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Abstract. Among the unsolvable terms of the lambda calculus, the
mute (or root-active) ones are those having the highest degree of un-
definedness. In this paper, we define an infinite set S of mute terms, and
show that it is graph-easy: for any closed term t of the lambda calculus
there exists a graph model equating all the terms of S to t.
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1 Introduction

It is a well known result by Jacopini [15] that Ω can be consistently equated to
any closed term t of the (untyped) lambda-calculus, where Ω is the paradigmatic
unsolvable term (λx.xx)(λx.xx) (this is called the easiness of Ω). Baeten and
Boerboom [3] gave the first semantic proof of this result by showing that for
all closed terms t one can build a graph model satisfying the equation Ω = t.
This semantic result extends to other classes of models and to some other terms
which share with Ω enough of its good will (cf. [7] for a survey of such results).

Mute lambda terms have been introduced by Berarducci [5], for defining
models of the lambda calculus that do not identify all the unsolvable terms. Mute
terms are somehow the “most undefined” lambda terms, as they are unsolvable
of order 0 (zero terms), which are not β-convertible to a zero term applied to
something else. For instance, Ω is mute, and Ω3 = (λx.xxx)(λx.xxx) is a zero
term that is not mute, since it reduces to Ω3(λx.xxx).

Berarducci proved that the set of mute terms is easy, in the sense that it is
consistent with the lambda calculus to simultaneously equate all the mute terms
to a fixed arbitrary closed term. Hereafter, a set of lambda terms that can be
simultaneously, consistently equated to a fixed arbitrary closed term is called an
easy set.

Given a class C of models of the lambda calculus, and an easy set S, we say
that S is C-easy if, for every closed term t, there exists a model in C that equates
all the terms in S to t.

Studying C-easiness gives insights on the expressive power of the class C.
Concerning filter lambda models, for instance, it had been conjectured [2] that
they have full expressive power for singletons, in the sense that any easy single-
ton set is filter-easy. Carraro and Salibra [13] showed that this is not the case:
there exists a co-r.e. set of easy terms that are not filter-easy. The first negative
semantic result was obtained by Kerth [19]: Ω3I, where I = λx.x, is an easy
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term, but no graph model satisfies the identity Ω3I = I. This result shows a
limitation of graph models. The easiness of Ω3I was proven syntactically in [16]
(see also [6]), but it was only given a semantic proof in [1], where the authors
build, for each closed t, a filter model of Ω3I = t.

Graph models are arguably the simplest models of the lambda calculus. There
are two known methods for building graph models, namely: by forcing or by
canonical completion. Both methods consist in completing a partial model into
a total one.

The canonical completion method was introduced by Plotkin and Engeler
and then systematized by Longo [21] for graph models. The word “canonical”
refers here to the fact that the graph model is built inductively from the partial
one and completely determined by it. This method was then used by Kerth [18]
to prove the existence of 2ω pairwise inconsistent graph theories, and by Buc-
ciarelli–Salibra [11, 9, 10] to characterize minimal and maximal graph theories.
In particular [11] shows that the minimal graph theory is not equal to the min-
imal lambda theory λβ, and that the lambda theory B (generated by equating
lambda terms with the same Böhm tree) is the greatest sensible graph theory.

The forcing method originates with Baeten–Boerboom [3], and it is more
flexible than canonical completions. In fact, the inductive construction depends
here not only on the initial partial model but also on the consistency problem
one is interested in. The method was afterwards generalized to other classes of
webbed models by Jiang [17] and Kerth [20]. It was also generalized to families
of terms similar to Ω by Zylberajch [23] and Berline–Salibra [8].

One more difference between these methods is that if we start with a recursive
partial web, the canonical completion builds a recursive total web, while forcing
always generates a non recursive web.

In this paper we define an infinite and recursive set of mute terms, the regular
mute terms. A regular mute term has the form s0s1 . . . sn, for some n, and it has
the property that, in n steps of head reduction, it reduces to a term of the same
shape t0t1 . . . tn, where t0 = si for some 1 ≤ i ≤ n. As regular mute terms are
mute, we know that the set of all regular mute terms is easy, since each subset of
an easy set is itself easy. We show that it is actually graph-easy by generalizing
the forcing technique used in [8].

More precisely, given a closed λ-term t and a finite set {n1, . . . , nk} of natural
numbers, we construct a graph model which equates to t all the regular mute
terms of the form s0s1 . . . snj , 1 ≤ j ≤ k, using forcing.

Then we glue together these graph models in an ultraproduct, using a tech-
nique introduced in [12]. This gives rise to a graph model that is an expansion
of the ultraproduct, where all the regular mute terms are equated to t, thus
concluding the proof that the set of regular mute terms is graph-easy.

2 Theories and models of λ-calculus

With regard to the lambda-calculus we follow the notation and terminology of
[4]. By Λ and Λo, respectively, we indicate the set of λ-terms and of closed λ-
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terms. We denote αβ-conversion by λβ. A λ-theory is a congruence on Λ (with
respect to the operators of abstraction and application) which contains λβ. A
λ-theory is consistent if it does not equate all λ-terms, inconsistent otherwise.

It took some time, after Scott gave his model construction, for consensus to
arise on the general notion of a model of the λ-calculus. There are mainly two
descriptions that one can give: the category-theoretical and the algebraic one.
The categorical notion of model, that of reflexive object in a Cartesian closed
category (ccc), is well-suited for constructing concrete models, while the algebraic
one is rather used to understand global properties of models (constructions of
new models out of existing ones, closure properties, etc.) and to obtain results
about the structure of the lattice of λ-theories. The algebraic description of
models of λ-calculus proposes two kinds of structures, viz. the λ-algebras and
the λ-models, both based on the notion of combinatory algebra. We will focus on
λ-models.

A combinatory algebra A = (A, ·,k, s) is a structure with a binary operation
called application and two distinguished elements k and s called basic combi-
nators. The symbol “·” is usually omitted from expressions and by convention
application associates to the left, allowing to leave out superfluous parentheses.
The class of combinatory algebras is axiomatized by the equations kxy = x and
sxyz = xz(yz). A function f : A → A is representable in A if there exists an
element a ∈ A such that f(b) = ab for all b ∈ A. For example, the identity
function is represented by the combinator i = skk.

The axioms of an elementary subclass of combinatory algebras, called λ-
models, were expressly chosen to make coherent the interpretation of the λ-terms
(see Barendregt [4, Def. 5.2.7]). In addition to five axioms due to Curry (see [4,
Thm. 5.2.5]), the Meyer-Scott axiom is the most important one in the definition
of a λ-model. In the first-order language of combinatory algebras it is formulated
as ∀xy.(∀z. xz = yz) ⇒ εx = εy, where the combinator ε = s(ki) is made into
an inner choice operator. Indeed, given any a, the element εa represents the
same function as a; by the Meyer-Scott axiom, εc = εd for all c, d representing
the same function.

Given a set A, we denote by EnvA the set of A-environments, i.e., the func-
tions from the set Var of λ-calculus variables to A. For every x ∈ Var and a ∈ A
we denote by ρ[x := a] the environment ρ′ which coincides with ρ everywhere
except on x, where ρ′ takes the value a.

Given a λ-model A, the interpretation |t|A : EnvA → A of a λ-term is defined
by induction on the complexity of t in such a way that

|x|Aρ = ρ(x); |tu|Aρ = |t|Aρ |u|Aρ ; |λx.t|Aρ = εb

where b is any element satisfying ba = |t|Aρ[x:=a] for every a ∈ A.

It is important to stress that the class of λ-models is axiomatized by first-
order axioms expressed in terms of Horn formulas, so that it is closed under
direct products; it is not axiomatized by equations only, so that it is not closed
neither under substructures nor under homomorphic images.
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3 Graph models

The class of graph models belongs to Scott’s continuous semantics. Graph models
owe their name to the fact that continuous functions are encoded in them via (a
sufficient fragment of) their graphs, namely their traces.

A graph model is a model of untyped λ-calculus, which is generated from a
web in a way that will be recalled below. Historically, the first graph model was
Plotkin and Scott’s Pω (see e.g. [4]), which is also known in the literature as “the
graph model”. The simplest graph model, E , was introduced soon afterwards,
and independently, by Engeler [14] and Plotkin [22]. More examples can be found
in [7].

As a matter of notation, we denote by D∗ the set of all finite subsets of a
set D. Elements of D∗ will be denoted by small roman letters a, b, c, . . . , while
elements of D by greek letters α, β, γ, . . . .

For short we will confuse the model and its web and so we define:

Definition 1. A graph model is a pair (D, p), where D is an infinite set and
p : D∗ ×D → D is an injective total function.

Such a pair will also be called a total pair. In the setting of graph models a
partial pair (see [7]) is a pair (A, q) where A is any set and q : A∗ ×A ⇀ A is a
partial (possibly total) injection. Examples of partial pairs are: the empty pair
(∅, ∅) and all the graph models.

If (D, p) is a partial pair, we write a →p α (or a → α if p is evident from
the context) for p(a, α). Moreover, β → α means {β} → α. a1 → a2 → · · · →
an−1 → an → α stands for (a1 → (a2 → . . . (an−1 → (an → α)) . . . )). If ā =
a1, a2, . . . , an, then ā→ α stands for (a1 → (a2 → . . . (an−1 → (an → α)) . . . )).

A total pair (D, p) generates a λ-model of universe P(D), called graph λ-
model. In particular P(D) is endowed with an application operator that makes
it a λ-model. The interpretation |t|p : EnvP(D) → P(D) of a λ-term t relative
to (D, p) can be described inductively as follows (see Section 2):

– |x|pρ = ρ(x)

– |tu|pρ = {α : (∃a ⊆ |u|pρ) a→ α ∈ |t|pρ}
– |λx.t|pρ = { a→ α : α ∈ |t|pρ[x:=a]}

Since |t|pρ only depends on the value of ρ on the free variables of t, we only
write |t|p if t is closed.

A graph model (D, p) satisfies t = u, written (D, p) � t = u, if |t|pρ = |u|pρ for
all environments ρ. The λ-theory Th(D, p) induced by (D, p) is defined as

Th(D, p) = {t = u : t, u ∈ Λ and |t|p = |u|p}.

A λ-theory induced by a graph model will be called a graph theory.
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4 The regular mute λ-terms

A first step towards the definition of regular mute terms are the hereditarily
n-ary terms, defined below.

Definition 2. Let n > 0 and x̄ ≡ x1, . . . xk be distinct variables. The set of
hereditarily n-ary λ-terms over x̄, written Hn[x̄], is the smallest set of λ-terms
containing x1, . . . , xk and satisfying the following property, for all fresh distinct
variables ȳ ≡ y1, . . . , yn and all terms t1, . . . , tn:

t1, . . . , tn ∈ Hn[x̄, ȳ] ⇒ λȳ.yit1 . . . tn ∈ Hn[x̄].

We write Hn for Hn[ ].

Example 1. Some unary and binary hereditary λ-terms:

– λx.xx ∈ H1

– λy.yx ∈ H1[x]
– λx.x(λy.yx) ∈ H1

– λzy.yzx ∈ H2[x]
– λxy.x(λzy.yzx)y ∈ H2.

Given a natural number n and variables x̄ we define inductively an increasing
sequence of sets of λ-terms, starting at Hn[x̄]:

Definition 3. Let x̄ ≡ x1, . . . xk and ȳ ≡ y1, . . . , yn be distinct fresh variables.

– H0
n[x̄] = Hn[x̄]

– Hm+1
n [x̄] = {s[u/y] : s ∈ Hm

n [x̄, ȳ], ū ≡ u1, . . . , un ∈ Hm
n [x̄]}

– Sn[x̄] =
⋃
mH

m
n [x̄].

We write Sn for Sn[ ]. For t ∈ Sn[x̄], we denote by rk(t) the smallest number

such that t ∈ Hrk(t)
n [x̄].

Lemma 1. If ȳ is a sequence of n distinct variables, s ∈ Sn[x̄, ȳ] and t̄ ≡
t1, . . . , tn ∈ Sn[x̄], then s[t̄/ȳ] ∈ Sn[x̄].

Lemma 2. Let t be a λ-term. Then t ∈ Hm
n [x̄] if, and only if, there exist

– s ∈ H0
n[x̄, z̄1, . . . , z̄m],

– sequences z̄i (i = 1, . . . ,m) of n distinct variables,
– sequences t̄i (i = 1, . . . ,m) of n terms t̄i ≡ ti1, . . . , tin ∈ Hm−i

n [x̄, z̄1, . . . , z̄i−1]

such that t ≡ s[tm/zm] · · · [t1/z1].

Proof. Just an unfolding of the previous definition.

Proposition 1. For all n > 0, s0, . . . , sn ∈ Sn, there exist r0, . . . , rn ∈ Sn and
i ≤ n such that

s0s1 . . . sn →n
β r0r1 . . . rn and r0 ≡ si
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Proof. (1) rk(s0) = 0.
Since s0 ∈ Hn, then s0 ≡ λy1 . . . yn.yir1 . . . rn with r1, . . . , rn ∈ Hn[y1, . . . , yn].

Hence s0s1 . . . sn →n
β sir1[s̄/ȳ] . . . rn[s̄/ȳ]. By Lemma 1 the term ri[s̄/ȳ] ∈ Sn,

and we are done.
(2) rk(s0) = m > 0.
By Lemma 2 there exists u ∈ Hn[z̄1, . . . , z̄m] such that s0 ≡ u[t̄m/z̄m] . . . [t̄1/z̄1],

for some terms t̄i ∈ Hm−i
n [z̄1, . . . , z̄i−1], for 1 ≤ i ≤ m. The term u cannot be

a variable because of the rank of s0. Then by definition u ≡ λȳ.yiu1 . . . un with
ui ∈ Hn[z̄1, . . . , z̄m, ȳ]. Then

s0 = λȳ.yi(u1[t̄m/z̄m] . . . [t̄1/z̄1]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1])

and, if s̄ = s1, . . . , sn

s0s1 . . . sn →n
β si(u1[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]).

Theorem 1. For all s0, . . . , sn ∈ Sn, the term s0s1 . . . sn is mute.

Hereafter, a term s0s1 . . . sn (si ∈ Sn) is called a n-regular mute term; Mn

will denote the set of all n-regular mute terms.

Example 2. Some unary and binary regular mute terms:

– (λx.xx)(λx.xx) ∈M1

– (λx.x(λy.yx))(λx.xx) ∈M1

– AAA ∈M2, where A := λxy.x(λzt.tzx)y.

Example 3. Let B := λx.x(λy.xy). Then BB is a mute term that is not regular:

BB = (λx.x(λy.xy))B →β B(λy.By)→β BB

5 Forcing for regular mute terms

In this section we show that, given a closed λ-term t and a finite set {n1, . . . , nk}
of natural numbers, there exists a graph model which equates all the regular mute
terms of the form s0s1 . . . snj , 1 ≤ j ≤ k, to t, using forcing.

5.1 Some useful lemmas

Lemma 3. Let (D, p) be a graph model, ρ be D-environment and β̄ = β, β, . . . , β
(n-times). If β = β̄ → α, t ∈ Sn[x̄] and β ∈ ρ(xi) (i = 1, . . . , k) then β ∈ |t|pρ.

Proof. Base case: t ∈ Hn[x̄]. Let ū ∈ Hn[x̄, ȳ] and z ∈ {x̄, ȳ} such that t = λȳ.zū.

β = β̄ → α ∈ |λȳ.zū|pρ ⇔ α ∈ |zū|p
ρ[ȳ:=β̄]

Since β ∈ ρ[ȳ := β̄] and by induction hypothesis β ∈ |ui|pρ[ȳ:=β̄]
, then α ∈

|zū|p
ρ[ȳ:=β̄]

.
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Let t ∈ Hm+1
n [x̄]. Then t ≡ s[u/y], where s ∈ Hm

n [x̄, ȳ] and ū ≡ u1, . . . , un ∈
Hm
n [x̄]. By induction hypothesis we have β ∈ |ui|pρ. Since |s[u/y]|pρ = |s|p

ρ[ȳ:=|ū|pρ]

and β ∈ ρ[ȳ := |ū|pρ](yi), then by induction hypothesis β ∈ |s|p
ρ[ȳ:=|ū|pρ]

and we

get the conclusion.

Lemma 4. Let (D, p) be a graph model, s0
0s

0
1 . . . s

0
n ∈ Mn (s0

i ∈ Sn) and γ ∈
|s0

0s
0
1 . . . s

0
n|p. Then there exist a sequence βi ≡ ai1 → · · · → ain → γ (i ∈ ω)

of elements of D and a sequence di (i ∈ ω) of natural numbers ≤ n such that
βi+1 ∈ aidi .

Proof. By Proposition 1 there exists an infinite sequence of mute terms such
that

s0
0s

0
1 . . . s

0
n →n

β s1
0s

1
1 . . . s

1
n →n

β . . . →n
β sk0s

k
1 . . . s

k
n →n

β . . .

and sk0 ≡ sk−1
dk−1

for some 1 ≤ dk−1 ≤ n. The number dk−1 is the order of the

head variable of the term sk−1
0 . By γ ∈ |s0

0s
0
1 . . . s

0
n|p there exists a0

1 → · · · →
a0
n → γ ∈ |s0

0|p such that a0
i ⊆ |s0

i |p. We define

β0 = a0
1 → · · · → a0

n → γ.

Assume βk = ak1 → · · · → akn → γ ∈ |sk0 |p and akj ⊆ |skj |p for every j ≤ n.

Since sk0 = λȳ.ydku1 . . . un for some terms ui and βk ∈ |sk0 |p, then, if ā =
ak1 , . . . , a

k
n

γ ∈ akdk(u1[ā/ȳ]) . . . (un[ā/ȳ]).

Then there exists βk+1 = ak+1
1 → · · · → ak+1

n → γ ∈ akdk ⊆ |s
k+1
0 |p = |skdk |p and

ak+1
j ⊆ |sk+1

j |p.

5.2 Forcing at work

We recall the notion of weakly continuous operator from [8].

Definition 4. Let D be an infinite countable set. By I(D) we indicate the cpo
of partial injections q : D∗ ×D ⇀ D, ordered by inclusion of their graphs.

By a “total p” we will mean “an element of I(D) which is a total map”
(equivalently: which is a maximal element of I(D)). The domain and range of
q ∈ I(D) are denoted by dom(q) and rg(q). We will also confuse the partial
injections and their graphs.

Definition 5. A function F : I(D)→ P(D) is weakly continuous if it is mono-
tone with respect to inclusion and if furthermore, for all total p ∈ I(D),

F (p) =
⋃

q⊆finp

F (q).
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Let p ∈ I(D). The universe U(p) of p is defined as follows:

U(p) =
⋃

(a,α)∈dom(p)

(a ∪ {α, p(a, α)}).

If p is finite, then the universe of p is also finite.
Let p ∈ I(D) be finite, α ∈ D, ε̄ ≡ ε1, . . . , εk ∈ D \U(p) and k ∈ N. Then we

denote pε̄,α the extension of p such that

ε2 = ε1 → α; εj+1 = ε1 → εj (j = 2, . . . , k − 1); ε1 = ε1 → εk.

Notice that
ε1 = ε1 → ε1 → · · · → ε1 → α (k-times)

and pε̄,α is also finite.
Let e ⊆fin N. We let Me =

⋃
i∈eMi the set of n-regular mute terms for

n ∈ e.
The next theorem is the main technical tool for proving the easiness of the

full set of n-regular mute terms. It generalizes [8, Thm. 11].

Theorem 2. Let F : I(D) → P(D) be a weakly continuous function and let
e ⊆fin N. Then there exists a total pe : D∗×D → D such that (D, pe) |= t = F (pe)
for all terms t ∈Me.

Proof. We are going to build an increasing sequence of finite injective maps pn,
starting from p0 = ∅, and a sequence of elements αn ∈ D∪{∗}, where ∗ is a new
element, such that: pe =def ∪pn is a total injection, and (D, pe) |= t = A = F (pe)
for all t ∈Me, where A =def {αn : n ∈ ω} ∩D.

We fix an enumeration of D and an enumeration of D∗ ×D.
We start from p0 = ∅.
Assume that pn and α0, . . . , αn−1 have been built. We let

– αn = First element of F (pn) \ {α0, . . . , αn−1} in the enumeration of D, if
this set is non-empty, and αn = ∗ otherwise;

– (bn, δn) = “the first element in (D∗ ×D) \ dom(pn)”;
– γn = “the first element in D \ (U(pn) ∪ bn ∪ {δn} ∪ {α0, . . . , αn−1, αn})”.

Let r = pn ∪ {γn = bn →r δn}.
Case 1: αn = ∗. We let pn+1 = r.
Case 2: αn ∈ D.

Let e = {k1, . . . , km}. We define q0 ⊆ q1 ⊆ · · · ⊆ qm ∈ I(D) as follows: q0 = r
and pn+1 = qm. Assume we have defined qi. We define qi+1 = (qi)ε̄n,i,αn (see
above), where

ε̄n,i ≡ εn,i1 , . . . , εn,iki+1
∈ D \ (U(qi) ∪ {αn})

are distinct elements.
It is clear that pn is a strictly increasing sequence of well-defined finite injec-

tive maps and that pe = ∪pn is total.
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It is also clear that each pn (and pe) is partitioned into two disjoint sets:
pn = p1

n ∪ p2
n, where p1

n = {bi → δi = γi : 1 ≤ i ≤ n − 1} is called the gamma
part of pn and p2

n = pn \ p1
n is called the epsilon part.

For every γ ∈ D, we define

deg(γ) =

{
0 if γ /∈ rg(pe)

min{n : γ ∈ rg(pn)} if γ ∈ rg(pe)

Moreover, deg(c) = max{deg(x) : x ∈ c} for every c ⊆fin D.
The following lemmas easily derive from the construction of pe since (rg(pn+1)\

rg(pn)) ∩ U(pn) = ∅.

Lemma 5. If deg(a→ α) = n and α /∈ rg(pn), then α /∈ rg(pe).

Lemma 6. (i) deg(a→ α) ≥ deg(a), deg(α).
(ii) If a→ α is in the gamma part of pe, then deg(a→ α) > deg(a), deg(α).

Lemma 7. If αn ∈ rg(pe) then deg(αn) ≤ n.

Lemma 8. There exists no cycle β = c1 → c2 → . . . cm → β.

Proof. Consider a minimal cycle βi = ci → βi+1 (1 ≤ i ≤ m − 1) and βm =
cm → β1. By Lemma 6 we have deg(β1) ≥ deg(β2) ≥ · · · ≥ deg(βm) ≥ deg(β1).
Let us set this common degree equal to k + 1. If β1 = γk = bk →pk+1

δk then

δk = β2 has degree k + 1. This is not possible by Lemma 6(ii). If β1 = εk,ij then

εk,ij = c1 → c2 → . . . cm → εk,ij . From this it follows that either αk has degree k+1

(contradicting Lemma 7) or εk,ij = εk,ij−l (contradicting that the epsilon elements

are distinct) or εk,ij = αk (contradicting the definition of epsilon elements). This
concludes the proof of the lemma.

There remains to see that (D, pe) |= t = A = F (pe) for every t ∈Me.
A ⊆ F (pe): it follows from the definition of αn and from the fact that F (pn) ⊆

F (pe).
F (pe) ⊆ A: suppose γ ∈ F (pe); then, since F is weakly continuous, γ ∈ F (pm)

for some m (and for all the larger ones). If γ /∈ A then, for all n ≥ m, αn ∈ D
has smaller rank than γ in the enumeration of D, contradicting the fact that
there is only a finite number of such elements.

Let m ∈ e and t ≡ s0s1 . . . sm ∈Mm.
A ⊆ |t|pe : Let αn 6= ∗. The condition (D, pe) |= αn ∈ |t|pe follows immediately
from Lemma 3 and the fact that

εn,m1 = εn,m1 → εn,m1 → · · · → εn,m1 → αn (m-times).

|t|pe ⊆ A: Assume by contraposition that γ ∈ |t|pe and γ 6= αn for every n.
Then by Lemma 4 there exist a sequence βj ≡ aj1 → · · · → ajm → γ (j ∈ ω) of
elements of D and a sequence dj (j ∈ ω) of natural numbers ≤ m satisfying the

property βj+1 ∈ ajdj .
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By Lemma 6 and by βj+1 ∈ ajdj the sequence deg(βj) is an infinite decreas-

ing sequence of natural numbers. Then there exists j such that deg(βj+i) =
deg(βj) = n for all i ≥ 0. Since pn is finite, it must exist k ≥ j and l > 0 such
that βk = βk+l.

Moreover, n = deg(βk) ≥ deg(akdk → akdk+1 → · · · → γ) ≥ deg(βk+1) = n

because βk+1 ∈ akdk . Then deg(ak+i
dk+i
→ akdk+1 → . . . γ) = n for every i ≤ l. Since

ak+i
dk+i

cannot be {ε1} (otherwise βk+i+1 = ε1 and γ = αn) and there is exactly

one pair (bn−1, δn−1) such that ((bn−1, δn−1), γn−1) ∈ p1
n \ pn−1, then

ak+i
dk+i
→ (akdk+i+1 → . . . γ) = ak+j

dk+j
→ (akdk+j+1 → . . . γ), for every i, j ≤ l.

This implies that ak+i
dk+i

= ak+j
dk+j

, etc. Since by Lemma 8 there are no cycles,

then we get βk = βk+1 = · · · = βk+l−1 = βk+l. It follows that βk ∈ akdk . Since

akdk → akdk+1 → · · · → γ belongs to the gamma part of pe, this contradicts
Lemma 6(ii).

Definition 6. (Forcing) For a term M , a partial pair (D, q), a D-environment
ρ and α ∈ D, the abbreviation q 
ρ α ∈ M means that for all total injections
p ⊇ q we have that (D, p) |= α ∈ |M |pρ. Furthermore q 
ρ X ⊆ M means that
q 
ρ α ∈M for all α ∈ X.

If M is closed we write q 
 α ∈M for q 
ρ α ∈M .
Thus, for p is total, p 
 α ∈M if and only if α ∈ |M |p.

Lemma 9. For every term M and environment ρ the function FM,ρ : I(D) →
P(D) defined by FM,ρ(q) = {α ∈ D : q 
ρ α ∈ M} is weakly continuous, and
we have FM,ρ(p) = |M |pρ for each total p.

Proof. The proof of the weak continuity of FM,ρ is a straightforward induction
on the complexity of M . Let p ∈ Q be total. We have to show that FM,ρ(p) =⋃
q⊆finp

FM,ρ(q) = |M |pρ.
If M is a variable x then Fx,ρ(q) = {α ∈ D : q 
 α ∈ ρ(x)} is the constant

function with value ρ(x).
If M = PQ and α ∈ |M |pρ, then there exists a ⊆ |Q|pρ such that p(a, α) ∈ |P |pρ.

Choose such an a and let γ = p(a, α). By induction hypothesis there is a finite
q ⊆ p such that q 
ρ a ⊆ Q and a finite r ⊆ p such that r 
ρ γ ∈ P ; then it is
clear that q ∪ r ∪ {((a, α), γ)} 
 α ∈M.

If M = λx.P and α ∈ |M |pρ then there is a unique pair (b, β) such that
α = p(b, β) and β ∈ |P |pρ[x:=b]. By induction hypothesis there is a finite q ⊆ p

such that q 
ρ[x:=b] β ∈ P ; then it is clear that q ∪ {((b, β), α)} 
ρ α ∈M.

Theorem 3. Let M be a closed term. Then, for every e ⊆fin ω there exists
a graph model (D, pe) such that (D, pe) |= t = M for all regular mute terms
t ∈Me.

Proof. It is sufficient to consider an arbitrary environment ρ, the weakly con-
tinuous map FM,ρ : I(D) → P(D) defined in Lemma 9 and the graph model
(D, pe) defined in Theorem 2.

A.Bucciarelli et al. A graph-easy class of mute lambda-terms

68



6 Ultraproducts

Ultraproducts result from a suitable combination of the direct product and quo-
tient constructions. They were introduced in the 1950’s by Loś.

Let I be a non-empty set and let {Ai}i∈I be a family of combinatory algebras.
Let U be a proper ultrafilter of the boolean algebra P(I). The relation ∼U , given
by a ∼U b ⇐⇒ {i ∈ I : a(i) = b(i)} ∈ U , is a congruence on the combinatory
algebra

∏
i∈I Ai. The ultraproduct of the family {Ai}i∈I , noted (

∏
i∈I Ai)/U ,

is defined as the quotient of the product
∏
i∈I Ai by the congruence ∼U . If

a ∈ ∏i∈I Ai, then we denote by a/U the equivalence class of a with respect
to the congruence ∼U . If all members of {Ai}i∈I are λ-models, by a celebrated
theorem of Loś we have that (

∏
i∈I Ai)/U is a λ-model too, because λ-models

are axiomatized by first-order sentences. The basic combinators of the λ-model
(
∏
i∈I Ai)/U are k/U and s/U , and application is given by x/U ·y/U = (x·y)/U ,

where the application x · y is defined pointwise.
We now recall the famous Loś theorem.

Theorem 4 (Loś). Let L be a first-order language and {Ai}i∈I be a family
of L-structures indexed by a non-empty set I an let U be a proper ultrafilter of
P(I). Then for every L-formula ϕ(x1, . . . , xn) and for every tuple (a1, . . . , an) ∈∏
i∈I Ai we have that

(
∏

i∈I
Ai)/U |= ϕ(a1/U, . . . , an/U) ⇐⇒ {i ∈ I : Ai |= ϕ(a1(i), . . . , an(i))} ∈ U.

The following theorem is [12, Theorem 4.5].

Theorem 5. Let (Dj , pj)j∈J be a family of total pairs, A = (Aj : j ∈ J) be
the corresponding family of graph λ-models, where Aj = (P(Dj), ·,k, s), and let
F be an ultrafilter on J . Then there exists a graph model (E, q) such that the
ultraproduct (Πj∈JAj)/F can be embedded into the graph λ-model determined
by (E, q).

Theorem 6. Let M be a closed term and M =
⋃
n∈NMn be the set of all

regular mute λ-terms. Then there exists a total pair (E, q) such that

(E, q) |= M = t, for every t ∈M.

Proof. Let
K := {e ⊆ N : e is finite}

and F be a non-principal ultrafilter on P(K) that contains the set

Kn = {e : n ∈ e}, for each n ∈ N.

Hence F contains

Ke = {d : e ⊆ d} for each e ⊆fin N.
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For every e ⊆ N, let (D, pe) be the total pair determined by Theorem 3 and define
Ae be the corresponding graph λ-model. We show that (Πe∈KAe)/F |= M = t
for every t ∈M. Let t ∈Mn. Since

Kn ⊆ {e : Ae |= M = t}.

and Kn ∈ F then we have that (Πe∈KAe)/F |= M = t and the conclusion is
obtained.
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