Towards Cloud-Based Software Process
Modelling and Enactment

Sami Alajrami!, Alexander Romanovsky', Paul Watson®, and Andreas Roth?

L School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{s.h.alajrami,alexander.romanovsky,paul.watson}@ncl.ac.uk
2 SAP SE, Karlsruhe, Germany andreas.roth@sap.com

Abstract. Model Driven Engineering (MDE) considers models as a key
artifact in software processes, and focus on the creation of models and
transformations between them in order to (semi) automatically generate
code. In this paper, we step back and consider the software process model
itself as a key artifact that can be enacted and semi automated. We sup-
port our vision by proposing an architecture for a cloud-based software
processes modelling and enactment environment which integrates soft-
ware development tools and maintains repositories of modelling artifacts
and the history of development.

Keywords: Software Process Modelling, Process Enactment, Software Engi-
neering, Software Workflows, Cloud computing.

1 Introduction

As software systems are becoming more pervasive, the complexity of these sys-
tems has been increasing and the notion of systems of systems has been adopted.
This complexity makes producing software systems a difficult task due to the in-
creasing gap between the problem and the software implementation domains [13].
Model-Driven Engineering (MDE) was introduced as an approach to bridge this
gap. MDE is driven by models which are used along with model transformation
techniques to (semi) automate the code generation.

Models are used in most engineering domains to provide abstraction from the
real world. In software systems, models are used for different purposes such as:
documentation, testing, static analysis, and code generation. The use of models
helps in representing the problem in a systematic way and displays the right
amount of details for different perspectives and at different stages of develop-
ment.

At the same time, the cloud computing paradigm has evolved to simplify
organizational IT management and maintenance and cut both operational and
expenditure costs. Cloud offers computing resources on demand using different
service models (infrastructures, platforms, and software) and different deploy-
ment models (public, private, community, and hybrid) [19].

As the cloud is being widely adopted by both research and industry, re-
searchers have started investigating the potential of using it for some soft-
ware development phases (especially the computing intensive ones e.g. test-
ing) [21], [5], [22]. In general, there are two perspectives to realize the potential
collaboration between cloud and software engineering; (a) the use of cloud to
support the software development process, (b) advancing software development
methodologies to suite developing software for the cloud. The work presented in
this paper fits in the first perspective.

MDE is centred around the creation of models and their relevant transfor-
mation techniques in order to automatically generate parts of models or code
from other models. Typically, the focus is on modelling of individual phases of
the software development process. In [18], authors developed an enactment en-
vironment for MDA processes, while authors in [4] investigated the potential of
combining MDE and cloud, and proposed the notion of Modelling as a Service
(MaaS). In this paper, we focus on the software development process models
as a key software artifact, these models can be enacted and the non-interactive
or repetitive tasks can be automated. We propose an architecture for software
workflows enactment environment in the cloud.

The rest of the paper is structured as follows: a background discussing the use
of cloud for software development and software process modelling is established
in section 2. Section 3 describes the general architecture for our cloud-based
software development platform. The paper concludes with a brief summary of
future work.

2 Motivation and Background

2.1 Software Engineering in the Cloud

Today, Global Software Development (GSD) has become a popular development
model where teams are distributed (sometimes across continents) and use dif-
ferent sets of tools to support and manage the development process. Developers
have their own computers and need to have the tools that they need installed and
configured. In addition, each team needs access to shared repositories and col-
laboration tools. The distribution in GSD brings multiple challenges to software
development processes such as: restricted communication, less shared project
awareness, and inconsistent builds [7]. Provisioning of software development en-
vironments in the cloud should proof beneficial as moving the development pro-
cess to the cloud not only can reduce the amount of resources (time, money, and
manpower) spent on the set up and configuration for each software project, but
also can address some of the GSD challenges as shown in [14].

Cloud’s accessibility facilitates distributed development by providing a shared
development environment (artifacts and tools). Furthermore, cloud can bridge
the gap between development and deployment environments. Having a virtually
unlimited pool of resources in the cloud helps in allocating sufficient resources
to certain heavy computing software development tasks (e.g. model checking or

testing). Eventually, using the cloud to support software development processes
will help software teams to focus their efforts on the core problem rather than on
setting up and maintaining development environments. There are some commer-
cial cloud-based tools that support different phases of the software development
process such as: IDEs (e.g. codenvy), testing (e.g. BlazeMeter?), issue tracking
(e.g. JIRA ®). However, these tools are dedicated to support one or more phases
of the software development process but not the entire process.

2.2 Software Process Modelling

Despite the current trend of embedding high level abstractions in programming
languages to avoid code generation bottlenecks, Several approaches to MDE have
been introduced: Model-Driven Architecture (MDA) ¢, Model-Driven Software
Development (MDSD) [25], and Domain Specific Modelling (DSM) [17]. How-
ever, the focus has always been on modelling individual phases of the software
development process rather than the process itself. Modelling software processes
has been investigated since late 80s. There are many motivations which led these
investigations including: a) improving the understanding for different perspec-
tives, by visualizing the relevant components for each perspective. b) facilitating
communication among team members, and ¢) supporting project management
through reasoning in order to improve the process. Furthermore, the models can
be partially automated (e.g. repetitive and non-interactive tasks). Several ap-
proaches for software process modelling have been introduced over time, they
are categorized into four categories [3]:

Rules based (e.g. MARVEL [16])

Petri net based (e.g. SPADE [1])

Programming languages based (e.g. SPELL [9])
UML based (e.g. SPEM 7)

- W=

The first three did not receive industrial take up due to their complexity and
inflexibility [15]. The UML approach was based on utilizing the wide adoption
and acceptance of Unified Modelling Language (UML) for modelling software
processes. Several implementations of this approach have been proposed each
with different strengths and weaknesses. Authors in [3], compared six UML-based
modelling approaches based on a set of software process modelling requirements.
The authors also admit that executability and formality are major weaknesses
of UML in the context of software process modelling.

Among the previous approaches, SPEM (Software Process Engineering Meta-
model) has became an OMG standard for software process modelling. SPEM is
based on the concept of interaction between Roles that perform Activities which

3 https://www.codenvy.com/

4 http://www.blazemeter.com/

® https://www.atlassian.com/software/jira
5 http://www.omg.org/mda/

" http://www.omg.org/spec/SPEM/2.0/

consume (and produce) Work Products [8]. However, a major criticism of SPEM
in literature is its lack of support for process enactment. As a result, several
researchers have proposed different approaches and extensions to support pro-
cess enactment in SPEM. In [12], authors propose mapping rules to map SPEM
models into XML Process Description Language (XPDL) which then can be
enacted. In [23], authors propose xXSPIDER_ML (a software process enactment
language based on SPEM 2.0 concepts). Although xSPIDER_ML is supported
with modelling tool and enactment environment, the notion of enactment is lim-
ited to process monitoring since developers are supposed to perform their tasks
off-line and report their progress to the enactment environment. Authors in [10]
introduce eSPEM which is a SPEM extension to allow describing fine-grained be-
haviour models that facilitate process enactment. They implement a distributed
process execution environment [11] based on the FUML standard with emphasis
on supporting the ability to share process state on different nodes, suspend and
resume process execution, interact with humans, and adapt to different organi-
zations. However, the notion of process enactment in that execution environment
also assumes that developers carry out their tasks outside the execution envi-
ronment and return control back to it once they finish.

Following an enforced formal process modelling can be useful in some cases
(e.g. for certifying safety-critical systems). However, in practice, it can be re-
strictive for the creativity of team members. Organizations have been moving to
agile methods to gain more dynamicity and to increase productivity. Therefore,
we propose in the next section a less formal, more flexible and adhoc modelling
notation than the previously mentioned approaches, with emphasis on the en-
actment of process models with support of an integrated tool set in the cloud.

3 Proposed Architecture for Cloud-Based Software
Process Enactment

As mentioned in the previous section, SPEM lacks support for process enact-
ment. In addition, neither the extensions that are offered by researchers for en-
actment support are standardized nor widely adopted outside academia. These
approaches do not have a proper tool support and do not consider integrating
software development tools within the enactment environment. The understand-
ing of software process enactment in most of these approaches seemed to be lim-
ited to the concept of process simulation/monitoring. Although this notion of
enactment can be useful for project management and monitoring, we think of en-
actment in a much broader way. Hence, we describe software process enactment
as the process of performing software development activities by different actors
within an environment that provides enactment support through the integration
of development tools and automatic passing of control and data between activi-
ties. This means that unlike the approaches mentioned in the previous section,
the entire development process execution takes place within one environment
where tools and artifacts are available.

3.1 Software Engineering Workflows

Software engineering process can be described as a sequence of operations (ac-
tivities) performed by development team members including customers and
managers (actors) where activities produce artifacts which are used as inputs
for other activities. This complies with The Workflow Management Coalition
(WEMC) definition of workflow [24] as ”the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules”.
Therefore software process can naturally be seen as a workflow. The idea of using
workflow technology for software processes is not new, several researchers have
investigated it [2], [20], [6].

Based on our description of enactment and software workflows, we propose
an architecture to support software process enactment in the cloud. The benefits
that software development can gain from the cloud has been discussed in section
2.1. In addition, provisioning of software development environments in the cloud
with elastic resources will direct organization’s resources towards solving the
actual problem. Allowing third parties to integrate their tools makes it possible to
try different tool vendors and different versions interchangeably without a huge
adjustment effort. The workflow enactment environment passes the execution
control between activities as prescribed in the process model. Non-interactive
and repetitive tasks can be automated and benefit from the elasticity of the
cloud (e.g. run a distributed model checker on two nodes initially and add more
nodes if necessary). The artifacts generated from each activity can be accessed
by team members (as it is stored on a repository in the cloud) and will be passed
to the next relevant activity as an input. Often, software processes can be reused
which adds another advantage for software development firms.

The three logical layers of the proposed architecture are illustrated in Fig-
ure 1. The top layer is for process modelling where a project manager or a
software developer can create/edit models for either higher level abstract pro-
cesses (e.g project plan) or for daily tasks processes (e.g. implementation). The
workflow management layer is where the enactment of the processes takes place
while the cloud management layer handles the underlying cloud infrastructure
issues (e.g. QoS and multiple cloud providers/models).

The process model contains a description of the activities involved in the
process and the data and control flow information which guides the process
enactment. Activities are performed by human actors and they are categorized
in two types: concrete and abstract. Concrete activities can be either local or
external. The local activities can be either a self-contained executable code or
interactive (to input decisions or data), while the external activities are web
services maintained by third parties. High level abstraction can be provided by
abstract activities which are non executable activities and by default will be
representing a sub-process. Activities are available in activities pool and can
be either created by third party or by the development team. In general, each
activity has zero or more input ports and zero or more output ports. The type
of input and output artifacts that a port can accept/generate is defined at the

i
Process Modelling & Management «—s-

I I " Human Actors

| API I / External
= — . Services
1 | Enactment Server | _f(apps)

B A——
[l
T

Process
Modelling
(5aas)

Workflow Manag't
(Paas)

| =

| 22% Infrastructure & QoS Manag't
o5 3 Multiple Providers & Multiple models

| es= (private/public)

Fig. 1. Proposed architecture to support SW process enactment in the cloud

time of creation of the activity. This guarantees that activities can only be linked
to each other when their input/output artifacts are compliant. Activities are
executed independently provided that the input needed for them to execute is
available. This decoupling allows distributing the execution of the process across
several workflow engines (deployed potentially on different virtual machines on
the cloud). Activities have configurable parameters to control how the activity
will be deployed and executed on the cloud.

3.2 Process Modelling and Definition

Software processes are dynamic and unpredictable. In addition, organizations
tailor process models such as waterfall or spiral differently to meet their needs.
Hence, a flexible modelling notation is required. This notation needs to be (a)
expressive (to express the process and its cloud execution settings), (b) exe-
cutable, and (c¢) understandable and easy to use. The notation needs to support
a combination of on the fly creation/modification of activities for the purposes
of capturing the short term/everyday development and of the longer term activi-
ties at the organizational level. Based on that we defined the basic constructs for
the software development process model. The process will be represented using a
simple graphical notation that can be translated to XML which will then be used
to enact the process. The graphical notation can be useful for understanding the
process and training new team members. An XML schema has been defined to
map the semantics of the graphical notation. These constructs are described in
table 1.

Each of the activities can be configured to specify how it will be executed;
parameters include (but not limited to): the specified tool support, the cloud

Element Name Description Graphical Notation

An abstract activity does not execute anything itself, =

Abstract Activity but represents a high level abstraction of one or more activities. L
Often, it will represent a sub-process.

A local activity can be an executable code block [

Local Activity or a tool that is deployed within the enactment service.

External Activity (web service) A ttiol or service that 1s d‘cploycd and maintained o
outside the enactment service.

An activity that involves an interaction point where the
Interactive Activity human actor is asked to D
provide some input data (e.g. configuration parameters).

An interaction point where the human actor is
asked to decide what to do next.
A link between two activities A and B, where

Decision Point

Data flow Dependency B cannot start before A provides an —
input to it.
A link between two activities A and B, where

Control flow Dependency none of the two is depending on the | s >

other. The link here just represents the order of occurrence.

Table 1. Basic Software Process Modelling Elements

execution requirement (e.g. on public/private cloud), and accepted and gener-
ated artifacts. For the sake of simplicity, the notation does not explicitly support
modelling of actors at this stage.

Process Examples: Agile methods are widely adopted in industry as they
increase the throughput. SCRUM is one of the agile methods which defines a
project management framework. This framework defines a set of roles and a set of
meetings with different purposes, attendees, and frequencies. Figure 2 illustrates
the high level representation of a scrum sprint. This abstraction can be useful
from a management perspective. However, it does not specify any details of how
developers are going to implement the process. In reality, most software devel-
opers use an IDE, an issue tracking tool (e.g. JIRA), a continuous integration
framework (e.g. JENKINS), and a version control system (e.g. GIT). These tools
are used on daily basis to write, test, store, and integrate code. A model of the
daily development process (representing the implementation sub-process) using
the notation defined in this subsection is illustrated in Figure 3. The control flow
dependency between the ”edit issue tracking” and ”edit code” activities sets the
order of execution, however, since no data dependency is included here, it allows
us to perform any of the activities independently. The decision point allows to
create a loop based on the decision of the software developer whether to commit
his code or to change it or even to edit the issue tracking. Another example is
the parallel model checking process (Figure 4) where the model checking activ-
ity can be deployed on multiple nodes to utilize the cloud elasticity in order to
improve the model checking performance.

3.3 Workflow (Process) Enactment Service

Once the process is defined using the graphical notation described in the pre-
vious subsection (which is translated to XML), it will be validated against the
process definition schema to make sure the XML file is valid. Next the enactment
service should interpret the XML representation of the process and schedule the

SCrum
Retrospective

I g — B
Scrum
sprint Implernentation j—)
Flanning el
P -_/J

Fig. 2. Scrum high level abstraction

N

Edit |ssue Edit Code Continuous yN Version
Tracking R {IDE) =| Integration = > Control

v

Fig. 3. Daily technical task by a scrum developer

Edit Madel < |
“s.. | Parallel Model
- . .| Terminate
5 Checking - 5
Edit \/
Execution
Param’s = |

Fig. 4. Parallel model checking process

execution on as many distributed workflow engines as required. The enactment
service consists of an enactment server and multiple workflow engines. The ser-
vice itself is provided as a web service which accepts requests from any type of
clients (desktop, web, mobile/tablet).The enactment service consists of:

— Enactment Server: responsible for managing workflow engines and provide
smart scheduling algorithms to optimize cost and performance when the
workflow execution is distributed across multiple clouds (if necessary). It is
also responsible for monitoring the workflow execution and handling excep-
tions.

— Workflow Engines: responsible for loading the needed tools and artifacts
for executing an activity. It also reports back the execution progress to the
enactment server.

— Enactment Service API: provides a standard access to the enactment service.

Using the cloud for executing workflows requires addressing certain issues, such
as: portability and QoS of the cloud resources. Authors in [7] identified seven
needed quality attributes for a cloud infrastructure to provide tools as a service.
These attributes will be used as a guidance for the enactment service implemen-
tation.

4 Conclusion and Future Work

In this paper, we proposed a cloud-based software process modelling and en-
actment environment which harnesses both of cloud and workflows benefits. We
considered software process model as a main artifact in the software develop-
ment process. The process model can be (partially) automated and supported by
development tools which are integrated within the enactment environment. We
proposed the core of a simple modelling notation for modelling different parts
of the software process. Currently, a prototype of the enactment service is being
implemented to run on a single cloud initially which will be extended to run on
different clouds later. The future work includes: assessing the modelling notation
after applying it to more case studies, applying provenance to provide reasoning
about the software process, and investigating possible support for interoperabil-
ity between different tools.

References

1. Bandinelli, S., Fuggetta, A., Ghezzi, C.: Software process model evolution in the
spade environment. Software Engineering, IEEE Transactions on 19(12), 1128-1144
(1993)

2. Barnes, A., Gray, J.: Cots, workflow, and software process management: an explo-
ration of software engineering tool development. In: Software Engineering Confer-
ence, 2000. Proceedings. 2000 Australian. pp. 221-232 (2000)

3. Bendraou, R., Jezequel, J., Gervais, M.P., Blanc, X.: A comparison of six uml-based
languages for software process modeling. Software Engineering, IEEE Transactions
on 36(5), 662-675 (Sept 2010)

4. Bruneliére, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud -
MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European
Conference on Modelling Foundations and Applications - ECMFA 2010) (2010)

5. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: Proceedings of the Sixth Conference on
Computer Systems. pp. 183-198. EuroSys 11, ACM (2011)

6. Chan, D., Leung, K.: Software development as a workflow process. In: Software
Engineering Conference, 1997. Asia Pacific ... and International Computer Science
Conference 1997. APSEC ’97 and ICSC ’97. Proceedings. pp. 282-291 (1997)

7. Chauhan, M.A., Babar, M.A.: Cloud infrastructure for providing tools as a service:
Quality attributes and potential solutions. In: Proceedings of the WICSA/ECSA
2012 Companion Volume. pp. 5-13. WICSA/ECSA ’12 (2012)

8. Combemale, B., Crgut, X., Caplain, A., Coulette, B.: Towards a rigorous process
modeling with spem. In: ICEIS (3). pp. 530-533 (2006)

9. Conradi, R., Jaccheri, M.L., Mazzi, C., Nguyen, M.N., Aarsten, A.: Design, use and
implementation of spell, a language for software process modelling and evolution.
In: Proceedings of the Second European Workshop on Software Process Technology.
pp. 167-177. EWSPT "92 (1992)

10. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: espem a
spem extension for enactable behavior modeling. In: Modelling Foundations and
Applications, Lecture Notes in Computer Science, vol. 6138, pp. 116-131 (2010)

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: A fuml-
based distributed execution machine for enacting software process models. In: Mod-
elling Foundations and Applications, Lecture Notes in Computer Science, vol. 6698,
pp. 19-34. Springer Berlin Heidelberg (2011)

Feng, Y., Mingshu, L., Zhigang, W.: Spem2xpdl: Towards spem model enactment
France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering. pp. 37-54. FOSE 07, IEEE
Computer Society, Washington, DC, USA (2007)

Hashmi, S., Clerc, V., Razavian, M., Manteli, C., Tamburri, D., Lago, P., Di Nitto,
E., Richardson, I.: Using the cloud to facilitate global software development chal-
lenges. In: Global Software Engineering Workshop (ICGSEW), 2011 Sixth IEEE
International Conference on. pp. 70-77 (2011)

Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process meta-
models and the creation of a new generic standard. Information and Software
Technology 47(1), 49 — 65 (2005)

Kaiser, G., Barghouti, N., Sokolsky, M.: Preliminary experience with process mod-
eling in the marvel software development environment kernel. In: System Sciences,
1990., Proceedings of the Twenty-Third Annual Hawaii International Conference
on. vol. ii, pp. 131-140 vol.2 (1990)

Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
John Wiley & Sons (2008)

Maciel, R., da Silva, B., Magalhaes, P., Rosa, N.: An integrated approach for model
driven process modeling and enactment. In: Software Engineering, 2009. SBES ’09.
XXIII Brazilian Symposium on. pp. 104-114 (Oct 2009)

Mell, P., Grance, T.: The nist definition of cloud computing. National Institute of
Standards and Technology 53(6), 50 (2009)

Oberweis, A.: Workflow management in software engineering projects. In: Proceed-
ings of the 2nd International Conference on Concurrent Engineering and Electronic
Design Automation. pp. 55-60 (1994)

Oriol, M., Ullah, F.: Yeti on the cloud. In: Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on. pp. 434—
437

Pakhira, A., Andras, P.: Leveraging the Cloud for Large-Scale Software Testing A
Case Study: Google Chrome on Amazon, chap. Hershey, PA, USA, pp. 252-279.
IGI Global (2013)

Portela, C., Vasconcelos, A., Silva, A., Silva, E., Gomes, M., Ronny, M., Lira,
W., Oliveira, S.: xspider_ml: Proposal of a software processes enactment language
compliant with spem 2.0. Journal of Software Engineering and Applications 5(6),
375 — 384 (2012)

Specification, W.M.C.: Workflow Management Coalition, Terminology & Glos-
sary (Document No. WFMC-TC-1011). Workflow Management Coalition Specifi-
cation (1999), http://www.wfmc.org/Download-document/ WEMC-TC-1011-Ver-
3-Terminology-and-Glossary-English.html

Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: Software Product Line Conference, 2007.
SPLC 2007. 11th International. pp. 233-242. IEEE (2007)

