
Implementing Linked Widgets:
Lessons Learned for Linked Data Developers

Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa,
Elmar Kiesling, and A Min Tjoa

Vienna University of Technology, Vienna, Austria
{tuan.trinh,peter.wetz,ba.do,amin.anjomshoaa,

elmar.kiesling,a.tjoa}@tuwien.ac.at

Abstract. Seven years after Linked Data has been introduced as a con-
cept to publish data on the web, an abundant cloud of Linked Open Data
(LOD) built upon standard web technologies has emerged. To facilitate
and encourage widespread use of that data, a critical step is now to
streamline the process for creating applications on top of LOD. This pa-
per discusses lessons learned while developing an open standards-based
platform that aims to achieve that by means of Linked Widgets. Whereas
resources are already connected in the LOD cloud, Linked Widgets in a
similar vein aim to alleviate LOD application development in an open
and interlinked fashion. Through reuse, we aim to foster both users’ and
developers’ productivity and creativity.

1 Introduction

Due to substantial efforts by developers, researchers, and practitioners, the LOD
cloud has grown to approximately 1000 working datasets and 60 billion triples
just seven years after researchers introduced the Linked Data [2] concept.1

This approach for publishing data rests upon standard web technologies such
as HTTP, RDF and URIs. Today, the LOD cloud includes data from various
domains including media, geography, government, and publications.

The impressive growth of the LOD cloud may suggest that the Semantic Web
vision is becoming a reality. However, although computers can process seman-
tically annotated information from these RDF datasets, end users, who have
limited experience with Semantic Web technologies, still cannot easily access
or instruct computers to collect and process data. Therefore, users still rely on
developers to create relevant and interesting LOD applications for them. So far,
the number of domain-independent LOD applications targeted at end users has
been limited. Those that do exist are typically proprietary and developed by a
closed group of developers; as a consequence, sharing and reuse of applications
is restricted and users can access only a small part of the LOD cloud. In order
to overcome this major roadblock to LOD adoption, novice users need means

1 http://stats.lod2.eu

ISWC 2014 Developers Workshop Copyright held by the authors 25

http://stats.lod2.eu


to overcome the technological barriers that keep them from exploring the LOD
cloud in a flexible and effective manner.

To address this challenge, we have developed an open mashup platform2 as
a bridge to tie together three stakeholders, i.e., data publishers, developers, and
end users. We provide further details about this platform in [3,4]. The key idea
of the platform is called Linked Widgets – a type of web applications on top of
Linked Data – implemented by developers to enable end users to obtain, process,
or visualize data from the LOD cloud and other open data sources. A Linked
Widget has input and output models, which are semantically enriched through
an annotator and published as Linked Data accessible via a SPARQL endpoint.
When connected, each widget can receive data and return its processed output
data to another widget. Users without a skillset in Semantic Web technologies
can readily combine Linked Widgets in different ways to compose LOD applica-
tions.

Fig. 1 illustrates an example of such LOD applications. It detects and presents
beautiful spots and corresponding images on a map based on a touristic textual
description. By connecting Text Annotator – which detects a list of DBpedia
[1] locations from text – and Image Search – which enriches all types of ge-
ographic objects with Flickr3 images, the location resources from DBpedia are
enriched with images from Flickr. Similarly, users can connect DBpedia resources
to EventMedia4 resources by adding the Music Event Search between the Text
Annotator and the Image Search, as illustrated in Fig. 2.

This paper discusses three challenging implementation considerations that
we faced while developing the linked widget platform. The remainder of this
paper is organized as follows. In Section 2, we introduce crucial architectural
features that LOD applications should follow. Section 3 proposes frameworks for
interactive LOD web applications. Section 4 is our suggestion for the data format
of lightweight LOD applications. Finally, the paper concludes in Section 5.

2 Architectural Design Considerations

When defining the architecture for our mashup platform, we set out to fol-
low three essential design principles, (i) openness, (ii)connectedness, and (iii)
reusability. These are also the principles that we propose LOD applications
should follow.

First, LOD applications cannot tap their full potential, if they are not open.
They should follow an open architecture that enables arbitrary developers and
end users to contribute and share their work with the LOD community. An
example for the benefits of openness is LinkedGeoData,5 which uses information
collected by the OpenStreetMap6 project and makes it available as an RDF

2 http://linkedwidgets.org
3 https://flickr.com
4 http://eventmedia.eurecom.fr
5 http://linkedgeodata.org/About
6 http://www.openstreetmap.org/

ISWC 2014 Developers Workshop Copyright held by the authors 26

http://linkedwidgets.org
https://flickr.com 
http://eventmedia.eurecom.fr 
http://linkedgeodata.org/About
http://www.openstreetmap.org/


Fig. 1: Display detected-from-text famous locations (and images) on the map

Fig. 2: Display music events (and images) nearby detected locations on a map

knowledge base according to the Linked Data principles [2]. It allows users to
directly edit displayed resources in the map view, which simplifies the process
of extending data quantity and improving data quality. Similarly, we encourage
developers to contribute Linked Widgets to our mashup platform to enable new
combinations of LOD datasets. Furthermore, even end users can create new
widgets from composed applications without any programming. Users of the
community can finally share, reconfigure, or edit the created LOD applications.

The openness feature improves the way users can store and exploit data of
the available LOD applications. This means that data valuable for the commu-
nity should be accessible for anyone in a well-structured format. For example, the
input and output models of Linked Widgets as well as the metadata of widgets,
widget collections, and composed LOD applications of the mashup platform are
published via a SPARQL endpoint. Third parties can develop additional func-
tionalities for the platform, e.g., widget search, or input/output model matching
which enables users to find – given input/output A – all output/input B from
all other widgets such that the connection between A and B is valid. Users then
can discover all possible connections between widgets to continuously build more
applications.

ISWC 2014 Developers Workshop Copyright held by the authors 27



Next, we design the architecture around the idea of connectedness, which is
implemented via two concepts, i.e., data connection and functionality connec-
tion. Since we, except for domain-specific applications, have many interconnected
LOD datasets, the architecture and its implementation should not restrict them-
selves to a small number of datasets. Instead, combining two or more datasets
and enriching the data with additional value creates exciting opportunities.

From the openness feature we can derive the functionality connection and the
reusability feature. Anyone can contribute new functionalities to an application,
however, those functionalities should not be separated from each other. It should
be possible to connect and reuse them in an effective and efficient manner. Our
mashup platform supports reuse in four ways: (i) Users can creatively com-
bine Linked Widgets from different developers to compose LOD applications,
(ii) they can reuse LOD applications from others, but change the parameters of
the constituted widgets, (iii) they can reuse a composed LOD application as a
new widget, and (iv) based on available widgets, developers can implement new
widgets to support new use cases.

Another architectural design consideration for LOD applications, which in-
tegrate data from multiple sources, is to decide where the data processing task
should be performed. The alternatives are to either do it locally at the client ap-
plication or remotely at the server side. Because a server of high quality datasets
can easily become overloaded with too many requests from clients, we should
make use of client resources whenever possible. An example is Linked Data Frag-
ments [6] in which the client itself will execute complex SPARQL queries after
receiving the data fragments – corresponding to its defined triples – from the
server. In the mashup platform, currently, data processing is similarly done on-
the-fly in the client’s browser. However, to deal with additional types of data,
i.e., stream data, real-time data, big data, and long-time processing data in fu-
ture, we will consider widgets just as a user interface on the client and the actual
data retrieval and processing tasks, instead, could be performed at the server.

3 Frameworks for Interactive LOD Web Applications

Web platforms can provide an ideal environment for creating accessible, sharable,
extensible, and maintainable LOD applications. Interactive web applications typ-
ically rely on JavaScript libraries to provide rich graphical user interfaces on the
client side (e.g., drag and drop). Choosing an appropriate library is crucial and
may considerably reduce development effort and improve results. This section
sets up a guideline for novice developers of LOD web applications.

The are many free and open source JavaScript libraries/frameworks. For
the implementation of our Linked Widget platform, we evaluate (i) YUI7 – a
free, open source JavaScript and CSS library for building rich interactive web
applications, (ii) WireIt8 – an open-source JavaScript library to create web graph

7 https://yuilibrary.com/
8 http://neyric.github.io/wireit/docs/

ISWC 2014 Developers Workshop Copyright held by the authors 28

https://yuilibrary.com/
http://neyric.github.io/wireit/docs/


editors for dataflow applications, (iii) Sencha Ext JS9 – a JavaScript framework
with an MVC architecture and modern widgets, (iv) GWT10 – a development
toolkit for building complex browser-based applications, and (v) SmartGWT11

– a GWT-based framework featuring a rich palette of GUI elements.
Before deciding to use a library, developers have to address a number of ques-

tions. First, how much development time is available; is the result supposed to be
a prototype or a ready-to-use product? Next, are there any requirements regard-
ing compatibility with devices and browsers (e.g., touch devices and different
browsers and versions)? What is the maximum allowable size for the loaded web
resources? Which UI elements will be used in the application? Finally, develop-
ers have to read the documentation of potential libraries/frameworks to select
the most suitable one for their application.

If minimizing the size of the necessary web resource (i.e., images, CSS and
JavaScript code loaded for executing the application) is an important consider-
ation, then YUI and GWT are good options because they allow developers to
select the modules they would like to use on their page instead of the whole
library. Other frameworks, e.g., SmartGWT, will result in the client browser
loading around 4MB in total, even for a single and simple feature.

After carefully evaluating the alternative libraries/frameworks, we found that
GWT meets most of our requirements. Essentially, GWT allows web developers
to create and maintain complex JavaScript front-end applications in Java. In
addition to its basic user interface elements, which can be inherited and extended
easily, a large number of advanced elements contributed by the GWT community
are available. Developers write their application in Java, which can then be
compiled into optimized JavaScript by the GWT Java-to-JavaScript compiler.
The compiler itself ensures that web applications run on different browsers.

Finally, making use of GWT helps developers to not only rapidly develop
their prototype applications, but also makes it straightforward to finalize it into
a complete product. Using other frameworks to extend already supported UI
elements with new features, e.g., maximizing/minimizing a window, developers
have to read, understand, and add their new source code to complicated and
intricate JavaScript and CSS code of the library, which is difficult and time con-
suming. GWT easily supports such tasks, because its implementation language
is Java – an object oriented programming language in which the concept of
inheritance is much clearer than in JavaScript – an object-based language only.

4 Data Format for Lightweight LOD Applications

In lightweight LOD applications and LOD applications which include on-the-fly
data processing and data transmission, it is important to choose an appropriate
data format. A good decision will save a considerable amount of resources, i.e.,
CPU power, memory, and time.

9 http://www.sencha.com/products/extjs/
10 http://www.gwtproject.org/
11 http://code.google.com/p/smartgwt/

ISWC 2014 Developers Workshop Copyright held by the authors 29

http://www.sencha.com/products/extjs/
http://www.gwtproject.org/
http://code.google.com/p/smartgwt/


We evaluated RDF, OWL, XML, JSON, or JSON-LD as potential data for-
mats for our mashup platform. Among those, we found that JSON-LD, which
“combines the simplicity, power, and web ubiquity of JSON with the concepts of
Linked Data” [5] is the most appropriate for our needs. Since January 2014 it has
been an official web standard recommended by the W3C. Compared to RDF,
JSON-LD is more human-readable and takes less memory to present the same
information. Additionally, in simple cases of Linked Widget interaction, where
the output data model of a widget fits the input data model of another widget
exactly (i.e., they have exactly the same structure or the output is a subset of the
input), due to the JSON format, widgets can directly receive data from others
without further processing tasks. In more complex cases, the output of a widget
needs to be modified to be compatible with the input of another widget. In these
cases, JSON-LD enables the platform to create a SPARQL query to perform this
additional data adaption task.

5 Conclusion

In this paper, we outline a mashup platform as an open framework to manage
and reuse applications on top of Linked Data. We expect that by connecting
users, developers, and Linked Data, we can contribute to the diffusion and dis-
semination of Semantic Web technologies. We then discuss three lessons learned
while implementing the platform and we consider as being useful for developers.
LOD applications should follow an open and connected architecture which then
should be deployed by developers on the web to be easily accessible, sharable
and extensible; for lightweight applications, we evaluate JSON-LD as an ideal
option for data transmission. It is concise and readable for both humans and
machines.

References

1. Auer, S. et al.: DBpedia: A Nucleus for a Web of Open Data. In: 6th International
Semantic Web Conference, pp. 722–735. Springer, Heidelberg (2007)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.Semantic
Web Inf. Syst., 5(3), pp. 1–22 (2009).

3. Trinh, T.D. et al.: Linked Widgets-An Approach to Exploit Open Government Data.
In: 15th International Conference on Information Integration and Web-based Ap-
plications & Services, pp. 438–442. ACM, NY, USA (2013)

4. Trinh, T.D. et al.: Open LinkedWidgets Mashup Platform. In: AI Mashup Challenge
co-located with the 11st European Semantic Web Conference. CEUR-WS.org (2014)

5. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: JSON-LD 1.0,
http://www.w3.org/TR/json-ld/ (2014)

6. Verborgh, R. et al.: Web-Scale Querying through Linked Data Fragments. In: 7th
Workshop on Linked Data on the Web. CEUR-WS.org (2014)

ISWC 2014 Developers Workshop Copyright held by the authors 30

http://www.w3.org/TR/json-ld/

	Implementing Linked Widgets:Lessons Learned for Linked Data Developers
	Introduction
	Architectural Design Considerations
	Frameworks for Interactive LOD Web Applications
	Data Format for Lightweight LOD Applications
	Conclusion




