirstName, GroomMotherLastName,
BrideFatherFirstName, BrideFatherLastName,
BrideMotherFirstName, BrideMotherLastName

This database consists of 5, 300, 000 individual references extracted from
1, 170, 000 certificates (details are provided in Table 2). Considering the non-
mentioned parents or relatives in some certificates, 500, 000 references do not
have any name (i.e., first name = null and last name = null). Therefore, we
have 4, 800, 000 informative references. Among these references we have 170, 000

169



distinct first names and 100, 000 distinct last names. The dates mentioned in dif-
ferent certificates span a period of time between 1810 and 1920. The certificates
are registered in 200 different municipalities.

Table 2: Statistical information of input data.
Number of Birth Certificate 110,000

Number of Marriage Certificate 350,000

Number of Death Certificate 710,000

Number of Extracted References 5,270,000

3 Proposed Blocking Strategy

The most direct way of finding duplicates among the references is to apply
pairwise comparison among the references and then consider the reference pairs
with highest similarity values as a same entity. The computational order of this
process is O(n2) which makes it infeasible in our project with rouphly 5,000,000
references. In order to avoid having to compare all pairs of references, we propose
a new blocking strategy to split all references into different blocking partitions.
This process reduces the search space and diminishes the number of potential
candidate pairs.

As a blocking strategy, the previous methods use the standard string encod-
ing systems such as Soundex [7], metaphone [14] and double-metaphone [15].
Soundex, indexes the names based on their pronunciation in English. The main
goal in this algorithm is that the letter with similar pronunciations be encoded
with same characters so that spelling errors can be resolved. Metaphone is an
extension of the Soundex code. Compared to Soundex, this code takes into ac-
count more information about variations and inconsistencies in English spelling
and pronunciation. Afterwards, Double Metaphone was proposed which takes
into account spelling peculiarities of a number of other languages. This indexing
algorithm generates up to two codes for each word, that can improve some of
the limitations of the original Metaphone for dealing with foreign languages.

In this section, we investigate the dataset of Dutch names [13] in order to first,
evaluate the effectiveness of standard string encoding systems, second, extract
the informative features for blocking strategy and third, propose a blocking
strategy which considers both typing error and conventional name variations in
Dutch names. The following subsections discuss in details the three mentioned
steps.

3.1 Dutch Name Dataset

There are different writing variations for each (Dutch) name. For example,
“Ghendrik”, “Haendrik”, “Handrikus”, “Hanri” and “Hedrik” are all referring
to the same entity “Hendrik”. The reason behind this name variations could be
of typing error or some historical/geoghraphical issues. In this section, we use
the dataset of Meertens Institute [13] to find the relationships among different

170



variations of Dutch names with their standard format. In total, the Meertens
database contains 44, 000 distinct first names (18, 000 and 26, 000 for male and
females, respectively) and 120, 000 distinct last names. The main attributes of
the dataset are name, standard name and popularity. In this dataset, in average
each standard first name has about 16 name alternatives while the standard last
names have about 8 alternatives in average. However, there exists some standard
names with very high number of alternatives.

3.2 Extracting Informative Features

So far, we have analyzed the following features from the the Meertens dataset.

F1: [Boolean feature] If first 2 letters of name and standard name are equal.
F2: [Boolean feature] If first 3 letters of name and standard name are equal.
F3: [Boolean feature] If last 2 letters of name and standard name are equal.
F4: [Boolean feature] If last 3 letters of name and standard name are equal.
F5: [Boolean feature] If size of name and standard name are equal.
F6: [Integer feature] Absolute difference of name length and standard length.
F7: [Integer feature] Number of longest first equal chars.
F8: [Integer feature] Number of longest last equal chars.
F9: [Boolean feature] If soundex code of name and standard name is equal.

F10: [Boolean feature] If metaphone code of name and standard name is equal.
F11: [Boolean feature] If double-metaphone code of name and standard name is

equal.
F12: [Integer feature] Longest common chars between name and its standard

name.

Table 3 calculates the min, mean, s.t.d. and max for each feature for the
male first name, female first name and last name datasets.

Table 3 provides detailed information about the 12 very basic and important
features of Dutch names. Among all the features, F1 is a very discriminative
feature as it is true in more than 70% of the cases (i.e., the first two letters of a
name and its standard name are equal in more than 70% of the cases). Among
the phonetic-based string similarity measures (F9, F10 and F11) Soundex code
has the highest score of being identical between name and its standard form in
about 50% of the cases. However, the absolute difference of name length and its
standard form length F6 has a maximum of 15, which means some name lengths
can deviate very much from length of its standard form.

In next subsection, we use the most discriminative features discussed in this
section to build a blocking key for partitioning the references based on their
similarities.

3.3 Blocking Key Generation

Following the conclusions discussed in Section 3.2, we propose a new blocking
key strategy which considers both name variations and spelling error.

171



Table 3: Feature analysis of Dutch names. Features F6, F7, F8 and F12 are
continuous features and the rest of features are all binary.

first name (male) first name (female) last name
Feature min mean s.t.d. max min mean s.t.d. max min mean s.t.d. max

F1 0 0.71 0.46 1 0 0.70 0.46 1 0 0.79 0.40 1
F2 0 0.52 0.49 1 0 0.50 0.49 1 0 0.60 0.48 1
F3 0 0.36 0.49 1 0 0.42 0.49 1 0 0.54 0.50 1
F4 0 0.27 0.44 1 0 0.30 0.45 1 0 0.45 0.49 1
F5 0 0.35 0.48 1 0 0.34 0.48 1 0 0.43 0.5 1

F6 0 1.15 1.31 15 0 1.10 1.31 13 0 0.77 0.88 10
F7 0 2.90 2.07 13 0 2.90 2.06 11 0 3.57 2.41 16
F8 0 1.57 2.07 13 0 1.77 2.06 11 0 2.59 2.65 16

F9 0 0.50 0.5 1 0 0.47 0.5 1 0 0.58 0.49 1
F10 0 0.31 0.47 1 0 0.29 0.46 1 0 0.42 0.49 1
F11 0 0.39 0.49 1 0 0.37 0.49 1 0 0.49 0.49 1

F12 0 3.90 1.85 14 0 3.98 1.85 12 0 4.82 2.1 17

Blocking Key(ri) = Gender(ri)

+FirstName(ri)[: 3] + FirstName(ri)[−2 :]

+LastName(ri)[: 3] + LastName(ri)[−2 :]

+soundex(FirstName(ri)) + soundex(LastName(ri)) (1)

where in Formula 1, string[:i] and string[-i:] refers to the first i and last i
characters of the string, respectively.

For each reference in our dataset, we build its blocking key and then we
assume all the references with similar blocking key in the same block. This
process builds blocks with different sizes (=member count). As the size of one
block increases our confidence for that block decreases. Formula 2 calculates the
Confidence value for block bi.

Conf(bi) =
N

size(bi)
− 1 (2)

In this formula, N is the number of all references and size(bi) returns the
number of references belong to block bi. In the most extreme case, all references
belong to one block and the confidence of that block becomes 0 (i.e., Conf(b0) =
N/N − 1 = 0).

In the next section, we propose a contextual similarity measure to compare
all reference pairs belonging to similar blocks.

4 Contextual Similarity Measure

After partitioning all the references into different blocks, now we could com-
pare all the reference pairs belonging to the same block. The existing similarity

172



measures such as Levenstinen, Jaro-Winkler, etc. [17, 11, 2] simply calculate the
string similarity between reference’s First and Last Names neglecting the con-
textual information available for each reference.

As discussed in Section 2, the references that are used in this paper are
extracted from three different type of certificates: “Birth”, “Death” and “Mar-
riage”. Each of these certificate types contains the information of a group of
Subfigs. 2(a) and 2(b) show that which should be considered when we compare
two references. For example, imagine two arbitrary references ri and rj where
both belong to the same block bk (i.e., ri ∈ bk and rj ∈ bk). If their partners
both belong to another block bL (i.e., partner(ri) ∈ bL and partner(rj) ∈ bL)
then the probability that ri and rj referring to same entity should be increased,
comparing to the case that their partners belong to different blocks. To con-
sider the contextual information hidden in each certificate, we use Formula 3 to
extract the Block Context of each certificate ci.

BC(ci) =
⋃

rj∈ci,rj∈bk

bk (3)

BC(ci) simply includes the block ids of all reference members of certificate
ci. We propose a following similarity measure to consider both String similarity
among references in addition to their certificate contextual information.

Similarity(ri, rj) = SimNC(ri, rj) + SimBC(ri, rj) (4)

In Formula 4, SimNC(ri, rj) and SimBC(ri, rj) calculates the “No Context”
and “Blocking Context” similarity values between two references ri and rj , re-
spectively. In, Formula 5, we use Jaro-Winkler algorithm [17] to calculate the
string similarity between FirstName and LastName of two references ri and rj .

SimNC(ri, rj) =
1

2

[
JaroWinkler(FirstName(ri),FirstName(rj))

]
+

1

2

[
JaroWinkler(LastName(ri),LastName(rj))

]
(5)

If two references ri and rj belong to two certificates ci and cj respectively,
then we use Formula 6 to calculate the contextual-based similarity between them.

SimBC(ri, rj) =

∑
bk∈{BC(ci)∩BC(cj)}Conf(bk)∑
bk∈{BC(ci)∪BC(cj)} Conf(bk)

(6)

Formula 6 checks if the other references in the same certificates belonging to
the similar blocks or not.

5 Empirical Studies

In this section, first, our proposed blocking strategy is applied on the genealog-
ical dataset introduced in Section 2. Then, the contextual similarity measure

173



proposed in Section 4 is used to extract the links between certificates. Finally,
by means of examples and manual evaluation, the final results are evaluated by
domain experts.

5.1 Results of Proposed Blocking Technique

We applied our proposed blocking strategy to the BHIC dataset, which contains
about 5, 000, 000 references. As a result, 690, 000 blocks are constructed with
different sizes ranging from size 1 to 3, 845, where each of the blocks of size one
contains just 1 reference and the block with largest size contains 3, 845 references;
the block key of this largest block is “female Mar Jan ia en M600 J525” which
turns out to be the most pattern among Dutch references reported between
1890 and 1920. The average block size is 7 and the standard deviation is 29.
This shows that not many blocks of very large size exist. Fig. 1 shows the block
size distribution by focusing on the blocks with size 2 to 50.

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10
x 10

4

Block Size

F
re

q
u
e
n
c
y

Fig. 1: Distribution of block sizes. The average block size is 7 and the standard
deviation is 29. Blocks with size 1 are excluded from the figure as they contain
just 1 reference and are not informative in matching.

Given that originally about 25×1012 pairwise comparisons (i.e., 5, 000, 000×
5, 000, 000) were required for accomplishing the task of traditional entity resolu-
tion, based on the partitions introduced by the proposed blocking strategy, the

average search space is now reduced by 3.5× 10−5 (i.e., 690,000×72
25×1012 ).

5.2 Result of Contextual Similarity Measures

In this subsection, we report the results of applying the proposed contextual
similarity measure on matching candidates from all blocks bi of size less than or
equal to 100 (i.e., size(bi) =< 100). This generates in total 40, 489, 999 matching
pairs with similarity scores less than 2.0, where 14% of matching candidates (i.e.,
5, 703, 687 pairs of references) have a score larger than 1.2. The score distribution
of these matching candidates are shown in Fig. 2.

Subfigs. 2(a) and 2(b) show that many of the matching candidates have a
matching score equal to 2.0. We consider these matches as perfect matches (iden-
tical certificates) which can refer to either record duplicates or correct matches
where the same group of references are mentioned in both certificates.

174



0 1 2 3 4 5 6

x 10
6

1

1.2

1.4

1.6

1.8

2

14% matchings with highest score

M
a

tc
h

in
g

 S
c
o

re

(a)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

1

2

3

4

5

6

7

8
x 10

5

Matching Score

F
re

q
.

(b)

Fig. 2: The contextual similarity measure of 14% matching candidates with high-
est score (a) the matching candidates are sorted based on the matching score.
185, 000 of the candidates have a perfect match with exact matching score 2.0.
(b) distribution of the matching candidates with a score higher than 1.2.

Table 4 provides a categorization of all the certificate-pairs that contain the
185, 000 perfect matches with score = 2.0 (i.e., about 90, 000 certificate pairs).
Table 4 shows that more than 50,000 matches refer to connections between death
certificates. By further exploration of the results we realized that about 28% of
these matches refer to record duplicates3. Besides 78% of the matches refer to
the certificates with an average of 2.1 year difference in issue time. One major
reason for these matches can be early death of child in families of 19th century
which results in using the same name for next child which might end with death
of next child as well.

By exploring the 28, 000 matches between death and birth certificates, again
25% of these matches can be because of the early death of the birth as both
certificates are issued in the same place in the same year. However, 75% of the
matches refer to the matches of birth and death of an entity with an average age
of 28.4 years. The reason for having such a low average age is that in such death
certificates, no relative name is mentioned for the deceased person (i.e., most
probably the deceased has been single), which is the case for young references.
For details about other matching types refer to Table 4.

5.3 Result of Contextual Matching

In this subsection, we discuss the results of the proposed contextual matching
technique by presenting some examples of the revealed matches between different
references, and also the results of a manual check of over 300 instances of data
will be provided.

3 record duplicates in our genealogical dataset refer to the cases that an event is issued
by two authorities or due to data storage inconsistencies the record is stored more
than one time with minor differences in location name, archive index, etc.

175



Table 4: Categorisation of matches with score 2.0 where the number of certificates
seen for each type of matching and the average difference in date of certificate
issue is provided.

Matching Type Avg. Date Diff. Freq.

Death Certificate (to) Death Certificate 2.1 years 51,293
• 28% due to record duplicate
• 72% due to early child death and
using the name for next child, or other
reasons.

Death Certificate (to) Birth Certificate 9.8 years 28,401
• 25% due the early child birth
• 75% due to matching between birth
and death of an entity, or others

Birth Certificate (to) Birth Certificate 3.5 years 8,679
• 100% due to early child death and
using the name for next child, or others

Marriage Certificate (to) Marriage Certificate 0 years 1642
• 100% due the record duplicate

Marriage Certificate (to) Death Certificate 26 years 99
• 100% due to matching between a
death and marriage certificate of an
entity when the parents of deceased
partner are not mentioned in the
marriage certificate

By a careful study on discovered matchings with highest score, different pat-
terns can be introduced, where for each pattern specific certificate roles are
matched with each other. For instance, one common pattern can be a match
between two born references due to similarities between their names and their
parents’ names. Subfig. 3(a) illustrates an example where the match between
two born references is considered as a perfect match with score = 2.0. In this
example, both certificates are issued in the same place with one year difference
in time of issue. Therefore, this case might refer to an early death of a born chid,
where her name is used for the the next born child in the following year.

Another common pattern in discovered matches is the high contextual sim-
ilarity between parents of a birth or death certificate and parents of another
birth or death certificate. Subfig. 3(b) shows an example of this pattern where a
father in a birth certificate is matched with father in a death certificate which is
issued three years later in the same place. The matching is not perfect (score =
1.78) as the children have different first names (this can refer to two siblings).

In order to evaluate the quality of the revealed matches between references,
we chose 324 matches randomly (from matches with score higher than 1.3) and
for each match a domain expert, familiar with genealogical data, used the pro-
vided evidence (names of references, family relations, place and date of issue,
blocking key and blocks confidence) to evaluate the match by choosing either a

176



(a) Matching between two birth certificates (score = 2.0)

(b) Matching between a birth certificate and a death certificate (score = 1.78)

Fig. 3: Examples of matched pairs with different scores (a) A perfect match
between two birth certificates, which are issued in the same place with one year
difference.This can be due to early death of the first child, and using her name
for next born child. (b) Father in a birth certificate is matched to the father in
death certificate of another child 3 years later. (As can be seen the born child in
left certificate has an identical name with mother)

True Positive or a False Positive category4. This evaluation approach is similar
to the approach described in [3]. Fig. 4 depicts the distribution of true positive
and false positive matches for manual evaluation. In this figure, no evidence of
false positive matches with a score higher than 1.7 can be seen while for lower
scores many false positive matches are seen.

6 Conclusions and Future Work

The reliability of any data analysis method strongly depends on the quality of
the input data. Considering the Genealogical data, with huge amount of inaccu-
rate information and different types of ambiguities, applying Entity Resolution
techniques for cleaning and integrating the references extracted from different
historical certificates should be taken into account as the first step toward any
data analysis approach. Traditional methods, use a standard string similarity
measure to calculate the similarity among references, neglecting the contextual

4 Please note that due to missing data, typing errors, redundancies and lack of extra
evidence confirming that two references point the same real entity is impossible in
many of the cases. Therefore, in evaluations of this paper, we stick to the evidence at
hand and assume that a reasonable similarity between two references, similar family
members, and feasible date and similar places can suggest a true positive match,
otherwise it will be considered as a false positive match.

177



1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

Matching Score

F
re

q
u
e
n
c
y

 

 

True Positives

False Positives

Fig. 4: Distribution of True/False positive matches using a manual evaluation
over 300 matching candidates. The results show 70% True positives and 30%
False positives. The false positives are detected for scores lower than or equal to
1.7.

information available for each reference, and then introduce the most similar
pairs as matches. In order to avoid having to compare all pairs of references, we
investigated the dataset of dutch name [13], we selected the most discrimina-
tive features and finally, we proposed a blocking strategy to split all references
into different blocking partitions. As a result of applying our proposed blocking
strategy, the search space is reduced by 3.5×10−5. To compare all the references
belong to the similar blocks, we proposed a contextual similarity measure which
not only considers the string similarity among references but also contextual in-
formation available for them. According to considered genealogical certificates,
we defined context of each reference as its first level family relationships (i.e.,
partner, father, mother etc) and accordingly, we increased the probability of
reference matches if they share a common context. We evaluated our proposed
contextual similarity measure from different perspectives and among many dis-
cussed patterns, the “early child death” pattern discovered to be prominent. In
this pattern, child dies in early years and the family uses the same name for the
next born baby.

Regarding future research induced by our work, we see three particularly
important directions for refinement and extension of our approach. First, fur-
ther exploration of possibilities for extensive validation of the achieved results.
This is challenging because we typically do not have grounded truth against
which the results can be directly compared. We have already discussed and val-
idated our results in Sections 5.2 and 5.3 by human domain experts; however, it
would be very useful and considerably more efficient to have a way of (at least
partially) evaluating the results automatically or at least semi-automatically by
simulating domain-expert behavior. Second, investigation of Random Walk to
take into account a wider range of contextual information such as second-level
family members. And third, when the graph of entities is built, the study of com-
mon characteristics of specific groups of entities in order to unravel previously
unknown information and connections within the groups [8].

178



Acknowledgments. This research has been supported under the NWO CATCH
program in the MISS project (project no. 640.005.003). The authors are grateful
to the BHIC center for the support in data gathering and direction.

References

1. William W. Cohen, Henry A. Kautz, and David A. McAllester. Hardening soft
information sources. In Raghu Ramakrishnan, Salvatore J. Stolfo, Roberto J.
Bayardo, and Ismail Parsa, editors, KDD, pages 255–259. ACM, 2000.

2. Julia Efremova, Bijan Ranjbar-Sahraei, and Toon Calders. A hybrid disambigua-
tion measure for inaccurate cultural heritage data. In the 8th Workshop on LaT-
eCH, pages 47–55, 2014.

3. Julia Efremova, Bijan Ranjbar-Sahraei, Frans A Oliehoek, Toon Calders, and Karl
Tuyls. An interactive, web-based tool for genealogical entity resolution. In 25th
Benelux Conference on Artificial Intelligence, pages 376–377, 2013.

4. Julia Efremova, Bijan Ranjbar-Sahraei, Frans A Oliehoek, Toon Calders, and Karl
Tuyls. A baseline method for genealogical entity resolution. In Workshop on
Population Reconstruction, 2014.

5. Lise Getoor and Ashwin Machanavajjhala. Entity resolution for big data. In
Proceedings of the 19th ACM SIGKDD, pages 1527–1527. ACM, 2013.

6. Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for
large databases. SIGMOD Rec., 24(2):127–138, May 1995.

7. Donald E. Knuth. The art of computer programming 1: Fundamental algorithms
2: Seminumerical algorithms 3: Sorting and searching, 1968.

8. Verboven Koenraad, Carlier Myriam, and Dumolyn Jan. A short manual to the
art of prosopography. In Keats-Rohan K.S.B., editor, Prosopography Approaches
and Applications. A Handbook, pages 35–69. Unit for Prosopographical Research
(Linacre College), Oxford, 2007.

9. Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of
the sixth ACM SIGKDD, pages 169–178. ACM, 2000.

10. Alvaro E. Monge and Charles Elkan. An efficient domain-independent algorithm
for detecting approximately duplicate database records. In DMKD, pages 0–, 1997.

11. Gonzalo Navarro. A guided tour to approximate string matching. ACM computing
surveys (CSUR), 33(1):31–88, 2001.

12. Howard B. Newcombe, James M. Kennedy, S.J. Axford, and A.P. James. Auto-
matic Linkage of Vital Records. Science, 130(3381):954–959, October 1959.

13. Meertens Institute Databases of Names. http://www.meertens.knaw.nl/cms/en/
collections/databases. Accessed 2014-06-27.

14. Lawrence Philips. Hanging on the metaphone. Computer Language, 7(12), 1990.
15. Lawrence Philips. The double metaphone search algorithm. C/C++ users journal,

18(6):38–43, 2000.
16. Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using ac-

tive learning. In Proceedings of the Eighth ACM SIGKDD, KDD ’02, pages 269–278,
New York, NY, USA, 2002. ACM.

17. William E. Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. 1990.

18. William E. Winkler. The state of record linkage and current research problems.
In Statistical Research Division, US Census Bureau, 1999.

179




