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Abstract. The Gene Ontology (GO) is a ubiquitous tool in biological
data analysis, and is one of the most well-known ontologies, in or outside
the life sciences. Commonly conceived of as a simple terminology struc-
tured as a directed acyclic graph, the GO is actually well-axiomatized in
OWL and is highly dependent on the OWL tool stack. Here we outline
some of the lesser known features of the GO, describe the GO develop-
ment process, and our prognosis for future development in terms of the
OWL representation.

1 Introduction

The Gene Ontology (GO) is a bioinformatics resource for describing the roles
genes play in the life of an organism, covering a variety of species from humans
to bacteria and viruses[1].

The way the GO is most commonly presented in publications elides much
of the underlying axiomatization and formal semantics. The most common con-
ception is a Directed Acyclic Graph (DAG) G =< V, E >, where each vertex in
V is a particular gene “descriptor”, and E is a set of labeled edges connecting
two vertexes in V. The GO is rarely used in isolation - the value comes in how
databases use the GO to “annotate”! genes and molecular entities. A database
here can be minimally conceived of as D =< A, M > where M is a set of molec-
ular entities (e.g. genes or the products of genes) and A is a set of associations
where each association connects an element of V with an element of M. Cur-
rently GO has some 40k vertexes, 100k edges, and the combined set of databases
using GO have 27 million associations covering 4 million genes in 470 thousand
different species[3].

The users of the GO apply it in a number of ways. The simplest way is to
interrogate a database, for example to find out what a gene does, or to find the
set of genes that do a particular thing (the latter query making use of the edges
in E). One of the most common uses is to find a functional interpretation of
a set of genes, a so-called enrichment test. For example, given a set of genes
that are active in a particular type of cancer, what are the GO classes that are
statistically over represented in the description of these genes? Another use is as
a component of a diagnostic tool for finding causative genes in rare diseases[17].

! Note the different usage of the term annotation in the biological data curation world



The simple graph-theoretic view of the GO is effective and popular, but does
not take into account that GO has been enriched by an ever increasing number
of OWL constructs over the years.

2 The Axiomatic Structure of the GO

The GO consists of over 40,000 classes, but also includes an import chain that
brings in an additional 10,000 classes from 8 additional ontologies. The majority
of the axioms in this import chain are within the EL++ profile, allowing for the
use of faster reasoners.

For release purposes, the GO is available as a limited “standard edition”
which excludes imports and external ontologies and a complete edition called
go-plus®. There are additional experimental extensions which are not discussed
here (but we encourage reasoner developers to contact us for access to these for
testing purposes).

Table 1 shows the breakdown of axiom types and expression types. As is
evident, existential restrictions and intersections are frequently used, with the
latter used entirely within equivalence axioms.

Construct Usage count
Axiom 556088
EquivalentClasses 27108
IntersectionOf 27108
SubClassOf 106063
AnnotationAssertion 370394
DisjointClasses 127
SomeValuesFrom 36125

Table 1. Axiom or expression types used in the GO

The part of GO that is most typically exposed to users are the SubClassOf
axioms®, together with annotation assertions, which is weak in terms of expres-
sivity but delivers the query abilities required by most users.

The entire ontology reasons in seconds in Elk[9], and 10 minutes in Hermit
(on a standard laptop or workstation).

2.1 Equivalence axioms in GO

The meat and potatoes for reasoning in GO are the equivalence axioms, most
typically of a “genus-differentia” form, i.e. X EquivalentTo G and Ry some Yy
and R, someY,. These were historically referred to in GO as ‘cross products’

2 http: //geneontology.org/page/download-ontology
3 including existential restrictions, e.g. part_of



[12], since the set of such defined classes X are a subset of the cross-product of
the set G and the sets Y.

The existence of these axioms allow us to use reasoners to automatically clas-
sify the GO, something that is vitally important in an ontology with such a large
number of classes. In the current release version of GO, over 32,000 SubClassOf
axioms were inferred by reasoning, representing a substantial efficiency gain for
ontology developers.

2.2 Inter-ontology axioms

The subset of GO most commonly exposed comprises the so-called “intra-ontology”
axioms, but GO also contains a rich set of inter-ontology axioms, leveraging ex-
ternal ontologies (The plant ontology, Uberon, the Cell type ontology, and the
CHEBI ontology of chemical entities).

The primary use case for the inter-ontology axioms is to allow for modularized
development and to automatically infer the GO hierarchy. Additionally, inter-
ontology axioms have the added benefit of connecting different ontologies used
for classification of different types of data.

The inter-ontology axioms are present in the go-plus edition of GO, but not
the core version. To avoid importing large external ontologies in their entirety,
we build “import modules” using the OWL API Syntactic Locality Module Ex-
tractor.

2.3 Relations in the GO

We use a number of different Object Properties in these axioms, taken from the
OBO Relations Ontology*. We rely heavily on Transitivity, SubPropertyOf and
ObjectPropertyChain expressions. We have recently started using the inverse of
the partOf object property in some existential restrictions[2]; Elk ignores the
InverseProperties axiom, which is generally not an issue, but there have been
cases of errors we have only managed to detect using HermiT.

2.4 Constraints in the GO

As well as automatic classification, we also make extensive use of reasoning as
part of our quality control pipeline, both for ontology validation, and for the
validation of data about genes coming from external databases.

We encode the majority of constraints in GO as disjointness axioms. Domain
and range constraints on object properties play less of a part. We achieve more
powerful contextual domain-range type assertions using disjointness axioms. For
example, the ‘part of’ relation is flexible regarding whether is it used between two
processes (such as those found in the GO ’biological process’ branch) or between
material entities (for example, a GO subcellular component, such as synapse).
This generality limits the utility of domain and range. However, the RO includes

* http://code.google.com/p/obo-relations



axioms of the form: ‘part of’ process DisjointWith ‘part of’ continuant Which
prohibits category-crossing uses of ‘part of’ which would be invalid.

Disjointness axioms are also used in the traditional way, between siblings in
a taxonomic classification, although these are typically under-specified.

We frequently have need to encode spatial and spatiotemporal constraints.
For example, most of the cells in a complex organism such as yourself consist of
a number of compartments, including the nucleus (the central HQ, where most
of your genes live) and the cytosol (a kind of soup full of molecular machines
doing their business). It is not enough to simply state that the cell and cytosol
are disjoint classes. We also want to encode spatial disjointness, i.e. at no time®
do they share parts (made impossible by the existence of a membrane barrier be-
tween the two). We do this using General Class Inclusion axioms (GCI axioms),

e.g.
(‘part of’ some cytosol) DisjointWith (‘part of’ some nucleus)

In some cases we can structurally simplify the axiom by using equivalent
named classes such as ’cytosolic part’ and 'nuclear part’.

Another common type of constraint in the GO are so-called ‘taxon con-
straints’ [5]. The basic idea here is that the GO covers biology for all domains of
life, from single-celled organisms to humans. However, many of the classes are
applicable to specific lineages. For example, in describing the function of genes
in a poriferan (sponge), it would be a mistake to use the GO class brain develop-
ment, or any of its descendant classes, as these simple organisms lack a nervous
system of any type. Whilst we would hope a human curator would not make
such an error, the same cannot be said for algorithmic prediction methods that
make use of the ‘ortholog conjecture’[18] to infer the function of a gene in one
species based on the function of the equivalent gene in another species. Sponges
have many of the same genes found in other animals that form synapses in the
nervous system (the jury is out on whether this is a case of evolutionary loss
or a case of co-option). Here it is useful to have a knowledge-based approach to
validation of computational predictions.

The most obvious way to encode taxon constraints such as “nucleus part
of ONLY Eukaryotic organisms” is using universal restrictions and complemen-
tation expressions, and for constraints such as “photosynthesis occurs in only
NON-mammals” is to use ComplementOf expressions; however, this has the dis-
advantage of being outside EL++. We instead encode taxon constraints using
shortcut relations[14] and disjointness axioms[11].

One place where we use UnionOf constructs is in the GO-specific extensions
of the taxonomy ontology where we create grouping classes. For example, the
grouping “Prokaryota” would not be in the taxonomy ontology as it constitutes a
paraphyletic group - nevertheless it is useful to refer to these groups, so we create
these as union classes (in this case, equivalent to the union of “Eubacteria” and
“Archaea”). The increase in expressivity beyond EL-++ is not a practical issue

5 we elisde for now any discussion of encoding of temporal parameters in OWL



here as the groupings do not change frequently so we pre-reason with HermiT
and assert the direct subclass inferences (here between Prokaryotes and the class
for cellular organisms).

2.5 Annotation axioms

In addition to the logic axioms described above, GO makes heavy use of anno-
tation assertion axioms, as the textual component of GO is important to our
users. In particular, textual definitions, comments and synonyms (in addition to
labels) are the annotation properties we use most commonly.

One of main factors that allowed us to move to OWL was the introduction
of axiom annotations. We attempt to track provenance on a per-axiom level, so
this feature is vital to us.

3 The GO Development environment

3.1 Transitioning to OWL

The GO was not born as a Description Logic ontology. In order to be able to take
advantage of automated reasoning, it was necessary for us to retrospectively go
back and assign equivalence axioms and other OWL axioms to existing classes,
some of which date back to the inception of the project. This is in contrast to
ontologies “born” as OWL following the Rector Normalization pattern[16] in
which classes are prospectively axiomatized, at the time of creation.

The process of retrospective axiomatization was assisted in part by the de-
tailed design pattern documentation maintained by the GO editors — see for
example the documentation on developmental processes®. This made it possible
to use lexical patterns to derive equivalence axioms[12]. For example, if a class
C has a label “X differentiation” then we derived an axiom C EquivalentTo ’cell
differentiation’ and results_in_acquisition_of_features_of some X. X is assumed to
come from the OBO cell type ontology, and if no such X exists then we add this.

However, the axiomatization process frequently revealed cryptic inconsisten-
cies and incoherencies, both within the GO, and between the GO and other
ontologies. Some of these are trivial to resolve, whereas others require a massive
conceptual alignment of two domains of knowledge. One such case was the align-
ment of a biology-oriented view of metabolic processes with a chemistry-oriented
view[7].

3.2 Editing tools

The GO development environment is a hybrid of different tools and technologies.

In the past, the GO developers exclusively used OBO-Edit [4] for construction
and maintenance of the ontology. OBO-Edit only supports a subset of OBO-
Format, which corresponds roughly to EL++, with the addition of other re-
strictions, such as limited ability to nest class expressions. However, the main

5 http://www.geneontology.org/page/development



limitation of OBO-Edit is the lack of integration with OWL Reasoners such as
Elk.

Protege represents a superior environment for logic-based ontology develop-
ment, but unfortunately lacks much of the functionality that makes OBO-Edit
a productive and intuitive tool for the GO developers. These features include
powerful search and rendering, visualization, inclusion of existential restrictions
in hierarchical browsing, and annotation editing customized for our annotation
property vocabulary.

To overcome this we have been moving to a hybrid editing environment,
whereby developers use a mixture of OBO-Edit and Protege. The source ontology
remains in OBO-Format, with the developers using OWLTools” to perform the
conversion to OWL and back. Developers are careful to remain within the OBO
subset of OWL.

At first we employed this hybrid strategy tentatively, with the developers us-
ing Protege primarily as a debugging tool (for example, explanation of inferences
leading to unsatisfiable classes). However, developers are gradually embracing
Protege for other parts of the ontology development cycle, such as full-blown
editing.

To facilitate this transition, we have been working with other software devel-
opers to create plugins that emulate certain aspects of the OBO-Edit experience.
These include an annotation viewer and editor®, a plugin that manages the ob-
soletion of classes according to GO lifecycle policy®, and a partial port of the
OE graph viewer!? (see figure 1).

Fig. 1. Figure 1: Protege GraphView plugin, ported from OBO-Edit

7 http://code.google.com/p/owltools

8 https://github.com/hdietze/protege-obo-plugins

9 https://github.com/balhoff/obo-actions/downloads
10 https://code.google.com/p/obographview/



3.3 Web based templated term submission

Biological data curators frequently need new classes for describing the genes they
are annotating. Often these classes fall into particular compositional patterns
with placement in the subsumption hierarchy calculated automatically. In the
past the sole method for data curators to obtain new classes was through a
sourceforge issue tracking system, leading to bottlenecks.

To address this we created TermGenie[6]'!, a web-based class submission
system that allows curators to generate new classes instantaneously, provided
they pass a suite of logical, lexical and structural checks. TermGenie submission
can be according to either pre-specified templates, or “free-form” submissions.

Currently we specify the templates procedurally as javascript code, and we
are currently exploring the use of Tawny-OWL[10] as the templating engine.

3.4 Smuggling OWL expressions into Databases

In order to avoid overloading the ontology with too many named classes, we have
created an “annotation extension” system whereby data curators can composed
their own class expressions for describing genes[8]. The expressivity of the system
is deliberately limited to refining a base class using one or more existential
restrictions.

This system has so far appeared to be a useful balance between expressivity
and simplicity. One problem is that data curation takes place outside an OWL
environment, so any logical errors (for example, violation of a domain or range
constraint) are not caught until the curators submit their data to the central
GO database, where we perform reasoner-based validation.

3.5 Ontology build pipeline

As the GO evolved from being a single standalone artifact to modular entity
with a number of derived products we constructed an ontology verification and
publishing pipeline.

As is common in the bioinformatics world, we specify and execute our pipeline
using UNIX Makefiles, which allows the chaining together of dependent tasks
that consume and produce files.

We developed a command line utility that acts as a kind OWL Swiss-army
knife, with the original name of OWLTools. We developed OWLTools according
to the UNIX philosophy, with a view to integration with Makefile-type pipelines.
It is primarily a simple wrapper onto the OWL API, and allows the execution of
tasks such as checking if an ontology is incoherent, generating ontology subsets
and so on.

This pipeline is executed within a Continuous Integration framework[13].

' http://termgenie.org



3.6 Challenges of working with multiple ontologies

We aim to follow the Rector Normalization pattern, avoiding manual assertion
of poly-hierarchies, instead leveraging modular hierarchies. Often these hierar-
chies fall in the domain of an ontology external to GO, which presents a number
of challenges. This was one of the original motivations for the creation of the
Open Biological Ontologies (OBO) library, to lower the barrier for interopera-
tion, by ensuring all federated ontologies were open, orthogonal and responsive to
any requirements for improvement or change. Even with these barriers lowered,
challenges remain. Ontologies developed by different groups often reflect differ-
ent perspectives, design patterns and hidden assumptions that can be hard to
reconcile. The initial axiomatization of one ontology using another often reveals
multiple unsatisfiable classes and invalid inferences. This can be time-consuming
to repair. The key here is early, prospective integration, rather than after-the-
fact.

There is also a deficit of tooling to support working in a multi-ontology envi-
ronment. Naive construction of import chains results in highly inefficient transfer
of large RDF /XML files over the web. The resulting infrastructure is fragile, with
multiple points of failure. Versioning becomes of paramount importance, because
simple changes in an imported ontology can wreak havoc, causing mass unsat-
isfiability, or loss of crucial inferences. Multiple partial solutions exist, but none
are perfect. BioPortal provides URLs for individual versions of ontologies, but
require an API key, which does not work well with owl imports.

The parallels with software development are obvious. As ontologies such as
GO move from being monolithic to modular, we need the equivalent of depen-
dency management and build tools such as Maven, and we welcome efforts such
as the recent OntoMaven project[15].

Biological ontologies do not always modularize as cleanly as software libraries.
For example, there are multiple mutual dependencies between the cell type on-
tology and GO (the former relies on the latter to describe what cells have evolved
to do, the latter relies on the former to describe the development of these cells).
This presents additional challenges.

4 Future developments

4.1 Getting OWL into the mainstream

We are highly dependent on OWL as part of the ontology development cycle
in GO. Axiomatization using equivalence and disjointness axioms are crucial for
automating classification and quality control. However, OWL axioms currently
play less of a role once the ontology is deployed and used. There are large numbers
of highly sophisticated analysis tools that incorporate the GO - most of these
just treat the ontology as a simple DAG (in fact a considerable number of tools
drop even this limited axiomatization, and just use the GO as a flat list of terms).
We believe there is a missed opportunity here. Some of this may be in part due
to the high barrier of entry for using OWL (e.g. lack of native APT in languages



frequently used by bioinformaticians, such as Python). This may also represent
an research opportunity for algorithms that combine the types of statistical and
probabilistic reasoning common in biology with powerful deductive reasoning
offered by description logics.

4.2 Rise of the ABox

Most of the detailed axiomatization in the GO represents the low hanging fruit,
such as equivalence axioms for compositional concepts. Other aspects of biol-
ogy are more resistant to axiomatization - for example, multi-step pathways
or complex cellular processes such as apoptosis. The tree-model property of
TBoxes makes it impossible to faithfully encode multiply connected mechanis-
tic processes. The existence of high degrees of variability and exceptions across
different species presents challenges for a monotonic logical encoding.

One approach we are exploring here is to utilize the ABox to represent “pro-
totypical” biological processes. We have developed a web-based graphical ABox
editor called Noctua'? for exploration of this paradigm. Whilst the use of an
ABox to represent knowledge lessens the power of our model for deductive infer-
ences, it represents an opportunity for exploration of other models of inference
that may be more appropriate for biological systems.

5 Conclusions

The OWL language and tools have benefited the GO tremendously, particularly
the ontology development cycle and the validation of data about genes. At this
time, GO primarily uses a subset of OWL that is supported by Elk, providing
us the benefits of fast reasoning. In general, like many biological ontologies, the
GO is not in need of esoteric extensions to OWL, but would benefit substantially
from the creation of new tools and the hardening of existing tools, particularly
related to release management.
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