
A Drag-and-block Approach for
Linked Open Data Exploration

Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Amin Anjomshoaa,
Elmar Kiesling, and A Min Tjoa

Vienna University of Technology, Vienna, Austria
{tuan.trinh,peter.wetz,ba.do,amin.anjomshoaa,

elmar.kiesling,a.tjoa}@tuwien.ac.at

Abstract. Since its initial definition in 2007, the concept of Linked
Open Data (LOD) has gained strong traction in the scientific commu-
nity. However, mainstream adoption has been limited and the emergence
of an envisioned global linked data space is still in its early stages. One
possible explanation is the gap between the large amounts of published
LOD datasets and the lack of end-user tools to effectively explore them.
Because existing applications are tailored towards specific datasets and
do not allow for reuse and extension, novice users have so far had lim-
ited means to access the rich data sources being published. To address
this issue, we introduce a novel approach to support non-expert users in
the flexible exploration of LOD. To this end, we define a formal model
that makes use of existing links between interconnected datasets. We im-
plement the model in a mashup platform and illustrate its potential by
means of use cases combining Open Data and Linked Open Data sources.

1 Introduction

Linked Data (LD) refers to “a set of best practices for publishing and connecting
structured data on the Web so that it can be interlinked and become more use-
ful”[2]. Built upon standard web technologies, e.g., HTTP, RDF and URIs, it
has been adopted and applied in the LOD project – a community project sup-
ported by the W3C – to facilitate the publication of open datasets as RDF. At
the very beginning, there were only twelve published datasets, but the so-called
LOD cloud grew rapidly to 928 datasets with 62 billion triples by 20141. Al-
though these data sources provide highly valuable data with enormous potential
for interesting applications, the LOD cloud today is still largely a collection of
raw datasets and making effective use of them remains a major challenge.

Although researchers and practitioners have recently implemented many ap-
plications based on LOD, few of them specifically target end users with limited
or no experience with semantic web technologies. Therefore, gathering data from
multiple LOD resources and performing data analysis, integration, and visual-
ization tasks still remains a cumbersome process. Furthermore, most existing

1 http://stats.lod2.eu

http://stats.lod2.eu


applications – with the exception of dedicated query and data integration tools
– make use of only a single or a limited number of particular LOD datasets.
As a consequence, LOD is almost exclusively processed by custom applications
tailored to specific use cases or domains and remains inaccessible to end users
with more general information needs. This situation is not consistent with the
original vision of the Semantic Web, which promised to facilitate easy discovery,
sharing, and reuse of highly interconnected datasets across applications.

In this paper, we first address the challenge to support end users in obtaining,
integrating, and visualizing data from different LOD datasets. We also address
the question how end users can benefit quickly from new data sources added to
the LOD cloud.

Following the Linked Data principles [2], each published LOD dataset should
include links to external datasets, e.g., DBpedia [14]. To researchers, this large
collection of linked resources is useful for data integration, but to end users, those
links are currently solely used for resource navigation. Therefore, secondly, we
address the challenge of leveraging the interconnected links between datasets
and thereby contribute towards fulfilling the primary objective of Linked Data.

In Section 2, we introduce our model as an approach to overcome these two
challenges. Generally, end users have a wide range of varying requirements with
respect to heterogeneous data. Because it is impossible to create a custom appli-
cation for each individual user requirement, our approach is to modularize the
required functionalities into blocks that users can recombine arbitrarily to create
new applications. Conceptually, the model represents a consistent framework for
creating, managing and synthesizing reusable LOD-consuming applications.

More specifically, data publishers and Semantic Web developers first define
scenarios to consume and combine their LOD dataset with others. Next, the tasks
of collecting, processing, integrating, and visualizing data are encapsulated into
Linked Blocks. Each block represents a miniature application working with a
specific part of a LOD dataset. Finally, end users select and combine blocks to
dynamically compose LOD-consuming applications, which later can be shared
or published on the web.

A key concept is that blocks can be connected to each other. By simply
connecting blocks, end users can leverage the linked nature of the LOD cloud
without an understanding of the intricate details of queries and transformations
executed behind the scenes. Developers can create new blocks easily and users can
reuse these blocks in multiple scenarios. The potential for interesting applications
consuming different LOD datasets is hence limited only by the creativity of end
users.

The remainder of this paper is organized as follows. In Section 2, we present
our LOD block model and introduce the block concept; in Section 3, we intro-
duce a mashup platform based on the proposed model. Section 4 illustrates the
potential of the approach by means of example use cases. We provides pointers
to related work in Section 5 and describe our preliminary evaluation in Section
6. The paper concludes in Section 7 with an outlook on future research.



Linked Open Data Cloud


B1
 B2


B3
 B4


B5
 B6


Data Blocks


Process Blocks


Visualization Blocks


B1
 B5


B1
 B3
 B5


B1
 B4
 B5


B2


Developer Communites


Define

Scenarios


Define

Compositions


End Users Communites


- Composed

- Edited

- Published

- Shared


LINKED DATA CONSUMING APPLICATIONS ARE


Fig. 1: LOD block value chain

2 LOD block model

The idea of our LOD block value chain illustrated in Fig. 1 combines Web Ser-
vices and Service-Oriented Architecture (SOA)[15] concepts. Whereas services
target developers, we transform them into blocks aimed at end users. To utilize
data from different LOD datasets, publishers and developers can create three
types of blocks: (i) data blocks, which collect data from one or multiple datasets;
(ii) process blocks, which process and combine data in different ways through en-
richment, transformation, and aggregation; and (iii) visualization blocks, which
display the final data. These blocks are organized into three layers, i.e., data
layer, business layer, and presentation layer.

These blocks can be used by end users to compose LOD-consuming applica-
tions in many ways and create a value chain between LOD, developers and end
users. This model enhances the reusability of the developers’ work; it stimulates
end users’ creativity to build up dynamic applications; and it inherits various
benefits of SOA and Software Component-Based approaches.

Blocks allow non-expert users to build ad-hoc applications rapidly. Each block
can receive input from other blocks to process and return its output which,
in turn, can serve as input for another block. To end users, blocks are “black
boxes” with adjustable parameters that control the processing function. Similar
to functional programming or web services, blocks can have multiple input gates,
but only a single output gate.

The input/output data model is an RDF graph representing a list of instances
of an RDF class. Each instance is addressable via a URI and annotated with data
and object properties. The value of an object property, in turn, can be another
instance. Such instances and the initial instances of both input and output can
have mutual relations. Fig. 2 shows input, output models of a block which takes
Cities as input and return all Laureates born there; a City from input is linked
with the corresponding Person from output via the birthP lace relation.

Two mandatory components for a complete application are data blocks and
visualization blocks. A data block does not have any inputs; it collects data from



dbpedia:City


foaf:name


xsd:string


wgs84:location


wgs84:Point


xsd:float
 xsd:float


foaf:Person


foaf:name


xsd:string


nobel:nobelPrize


nobel:NobePrize


xsd:string
 xsd:year


rdfs:label
 nobel:year
wgs84:lat
 wgs84:long


dbpedia: http://dbpedia.org/ontology/

wgs84: http://www.w3.org/2003/01/geo/wgs84_pos

nobel: http://data.nobelprize.org/terms/

foaf: http://xmlns.com/foaf/0.1/

rdfs: http://www.w3.org/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#


Input Model
 Output Model


dbpedia:birthPlace


Fig. 2: Example input and output models of a block

an arbitrary data source to provide input for process and visualization blocks.
Visualization blocks display output data of process or data blocks. Inside an
application, more than one visualization blocks can be applied, because there
can be multiple ways to display the same data.

To compose an application, users simply select appropriate blocks and con-
nect the output of a block to the input of another one. The model checks whether
the semantics of the particular input and output data models match and only al-
lows for connections between compatible gates. There are four types of links: (i)
links between data blocks and process blocks, (ii) links between data blocks and
visualization blocks, (iii) links between two process blocks, and (iv) links between
process blocks and visualization blocks.

Corresponding to the three possible operations of process blocks, i.e., enrich-
ment, transformation, and aggregation, there are three sub-types. If blocks get
additional data from other datasets and add it to the input, they are called
enrichment process blocks. An example is a block in which its input – a list of
Locations, i.e. [Locations(lat, long, description)] – is enriched by sample images
for each Location, i.e. [Locations(lat, long, description, [Image])].

Transformation process blocks transform input instances into output instances
of a different RDF class based on their interrelations. Hence those blocks are the
crucial element which enables users to leverage the key ideas of LOD, i.e., mak-
ing use of links between resources from one or more LOD datasets. For example,
a block may receive Locations and output MusicEvents organized at a place
nearby. The final type, aggregation process blocks, aggregates data from its mul-
tiple input gates. Therefore, blocks of this type always have at least two input
gates representing different entities of similar classes.

Formally, each block is represented by a quadruple (I,R,O,C) with a finite
set of graph-based input models I = i1, . . . , in, a graph-based output model O,
a configuration model C and a processing function R : i1 × . . . × in × C → O.
Whereas process blocks require all elements (i.e., I,R,O,C 6= ∅), data blocks have
no input (i.e., I = ∅) and visualization blocks have no output (i.e., R,O = ∅).

To sum up, major advantages of the block concept are (i) the flexibility
in building applications, starting from selecting data sources, applying various
processing operations, to visualizing the final data in multiple ways; and (ii) the
effective use of links, i.e., inner links and outer links, between LOD datasets.



3 Linked Widgets Platform

We define a number of design objectives before implementing the model and an
initial set of blocks. First, blocks need to run on heterogeneous platforms and
communicate with each other; the cost to develop blocks should be low; everyone
should be able to contribute blocks; and it should be easy to share complete
applications composed from disparate blocks. Using modern web technologies, we
implement each block as a widget, i.e., “an interactive single purpose application
for displaying and/or updating local data or data on the Web, packaged in a
way to allow a single download and installation on a user’s machine or mobile
device”2.

Our mashup platform, a web platform consuming open data sources to make
them accessible and processable for end users, is an implementation of the model
presented in Section 2. More detailed information on implementation aspects can
be found in [10,11]. Using arbitrary web languages, developers can create widgets
and deploy them on arbitrary servers. Currently, both widgets and mashup meta-
data are being published according to the first three of the four LOD principles.
To accommodate the fourth LOD principle, we also aim to establish connections
with other LOD datasets in the future. Widgets are RDF instances whose URIs
can be de-referenced for detailed information. Their input and/or output mod-
els are semantically annotated and are accessible through a SPARQL endpoint.
Hence, the platform operators or third parties can develop widget-matching and
widget-combining algorithms. Widgets are grouped into widget collections used
by end users to compose mashups or ad-hoc applications. These mashups can be
created, edited, auto-parameterized, stored, shared, executed, displayed, and, in
turn, reused as new widgets.

4 Example Use Cases

Based on geographic objects with latitude and longitude properties, datasets in
the Linked Open Data cloud can be queried dynamically and linked to each other.
We use five LOD datasets and two other open data sources in our examples:

1. http://linkedgeodata.org – Publishes data collected by the Open Street
Map project as RDF data.

2. http://www.geonames.org – Contains more than 10 million geographical
names and consists of over 8 million unique features including 2.8 million
populated places and 5.5 million alternate names. GeoNames data are linked
to DBpedia and other RDF datasets.

3. http://spotlight.dbpedia.org – A service looking for approximately 3.5
million things of unknown or 320 known types in text and linking them to
their global unique identifiers in DBpedia.

4. http://eventmedia.eurecom.fr – A LOD dataset composed of events and
media descriptions associated with these events which are obtained from
three large public event directories, i.e., last.fm, eventful and upcoming.

2 http://www.w3.org/TR/widgets-reqs/

http://linkedgeodata.org
http://www.geonames.org
http://spotlight.dbpedia.org
http://eventmedia.eurecom.fr
http://www.w3.org/TR/widgets-reqs/


(a) Display detected-from-text famous Places (and Images) on the map

(b) Display Music Events (and Images) nearby detected famous Places on the map

(c) Nearby Restaurants and Banks that are less than 100 meters from each other

(d) Nobel Laureates born in a City

Fig. 3: Example use cases



5. http://data.nobelprize.org/snorql – Contains information about who
has been awarded the Nobel Prize, when, in what prize category and the
motivation, as well as basic information about the laureates.

6. https://flickr.com – An image and video hosting website. It provides a
free API to access 5 billion photos with valuable metadata such as tags,
geolocation, etc.

7. http://map.google.com – Offers satellite imagery, street maps, and street
view perspectives which can be accessed through its API services.

4.1 Block Annotation

In our example use cases, we use ten blocks organized into three layers, i.e., data,
business, and presentation layers.

The two data blocks are Text Annotator (1) which detects a list of Places
from text, and Map Pointer (2) which outputs one or multiple points chosen by
end users on a map.

In the business layer, we have six process blocks. POI Search (3) receives any
kind of objects with lat and long attributes and transforms them into Points of
Interest (POIs) located nearby. Similarly, Music Event Search (4) returns music
events. City Detection (5) uses the GeoNames service to find Cities that the
input objects belong to and looks up extra information via DBpedia, e.g., area
or population. Nobel Laureate (6) takes Cities as input and returns a list of
Laureates born in those Cities. Image Search (7) enriches all types of geographic
objects with Flickr images. Geo Merger (8) aggregates two lists of geographic
input objects based on the distances between them.

Finally, there are two blocks in the presentation layer: Google Map (9) dis-
plays the input geographic objects one by one on a map, along with their prop-
erties. Instance Viewer (10) shows input objects one by one and the objects’
corresponding URI-dereferenced page.

For each block, out of the quadruple (I,R,O,C), only two components, i.e.,
I and O, are semantically annotated. It is unnecessary to annotate R and C,
because they are encapsulated inside a single block and are not used in the
block-combining process (i.e., R and C of one block have no relation with the
R and C of any other block). Detailed information about the blocks and their
annotated input and output models can be found on our mashup platform at
http://linkedwidgets.org.

4.2 Example Block Combinations

There are many ways to compose useful applications from the ten blocks selected
for our examples. Assume, e.g., that we have a touristic text introducing differ-
ent beautiful spots in a city. The application depicted in Fig. 3a then presents
on overview for those places. Next to detailed information from DBpedia, the
locations and images are displayed on the map. Then, if we add the Music Event
Search between the Text Annotator and the Image Search, a different application
finding music events near detected famous places is created as shown in Fig. 3b.

http://data.nobelprize.org/snorql
https://flickr.com
http://map.google.com
http://linkedwidgets.org


Text

Annotator


Instance

Viewer


Detect famous places from text and then show its detail information


Text

Annotator


Google

Map


Detect famous places from text and display it on the map


Map

Pointer


Image

Search


Google

Map


Find Flickr Images for specific points in the map


Map

Pointer


Image

Search


Google

Map


Music Event

Search


Detect Music Events organized near points in the map

Image Search is an optional widget to provide locations' images


Map

Pointer


Image

Search


Google

Map


POI

Search


Detect all/specific types of POI from points in the map

Image Search is an optional widget to provide locations' images


Map

Pointer


Google

Map


City

Detection


Display the City (and info from DBpedia) the Points belong to

Image Search is an optional widget to provide locations' images


Text

Annotator


Text

Annotator


Geo

Merger


Google

Map


Detect all famous places from text and

show pairs of places that are nearby each other


And more ...


Image

Search


Fig. 4: Example block combinations

From a point specified by a user on the map, the combination in Fig. 3c finds all
pairs of nearby restaurants and banks that are less than 100 meters away from
each other. We illustrate another use case in Fig. 3d, listing all Nobel laureates
born in the city based on a map input point.

As shown in Fig. 4, there are more ways to combine the example blocks. We
can create new applications by replacing two data/visualization blocks with each
other. Moreover, one or more process blocks can be added between a data and a
visualization block. By linking the blocks, the data from different LOD datasets
are connected. Furthermore, with different values of C inside a block, new use
cases can be created. In Fig. 3c, we can replace “Bank” by “Park”, and add
one more instance of both POI Search and Geo Merger to find combinations of
restaurant, park and book shop near each other.

5 Related Work

Multiple mashup tools using a widget/block-based approach have been devel-
oped, e.g., JackBe Presto Wires3, Microsoft Popfly4, Yahoo Pipes5, Openkapow6,
Lotus Mashups7, DERI Pipes [1], MashQL[21], Super Stream Collider [20] (SSC),
ResEval Mash [17], and Dashmash[19]. However, some of them have been dis-
continued, many of them are domain specific, and their blocks or operators are
typically rather limited. With the exception of DERI Pipes, MashQL, and SSC,
they do not aim at handling semantic data.

3 http://mdc.jackbe.com/prestodocs
4 http://en.wikipedia.org/wiki/Microsoft_Popfly
5 http://pipes.yahoo.com/pipes
6 http://kapowsoftware.com/products/whats-new-in-9.3/index.php
7 http://www-10.lotus.com/ldd/mashupswiki.nsf

http://mdc.jackbe.com/prestodocs
http://en.wikipedia.org/wiki/Microsoft_Popfly
http://pipes.yahoo.com/pipes
http://kapowsoftware.com/products/whats-new-in-9.3/index.php
http://www-10.lotus.com/ldd/mashupswiki.nsf


Whereas SSC is a mashup tool for live stream data, MashQL is a generic
tool which allows users to easily create a SPARQL query, using its own query-
by-diagram language. MashQL cannot aggregate data from different sources and
its output visualization is restricted to text and table formats.

DERI Pipes enables users to perform semantic data processing tasks from
different RDF data sources. Its input can be RDF, SPARQL query results, XML,
or HTML. Therefore, potential users need knowledge of these formats and how
to process them algorithmically to make effective use of the provided operators.

Similar limitations apply to a Linked Data Integration Framework presented
in [5], a semantics-enabled mashup of existing Web APIs [13], and a web-based
method that integrates static and dynamic sources for Linked-Data consuming
applications [8]. In other words, those are data integration frameworks aimed at
developers, not end users. They can be encapsulated in the process blocks of our
model to facilitate new usage scenarios.

The contributions [9] and [12] discuss useful semantic mashup systems, e.g.,
[16], [18], but lack a systematic approach for all LOD datasets. Although each
system can effectively exploit only one or several datasets, they cannot be ex-
tended to more LOD datasets and do not utilize LOD interconnections. Yoko-
hama Art Spot [7], for example, is a web mashup application that offers informa-
tion on art in Yokohama by consuming three LOD dataset (LODAC Museum,
Yokohama Art LOD, and PinQA) and hence a domain-specific solution.

In general, there has so far been limited research on allowing end users to
consume data in a dynamic way. Typically, users are expected to use semantic
browsers to explore data and collect information by themselves. Alahmari et al.
[6] evaluate fourteen semantic browsers (such as Sigma, Marbles, Disco, etc.)
with respect to consumption of structured Linked Data. Those browsers do not
offer means to combine data from different sources.

6 Preliminary Evaluation

To evaluate our Linked Widgets (LW) platform from a user perspective, we
conducted an experiment with two subjects familiar with Semantic Web concepts
and solid web programming skills. We asked the subjects to implement a simple
use case using our LW platform as well as DERI Pipes, and contrasted the two
results. We chose the latter because despite significant differences, it appears to
be the most comparable tool in terms of goals and scope. We explained the idea
and basic functionalities of both tools to the subjects.

As an example, we asked subjects to detect places from a text and fetch
latitude, longitude, and DBpedia URIs for those places. The subjects as a pair
spent 2.5 hours to create the mashup illustrated in Fig. 5 in DERI Pipes. The six
steps involved in the process were: (i) using a URL builder operator to call the
DBpedia annotator service, (ii) converting the HTML result into XML format,
(iii) using an online XSLT transformation to convert the XML result into RDF
format, (iv) executing a SPARQL query over the RDF result to extract URIs of
detected locations, (v) for each URI, fetching RDF data from the corresponding



Fig. 5: Evaluation use case implemented with DERI Pipes

deferenceable DBpedia page, (vi) executing another SPARQL query to get the
latitude and longitude of each place. The final output of this mashup is served
as raw RDF and DERI Pipes does not provide any means to display it visually
on a map.

During the experiment, the two subjects found it difficult to apply operators,
because it was unclear to them which operators could be connected with others.
Thus, they had to find out via trial and error. Because DERI Pipes cannot
process non-semantic data, subjects had to convert HTML results into RDF
format and execute a query to extract the desired URIs. Moreover, enriching
extracted location URIs with Flickr images is not possible in DERI Pipes. After
the experiment, subjects stated that for this use case, they would prefer to
directly program in code rather than using DERI pipes as a visual programming
tool; a direct coding approach, in their opinion, seems more straightforward. For
instance, the for loop in DERI Pipes is restricted to semantic data only and
therefore not usable in a general way.

Using the LW platform, subjects first used the keyword-based and semantic
widget model-based search to find Text Annotator as their needed widget. They
then ran the widget and saw the result data, and the experiment was completed
within minutes. Moreover, they can use the terminal matching feature from Text
Annotator ’s output terminal to identify which widgets can be connected with
this output terminal. This feature will instruct them to display the final result
in the Google Map widget, which is not possible in DERI Pipes.

From our experiment, we found that the most apparent difference between
the LW platform and DERI Pipes from a user perspective is: DERI pipes is low-
level data processing oriented whereas LW platform acts on a higher level and
is more problem-oriented. Users working with DERI Pipes have to be familiar
with special technological concepts, e.g., URL, XSLT transformation, XQuery,
and hence face considerable difficulties. In using the latter, users first define a
goal, e.g., search for POIs near a place, then can discover appropriate widgets,
and finally arrange them in a mashup. To ease this process, we organize widgets
in a taxonomy tree and in domain-specific collections and provide keyword and
semantic search features based on the widget model.



7 Conclusion and Future Work

This paper presents an approach for integrating multiple LOD datasets by lever-
aging their interconnections in a systematic and scalable manner. The key idea
introduced is to modularize functionalities into blocks, which can be combined in
order to enable users to dynamically obtain, enrich, transform, aggregate or vi-
sualize data in different ways. Because these blocks are developed and used in an
open manner, the more creative developers and end users are, the more powerful
our block model can become. To create a smart data exploration environment,
we implemented the model in an open mashup platform.

Unlike similar approaches, the LW platform focuses on high-level data pro-
cessing and acts as a problem-oriented mashup system. Its widgets are backed
by a semantic model to facilitate input-output model matching and widget auto-
composition features. Widgets can obtain and process both semantic and non-
semantic data. They lift non-semantic data to a semantic level and produce se-
mantic output data according to its predefined model. Finally, the LW platform
is open and everybody can contribute new widgets to extend its functionalities.

We illustrate the feasibility and effectiveness of the platform through location-
based use cases combining data from five LOD datasets and two other open data
sources. These examples can easily be extended by adding additional blocks for
new datasets. Users do not have to manually browse different URIs or write
SPARQL queries to retrieve and aggregate data; our approach provides a com-
mon framework to integrate and visualize the desired information.

To cope with an increasing number of blocks, we aim to investigate different
kinds of automatic algorithms to present meaningful combinations of blocks to
end users. Currently, we have preliminary results for block-matching and block
auto-composition algorithms. These algorithms make use of the annotated input
and output models of the blocks, which is a unique feature compared to similar
approaches. In the future, we expect to provide users appropriately composed
applications after they have formally defined their requirements, e.g., the initial
input, the expected output, or the connection between them. To evaluate our
platform and compare it to related approaches, we will carry out a user study.
In addition, currently the developer manually has to guarantee that the output
of his block adheres to the defined model. We plan to automate this process to
reduce inconsistencies.

Finally, the process that allows data publishers and developers to develop
blocks for each dataset should be streamlined. Automatic or semi-automatic
block generation processes are therefore another important future endeavour.

References

1. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid
prototyping of semantic mash-ups through semantic web pipes. In: 18th Interna-
tional Conference on World Wide Web, pp. 581–590. ACM, NY, USA (2009)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.Semantic
Web Inf. Syst., 5(3), 1–22 (2009).



3. Hahn, R. et al.: Faceted Wikipedia Search. In: 13th International Business Infor-
mation Systems Conference, pp. 1–11. Springer, Heidelberg (2010)

4. Stuhr, M., Roman, D., Norhei, D.: LODWheel - JavaScript-based Visualization of
RDF Data. In: 2nd International Workshop on Consuming Linked Data. CEUR-
WS.org (2011)

5. Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: LDIF - Linked Data
Integration Framework. In: 2nd International Workshop on Consuming Linked Data.
CEUR-WS.org (2011)

6. Alahmari, F., Thom, J.A., Magee, L., Wong, W.: Evaluating Semantic Browsers for
Consuming Linked Data. In: 23rd Australasian Database Conference, pp. 89–98.
Australian Computer Society, Inc. (2012)

7. Matsumura, F., Kobayashi, I., Kato, F., Kamura, T., Ohmukai, I., Takeda, H.:
Producing and Consuming Linked Open Data on Art with a Local Community. In:
3rd International Workshop on Consuming Linked Data. CEUR-WS.org (2012)

8. Andreas, H. et al.: On-the-fly Integration of Static and Dynamic Sources. In: 4th
International Workshop on Consuming Linked Data. CEUR-WS.org (2013)

9. Endres, B., Niggemeyer: Semantic Mashups. Springer, Heidelberg (2013)
10. Trinh, T.D. et al.: Linked Widgets-An Approach to Exploit Open Government

Data. In: 15th International Conference on Information Integration and Web-based
Applications & Services, pp. 438–442. ACM, NY, USA (2013)

11. Trinh, T.D. et al.: Open Linked Widgets Mashup Platform. In: AI Mashup Chal-
lenge co-located with the 11st European Semantic Web Conference. CEUR-WS.org
(2014)

12. Tran, T.N. et al.: Linked Data Mashups: A Review on Technologies, Applications
and Challenges. In: 6th Asian Conference on Intelligent Information and Database
Systems, pp. 253–262. Springer, Heidelberg (2014)

13. Bianchini, D., Antonellis. V.D.: Linked Data Services and Semantics-Enabled
Mashup. Semantic Search over the Web, pp 283–307. Springer, Heidelberg (2012)

14. Auer, S. et al.: DBpedia: A Nucleus for a Web of Open Data. In: 6th International
Semantic Web Conference, pp 722–735. Springer, Heidelberg (2007)

15. Krafzig, D. et al.: Enterprise SOA: Service-oriented Architecture Best Practices.
Prentice Hall (2005)

16. Bizer, C. et al.: The RDF book mashup: from web APIs to a web of data. In: 3rd
Workshop on Scripting for the Semantic Web. CEUR-WS.org (2007)

17. Imran, M. et al.: ResEval mash: a mashup tool for advanced research evaluation. In:
21st international conference companion on World Wide Web, pp. 361–364. ACM,
NY, USA (2012)

18. Lorey, J. et al.: Black Swan: augmenting statistics with event data. In: 20th ACM
international conference on Information and knowledge management, pp. 2517–2520.
ACM, NY, USA (2011)

19. Cappiello, C. et al.: Dashmash: A mashup environment for end user development.
In: 11th International Conference, ICWE, pp. 152-166. Springer, Heidelberg (2011)

20. Nguyen, H. et al.: Super Stream ColliderLinked Stream Mashups for Everyone. In:
Semantic Web Challenge co-located with ISWC2012 (2012)

21. Jarrar, M., Dikaiakos, M.: MashQL: a query-by-diagram topping SPARQL. In: 2nd
international workshop on Ontologies and information systems for the semantic web,
pp. 89–96. ACM, NY, USA (2008)


	A Drag-and-block Approach forLinked Open Data Exploration
	Introduction
	LOD block model
	Linked Widgets Platform
	Example Use Cases
	Block Annotation
	Example Block Combinations

	Related Work
	Preliminary Evaluation
	Conclusion and Future Work


