
kDCI: on using direct count up to the third iteration

Claudio Lucchese
HPC Lab of ISTI-CNR

Pisa, Italy.
claudio.lucchese@isti.cnr.it

Salvatore Orlando
Università Ca’ Foscari

Venezia, Italy.
orlando@dsi.unive.it

Raffaele Perego
HPC Lab of ISTI-CNR

Pisa, Italy.
raffaere.perego@isti.cnr.it

1. Problem Statement and Solution

In Apriori-like algorithms, one of the most consum-
ing operation during the frequent itemset mining pro-
cess is the candidate search. At each iteration k the
whole dataset D has to be scanned, and for each trans-
action t in the database, every of its subsets of length
k is generated and searched within the candidates. If
a candidate is matched, it means that the transaction
subsumes the candidate, and therefore its support can
be incremented by one.

This search is very time demanding even if appropri-
ate data structures are used to gain a logarithmic cost.
In [3, 2] we introduced a direct count technique which
allows constant time searches for candidates of length
2. Given the set of n frequent single items, candidates
of length 2 are stored using an upper triangular matrix
n× n DC2 with (n

2) cells, such that DC2(i, j) stored
the support of the 2-itemset {ij}. As shown in [1] the
direct count procedure can be extended to the third it-
eration using an n×n×n matrix DC3 with (n

3) cells,
where DC3(i, j, l) is the support of the 3-itemset {ijl}.

We thus introduced such technique in the last ver-
sion of kDCI, which is level-wise hybrid algorithm.
kDCI stores the dataset with an horizontal format
to disk during the first iterations. After some itera-
tion the dataset may become small enough (thanks to
anti-monotone frequency pruning) to be stored in the
main memory in a vertical format, and after that the
algorithm goes on performing tid-lists intersections to
retrieve itemsets supports, and searches among can-
didates are not needed anymore. Usually the dataset
happens to be small enough at most at the fourth iter-
ation.

2. Experiments and Conclusion

The experiments show that the improvement given
by this optimization is sensible in some cases. The
time needed for the third iteration is halved. Note that

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12
Time spent for each itaration of kDCI

iteration

tim
e

(s
ec

.)

kDCI
kDCI with 3rd iteration direct count

Figure 1. The dataset used was T10I4D100K
with a minimum absolute support of 10.

the time spent during the firsts iteration is significant
for the global effectiveness of the algorithm on most
datasets. In fact, in the test performed, the total time
was reduced from 19 sec. to 14 sec., which means an
overall speed up of about 20%.

We acknowledge the authors C.Targa, A.Prado and
A.Plastino of [1], who showed the effectiveness of such
optimization.

References

[1] C.Targa, A.Prado, and A.Plastino. Improving direct
counting for frequent set mining. Technical report, In-
stituto de Computação, UFF RT-02/09 2003.

[2] Claudio Lucchese, Salvatore Orlando, Paolo Palmerini,
Raffaele Perego, and Fabrizio Silvestri. kdci: a multi-
strategy algorithm for mining frequent sets. In Proceed-
ings of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations, November 2003.

[3] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri.
Adaptive and resource-aware mining of frequent sets. In
Proc. The 2002 IEEE International Conference on Data
Mining (ICDM02), page 338345, 2002.

