
Querying the Web of Data with XSPARQL 1.1

Daniele Dell’Aglio1, Axel Polleres2, Nuno Lopes3, and Stefan Bischof4

1 DEIB, Politecnico of Milano, Milano, Italy
2 Vienna University of Economics and Business, Vienna, Austria

3 IBM Research, Smarter Cities Technology Centre, Dublin, Ireland
4 Siemens AG Österreich, Vienna, Austria

Abstract. On the Web and in corporate environments there exists
a lot of data in various formats. XQuery and XSLT serve as query
and transformation languages for XML. But as RDF also becomes a
mainstream format for Web of data, transformations languages between
these formats are required. XSPARQL is a hybrid language that provides
an integration framework for XML, RDF, but also JSON and relational
data by partially combining several languages such as XQuery, SPARQL
and SQL. In this paper, we present the latest open source release of the
XSPARQL engine, which is based on standard software components (Jena
and Saxon) and outline possible applications of XSPARQL 1.1 to address
Web data integration use cases.

1 Introduction

The task of integrating data from different sources often bumps into problems
related to heterogeneity [1]: the different data sources can adopt different data
formats (syntactical heterogeneity), different schemata (structural heterogeneity)
and assign different meanings (semantic heterogeneity). Those problems, usually
identified under the label of data variety [2], are gaining more and more attention.
For example: acquired companies can hold a huge amount of data that needs to be
integrated into the new parent company’s systems; software refactoring that needs
to consume legacy data; and data mashup services merge data from different data
sets. Especially on the Web—due to its distributed structure—data heterogeneity
problems often arise: data has different format, (e.g. XML and JSON), different
structures (e.g. weather data from different services) and different conceptual
models (e.g. prices modelled in different ways in e-commerce Web sites).

RDF is a possible solution to cope with the structural heterogeneity: it allows
representing the data independently of the language it is originally formatted. A
simple way to process data exploiting RDF is the following: first data is converted
into RDF (i.e. lifting); 2) data is merged and stored in a RDF store; and 3) data
is processed (e.g. queried or transformed). The lifting operation is strictly related
to the data format: XML can be lifted through XSLT, JSON can be transformed
in JSON-LD and data stored in relational databases can be converted in RDF
with R2RML. The storage and the merge of RDF data is done by exploiting
RDF stores like Jena-TDB or Sesame, and the processing can be done through a
query language like SPARQL.

ISWC 2014 Developers Workshop Copyright held by the authors 113

2 D. Dell’Aglio, A. Polleres, N. Lopes and S. Bischof

Developers can gain advantage by using frameworks that enable them to
perform the aforementioned process in a simplified and integrated way. XSPARQL
fills this gap: it is a scripting language that combines SPARQL [3] and XQuery [4]
in one language to integrate and query data. Originally proposed as a W3C
member submission in 2009 [5], the XSPARQL language is at the basis of the
XSPARQL engine: the first prototype has been released as Open Source project
(under BSD licence) at Sourceforge5. Several releases followed the initial release,
and development has been accompanied by research on query optimization in
the combined language [6], and various extensions [7, 8].

In this paper, we present the latest versions of the XSPARQL language and
engine. In Section 2 we present the new features and provide information about
the engine architecture. Next, Section 3 reports on usage of XSPARQL and
illustrates the next steps.

2 XSPARQL 1.1

The XSPARQL query language is an extension of XQuery that introduces opera-
tors to query RDF data sources and format data in RDF (such as RDF/XML and
Turtle). Among the available features, XSPARQL supports (1) transformations
between XML/JSON and RDF (i.e., lifting and lowering), (2) control flow to
SPARQL by the additional power of XQuery, (3) relational data processing
through RDB2RDF6, and (4) scripting for Web data integration in general.

The latest release of the XSPARQL language is the 1.1. The main improve-
ments are the full support to SPARQL 1.1 and the support to JSON document
processing. The former enables the construction of more complex queries, e.g.
it is possible to use aggregates and federation; the latter is key to improve the
usability of XSPARQL in the current Web scene, where JSON is replacing XML
as serialisation format for data exchange.

An implementation of XSPARQL 1.1 is available in the latest release of the
XSPARQL engine (version 20140909). As the previous releases, the software is
available as open source; moreover, in addition to the support of the XSPARQL
1.1 language, this version of engine includes several bug fixes and improvements,
e.g. functions to put constraints of the variable data types and new methods to
declare the RDF datasets.

Anatomy of a XSPARQL query. To illustrate the new features of XSPARQL,
let’s consider the following running example: we want retrieve the upcoming
events of artists having Nuclear Blast as label. The information we need to solve
this task is available on the Web: for example, Wikipedia (and consequently
DBpedia) describes the music artists and the music label they belong, while
Last.fm exposes the schedule of the music events.

5 Cf. http://sourceforge.net/projects/xsparql/.
6 Cf. http://www.w3.org/2001/sw/rdb2rdf/implementation-report/.

ISWC 2014 Developers Workshop Copyright held by the authors 114

Querying the Web of Data with XSPARQL 1.1 3

The XSPARQL query in Listing 1 solves the tasks described above. The
SPARQLforClause clause in Lines 5–11 is a special XQuery FLOWR expression
that allows the developer to compose queries over RDF data: its WHERE clause
is compliant with the SPARQL 1.1 WHERE clause. In the example, the WHERE
clause contains an invocation to DBPedia to get the artists having Nuclear Blast
as label.

Next, the Last.fm REST service is invoked (Line 13): for each retrieved artist
at the first step, the service returns the lists of the upcoming events, serialised in
JSON (details about the JSON processing are provided below).

Finally, the last part of the query (Lines 15–20) describes the output: in this
case, it is the RDF graph with the upcoming concerts. To do it, a CONSTRUCT
clause is used (Lines 15–20): it is an alternative to the XQuery RETURN clause,
and allows specifying the triple patterns to be used to build the RDF graph. In
other words, while RETURN produces XML, CONSTRUCT produces RDF.

Listing 1. XSPARQL query example
1 prefix lastfm: <http://xsparql.deri.org/lastfm#>
2 prefix dbprop: <http://dbpedia.org/property/>
3 prefix dbpedia: <http://dbpedia.org/resource/>
4
5 for *
6 where {
7 service <http://dbpedia.org/sparql> {
8 $artist dbprop:label dbpedia:Nuclear_Blast ;
9 dbpprop:name $artistName

10 }
11 }
12 return
13 let $doc := concat("http://ws.audioscrobbler.com/2.0/?artist

=",$artistName,"&method=artist.getEvents&...")
14 for $event in xsparql:json-doc($doc)//events/event/*
15 construct {
16 [] a lastfm:Event ;
17 lastfm:artist {$artistName} ;
18 lastfm:venue {$event/venue//city} ;
19 last:date {$event/startDate}
20 }

Consuming and querying JSON Data. Since the availability of data in
JSON increases more and more, there is a growing need of querying data in this
format. XSPARQL supports JSON documents as input: this feature is useful, for
example, in scenarios where JSON data has to be combined with data in other
formats (e.g. RDF and XML).

JSON does not specify a query language (this representation format is meant
to be incorporated directly into the JavaScript scripting language): JSON data
can be manipulated directly in JavaScript; the data access is made defining paths,

ISWC 2014 Developers Workshop Copyright held by the authors 115

4 D. Dell’Aglio, A. Polleres, N. Lopes and S. Bischof

in a similar way to XPath for XML: the access of members of objects (denoted
by ‘{’ and ‘}’) can be done using the ‘.’ separator and the object key, while
the access to array elements is done using the standard bracket notation: ‘[’
and ‘]’. For example, let’s consider JSON document provided by the Last.FM
REST service in Listing 2: it contains the list of concerts of the Nightwish band.
If this data is assigned to a JavaScript variable named ‘b’, we can access the
member ‘events’ by using ‘b.events’ and the second event can be done with
‘b.events.event[1]’.7

Listing 2. Simplified Last.fm REST service answer
1 {
2 "events": {
3 "event": [
4 {
5 "id": "3963574",
6 "venue": {
7 "id": "8778813",
8 "name": "Electric Factory",
9 "city": "Philadelphia"

10 },
11 "startDate": "Fri, 10 Apr 2015 21:27:01"
12 },
13 {
14 "id": "3963451",
15 "venue": {
16 "id": "8778774",
17 "name": "The Palladium",
18 "city": "Worcester"
19 },
20 "startDate": "Sat, 11 Apr 2015 19:00:00"
21 },
22 ...

To access JSON documents, XSPARQL exposes the xsparql:json-doc
function, while the query can be then declared through XPath expressions, as
shown in Line 14 of Listing 1: at each iteration of the for cycle, a concert is
extracted and is associated to the $event variable.

Design and architecture. The XSPARQL engine is written in Java and it is
developed in a modular way, as depicted in Figure 1: the query rewriter processes
the XSPARQL query and rewrites it in a XQuery query, while the query evaluator
executes it and produces the answer.

The first component of the engine is the xsparql-rewriter: it takes as
input a XSPARQL query, then parses, rewrites and optimises it and outputs a
XQuery query [6]. The parts of the query that have to be evaluated over RDF are
7 Please note that in JavaScript the first element of an array is at position 0, while the
first element of XPath sequences is 1.

ISWC 2014 Developers Workshop Copyright held by the authors 116

Querying the Web of Data with XSPARQL 1.1 5

rewritten as SPARQL queries and embedded in XQuery functions. To develop
this component, we used JFlex to build the lexer, and ANTLR to build the parser.
We decided to develop also the rewriter and the optimiser through ANTLR: this
framework offers powerful instruments to process and manipulate tree structures,
so it is a suitable choice for our needs. It follows that most of the effort we put
in the rewriter development has been used in the writing of the grammar files,
from which the code is automatically generated.

Fig. 1. XSPARQL architecture

The output of the query rewriter is
the input of the following component, the
xsparql-evaluator: as the name sug-
gests, its main goal is the execution of the
query against the data. Being the input
a XQuery query with embedded SPARQL
queries, the evaluation requires to execute
the queries and to put together the results
according to the query plan. In this sense,
the query evaluator acts as an orchestra-
tor: it executes the query plan by dele-
gating the query evaluations to two query
engines: Saxon for XQuery and Jena-ARQ
for SPARQL.

The XSPARQL engine can be used in
two different ways: as stand-alone appli-
cation and as library. The stand-alone ap-
plication, developed in the xsparql-cli
project, can be executed through terminal,
and offers a command line interface to set the query and the data that have to be
used. Alternatively, XSPARQL can be used as library: the xsparql-rewriter
and the xsparql-evaluator are also delivered as JAR files, available through
Maven8: in this way, XSPARQL can be used in a programmatic fashion by other
projects and applications.

3 Conclusions and future directions

The design of XSPARQL was lead by a set of use cases [9]. In the last years,
XSPARQL has been used in several projects, to cope with the data integration
issues. For example, XSPARQL has been used for RDB2RDF direct mapping
and as an R2RML processor9. Another example is the usage of XSPARQL
in the European research project digital.me10. The goal of the project is the
integration of users personal information sphere. XSPARQL was used in the
data transformation process, where social data is extracted from social networks,
8 http://oss.sonatype.org/content/repositories/releases/net/sf/
xsparql/

9 Cf. http://www.w3.org/TR/r2rml/.
10 Cf. http://www.dime-project.eu/.

ISWC 2014 Developers Workshop Copyright held by the authors 117

6 D. Dell’Aglio, A. Polleres, N. Lopes and S. Bischof

such as Facebook, LinkedIn, Twitter, Google+ and any OpenSocial-compliant
service, and is then mapped to an interoperable standard. XSPARQL enabled the
construction of ontology-based technique for online profile resolution [10], which
targets the discovery of multiple online profiles that refer to the same person
identity11.

XSPARQL is mature enough to be used in production systems and its
development is ongoing. In the next months, we plan to add several features and
improve the existing ones. For instance, we plan to extend support for JSON
with more convenient syntax shortcuts, functions and support to JSON-LD [11].
Additionally, we plan to enable support for managing and querying streaming
data: the processing of high-dynamic data from the Web is a challenging and
ongoing trend that is gaining more and more attention.

Acknowledgments
This work has been partially funded by the WWTF Project (ICT12-015).

References
1. Ouksel, A.M., Sheth, A.P.: Semantic interoperability in global information systems:

A brief introduction to the research area and the special section. SIGMOD Record
28(1) (1999) 5–12

2. Laney, D.: 3D data management: Controlling data volume, velocity, and variety.
Technical report, META Group (February 2001)

3. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (March 2013)
4. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.:

XQuery 1.0: An XML Query Language (Second Edition) (December 2010)
5. Polleres, A., Krennwallner, T., Lopes, N., Kopecký, J., Decker, S.: XSPARQL

Language Specification (January 2009) W3C member submission.
6. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between

RDF and XML with XSPARQL. Journal on Data Semantics 1(3) (2012) 147–185
7. Lopes, N., Bischof, S., Polleres, A.: On the semantics of heterogeneous querying

of relational, XML, and RDF data with XSPARQL. In: Proceedings of the 15th
Portuguese Conference on Artificial Intelligence (EPIA2011) – Computational Logic
with Applications Track, Lisbon, Portugal (October 2011)

8. Bischof, S., Lopes, N., Polleres, A.: Improve efficiency of mapping data between
XML and RDF with XSPARQL. In: Web Reasoning and Rule Systems – Fifth
International Conference, RR2011. Volume 6902 of Lecture Notes in Computer
Science (LNCS)., Galway, Ireland, Springer (August 2011) 232–237 Short paper.

9. Passant, A., Kopecký, J., Corlosquet, S., Berrueta, D., Palmisano, D., Polleres, A.:
XSPARQL: Use cases (January 2009) W3C member submission.

10. Cortis, K., Scerri, S., Rivera, I., Handschuh, S.: An ontology-based technique for
online profile resolution. In: Social Informatics. Volume 8238 of Lecture Notes in
Computer Science. Springer International Publishing (2013) 284–298

11. Sporny, M., Kellogg, G., Lanthaler, M.: JSON-LD 1.0 (January 2014)

11 Examples of the XSPARQL queries can be found in http://www.dime-project.
eu/resources/news/dime_257787_D03.03.pdf within Section 4 (pgs 19-20),
and the Appendix (pg31+)

ISWC 2014 Developers Workshop Copyright held by the authors 118

