
Jassa - A JavaScript Suite for SPARQL-based
Faceted Search

Claus Stadler, Patrick Westphal, Jens Lehmann

Universität Leipzig, Institut für Informatik, AKSW,
{cstadler|pwestphal|lehmann}@informatik.uni-leipzig.de

http://aksw.org

Abstract. The availability of SPARQL endpoints on the Web provides
interesting opportunities for rapid Web application development. How-
ever, sophisticated applications need components that can adopt to the
data, yet, the efficient generic exploration and visualization of data con-
tained in those endpoints is still challenging. In this paper, we present the
“JAvascript Suite for Sparql Access” (Jassa) framework, which features
various abstractions and utilities for the creation and transformation of
SPARQL queries, as well as the processing of corresponding result sets.
The current highlights comprise modules for RDF, SPARQL, data ac-
cess, conversion of result sets to objects and faceted browsing, together
with corresponding user interface components based on AngularJS.

1 Introduction

The Linked Data initiative led to a paradigm shift, in which large amounts of
structured data were made publicly available. With RDF, a data model was
introduced, which enables global identification and integration of resources as
well as cross-dataset interlinking. On top of RDF, SPARQL1 became a standard
language for accessing Web databases. Yet, the development of Web applica-
tions for the exploration and visualization of SPARQL-accessible data still poses
several challenges related to performance and design. In this paper, we present
the Open Source JavaScript framework called JAvaScript Suite for Sparql Access
(Jassa). Jassa is motivated by the goal of creating the generic widgets for faceted
browsing of RDF data depicted in Figure 2. The library is designed to tackle
many of the challenges encountered during the development process.

The remainder of this paper is structured as follows. In Section 2 we outline
the high-level structure of Jassa as well as its highlights. In Section 3 we briefly
summarize related work. Finally, in Section 4 we conclude this paper.

2 The Jassa Architecture

Jassa is an umbrella term for a set of three related projects. A depiction of the
architecture is shown in Figure 1. These projects are summarized as follows:

1 http://www.w3.org/TR/sparql11-query/

ISWC 2014 Developers Workshop Copyright held by the authors 31

http://aksw.org
http://www.w3.org/TR/sparql11-query/

Fig. 1: The Jassa Architecture

– Jassa Core2 is a project that provides a layered set of modules for: the
representation of RDF and SPARQL, the execution of queries, SPARQL-to-
JSON mapping, and most prominently, faceted search.

– Jassa UI 3 is a project for user interface components based on Jassa Core
and the AngularJS4 framework.

– Complementary Services for Jassa5 is a Java project that offers server side
APIs that enhance Jassa, such as a SPARQL cache proxy. Another service
is capable of finding property paths connecting two sets of resources.

In the following, we explain selected components of Jassa in a bottom-up
fashion, starting from the RDF API and ending in the faceted browsing widgets.

2.1 The RDF, VOCAB and SPARQL modules

The rdf module features the basic components for working with RDF data. The
most important class is rdf.NodeFactory, from which rdf.Node objects can be
created that represent RDF terms. The vocab module provides predefined node
objects for the commonly used xsd, rdf, rdfs and owl vocabularies. The sparql
module features classes for representing the syntactic constructs of SPARQL
queries.

1 var s = rdf.NodeFactory.createVar(’s’);
2 var o = rdf.NodeFactory.createUri(’http :// dbpedia.org/ontology/Airport ’);
3 var t = new rdf.Triple(s, vocab.rdf.type , o);
4

5 var query = new sparql.Query ();
6 query.setResultStar(true);
7 query.setQueryPattern(new sparql.ElementTriplesBlock ([t]));
8 query.setLimit (10)
9 console.log(’As string: ’ + query);

10 // Output: Select * { ?s a <http :// dbpedia.org/ontology/Airport > } Limit 10

Listing 1: Example for forming a query

Note, that all mentioned namespaces reside in the global jassa object. As can be
seen from Listing 1, we decided to follow designs of the well-known Apache Jena

2 https://github.com/GeoKnow/Jassa-Core
3 https://github.com/GeoKnow/Jassa-UI-Angular
4 https://angularjs.org/
5 https://github.com/AKSW/jena-sparql-api

ISWC 2014 Developers Workshop Copyright held by the authors 32

https://github.com/GeoKnow/Jassa-Core
https://github.com/GeoKnow/Jassa-UI-Angular
https://angularjs.org/
https://github.com/AKSW/jena-sparql-api

project6, with the intention of providing a consistent development experience
when combining these frameworks in a project.

2.2 The Sparql Service API

Web applications could run SPARQL queries against HTTP SPARQL endpoints
by directly using an AJAX API. However, this simple approach has several
drawbacks: The server may limit the sizes of result sets. Triple stores may have
limited or even erroneous SPARQL implementations, forcing clients to phrase
queries differently. In many cases, caching query responses is desired. On some
occasions it can happen that an application launches a new query although the
same query is already running. Jassa provides a decorator-based approach to
transparently deal with these issues. The main interface is service.SparqlService,
which defines methods for creating service.QueryExecution objects from a query
string7 or query object. Usually, decorators that apply query transformations
will first parse the string before passing the transformation result as an object
to the delegate. The sparql.QueryExecution class offers methods for retrieving the
response: execSelect(), execConstruct(), exectDescribe() and exectAsk(), which
yield promises of appropriate type, i.e. sparql.ResultSet, rdf.Graph and boolean.

Listing 2 demonstrates the creation of a SPARQL service that performs pag-
ination8, query transformations for some issues with Virtuoso9 and caching of
the individual pages.

1 var sparqlService = new service.SparqlServiceHttp(
2 ’http :// dbpedia.org/sparql ’, [’http :// dpbedia.org’]);
3 sparqlService = new service.SparqlServiceVirtFix(sparqlService);
4 sparqlService = new service.SparqlServiceCache(sparqlService);
5 sparqlService = new service.SparqlServicePaginate(sparqlService , 1000)
6

7 // Note: This accompanying fluent API is offered for convenience:
8 sparqlService = service.SparqlServiceBuilder
9 .http(’http :// dbpedia.org/sparql ’, [’http :// dpbedia.org’])

10 .virtFix ().cache().paginate (1000).create();
11

12 var qe = sparqlService
13 .createQueryExecution(’Select * { ?s ?p ?o} Limit 10000’);
14 qe.execSelect ().then(function(rs) {
15 while(rs.hasNext ()) {
16 var binding = rs.nextBinding ();
17 binding.get(rdf.NodeFactory.createVar(’s’));
18 }
19 });

Listing 2: Usage example of the SparqlService API

6 http://jena.apache.org/
7 We are currently experimenting with the integration of the SPARQL.js parser:
https://github.com/RubenVerborgh/SPARQL.js

8 The default implementation assumes that limit and offset do not influence the result
set order.

9 For example, some versions of Virtuoso do not support queries having an outer-most
OFFSET greater than 20000 in conjunction with an ORDER BY clause. Please refer
to the Jassa github page for implementation details.

ISWC 2014 Developers Workshop Copyright held by the authors 33

http://jena.apache.org/
https://github.com/RubenVerborgh/SPARQL.js

2.3 The SPARQL-to-JSON mapper

Between SPARQL and JSON (or JavaScript objects in general) there is an
impedance mismatch similar to that encountered in the object/relational world:
SPARQL result sets are relations, however these are of little direct use in JavaScript
applications without a transformation into objects. In general, object creation
requires aggregation of data from multiple result set rows. Sponate uses maps
to express the SPARQL-to-JSON mappings, and it supports initial query capa-
bilities over the mapped objects using an interface similar to that of the JSON
database MongoDB10. A usage example of Sponate is shown in Listing 3.

1 var store = new sponate.StoreFacade(sparqlService , prefixMap);
2 store.addMap ({
3 template: [{
4 id: ’?s’, name: ’?l’,
5 partners: [{
6 id: ’?f’, name: ’?pl’, amount: ’?a’,
7 }]
8 }],
9 from: ’?s a o:Project ; rdfs:label ?l ; o:funding ?f . ?f o:partner [rdfs:

label ?pl] . ?f o:amount ?a’ });
10 });
11 var criteria = {partners: {$elemMatch: {name : {$regex: ’university ’}}}};
12 store.projects.find(criteria).limit (10).asList ().done(function(arr) {
13 // arr is an array of JavaScript objects according to the JSON template
14 })

Listing 3: Example of a Sponate mapping

2.4 The LookupService API

Given a set of URIs, Jassa makes retrieval of related information easy using
the LookupService interface and its corresponding implementations. The only
method on this interface is Promise<Map> lookup(keys). The API is similar to
that of the sparql service: Functionality is enhanced using decorators, as shown
in Listing 4, where the basic lookup service is based on a Sponate store.

1 var ls = new service.LookupServiceSponate(store.projects);
2 ls = new service.LookupServiceCache(ls);
3 // Execute the original lookup request by performing lookups with
4 // partitions of at most 20 keys - avoids large SPARQL queries
5 ls = new service.LookupServicePartition(ls, 20);
6 // Validate each key by a filter predicate before doing the actual request
7 ls = new service.LookupServiceKeyFilter(ls, predicateForValidatingUris);
8 // Merge all lookup requests within a 50ms time window into a single request
9 ls = new service.LookupServiceTimeout(ls, 50);

10 ls.lookup ([/* rdf.Node objects for the lookup */]).then(function(map) {
11 /* Use map.get(key) to retrieve the key’s value */
12 });

Listing 4: Decoration of a LookupService

2.5 The Faceted Browsing Widgets

Jassa comes with a powerful SPARQL-based faceted search module in the facete
namespace, which supports the definition of custom constraint types as well as

10 http://docs.mongodb.org/manual/reference/operator/nav-query/

ISWC 2014 Developers Workshop Copyright held by the authors 34

http://docs.mongodb.org/manual/reference/operator/nav-query/

constraining sets of resources by indirectly (possibly inversely) related proper-
ties. Due to space limitations, we only demonstrate the usage of the faceted
browsing widgets, shown in Figure 2. These widgets are implemented as Angu-
larJS directives and can thus be embedded into AngularJS applications using the
corresponding HTML snippets. The HTML attribute values refer to JavaScript
objects, of which a basic setup is shown in Listing 5. Note that the widgets are
synchronized by AngularJS on the state of the fctTreeConfig object; any change
will automatically trigger an update of the widgets.

1 $scope.fctTreeConfig = new facete.FacetTreeConfig ();
2 $scope.selectedPath = null; // Start with no selection
3 $scope.selectFacet = function(path) { $scope.selectedPath = path; }

Listing 5: Basic setup to make the facet-value-list show the values for a selected facet

1 <facet -tree
2 sparql -service="sparqlService"
3 facet -tree -config="fctTreeConfig"
4 select="selectFacet(path)"
5 ></facet -tree >

(a) Facet Tree

1 <facet -value -list
2 sparql -service="sparqlService"
3 facet -tree -config="fctTreeConfig"
4 path="selectedPath"
5 ></facet -value -list >

(b) Facet Value List

Fig. 2: Widgets for Faceted Browsing & the HTML (AngularJS-based) to create them

3 Related Work

A generic JavaScript-based RDF data browser called Tabulator [3] was developed
under the umbrella of the World Wide Web Consortium. Besides the tree based
traversing the tool also provides a map and a calendar view. Another library
providing RDF access in JavaScript is RDFQuery11, which provides an API
for manipulation and querying of RDF data within JavaScript as well as the
extraction of RDF data from Web content. However, neither of these projects

11 http://code.google.com/p/rdfquery/

ISWC 2014 Developers Workshop Copyright held by the authors 35

http://code.google.com/p/rdfquery/

seem to offer the powerful abstractions and implementations provided by Jassa.
As for RDF JavaScript APIs, there are recent efforts in re-continuing work on
a specification on RDF interfaces in JavaScript12. In regard to faceted browsing
of RDF datasets, there are for instance the Sparklis browser13 and the Pelorus
faceted navigation tool14. Jassa however features support for nested and inverse
properties and offers reusable components. Very recent development efforts which
provide similar features are [2] and [1].

4 Conclusions and Future Work

In this software description, we explained the components of the JAvascript
Suite for Sparql Access (Jassa). Its foundation is built on a core library, which
includes an RDF, SPARQL API, advanced service abstractions (e.g. transparent
caching, query transformation, pagination and page expansion) and a faceted
search module. The jassa-ui modules introduce user interface components for
faceted browsing and map display. Thanks to AngularJS, these widgets can be
embedded as ordinary HTML elements in websites. Overall, Jassa simplifies Se-
mantic Web application development via light-weight but powerful and efficient
APIs. In the future, Sponate’s feature set will be extended, such as with sup-
port for references between maps. We are also working on new facet retrieval
strategies with the aim of improving overall performance. Examples of applica-
tions built using Jassa include the generic SPARQL browser Facete2 15 and the
Linked Data Presentation Framework [4].

Acknowledgment

This work was supported by grants from the EU’s 7th Framework Programme
provided for the projects LOD2 (GA no. 257943) and GeoKnow (GA no. 318159).

References

1. M. Arenas, B. Cuenca Grau, E. Kharlamov, Š. Marciuška, D. Zheleznyakov, and
E. Jimenez-Ruiz. Semfacet: Semantic faceted search over yago. In 23rd International
World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11,
2014, Companion Volume, pages 123–126, New York, NY, USA, 2014. ACM Press.

2. H. Bast, F. Bäurle, B. Buchhold, and E. Haußmann. Easy access to the freebase
dataset. In 23rd WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, Companion
Volume, pages 95–98, New York, NY, USA, 2014. ACM Press.

3. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,
A. Lerer, and D. Sheets. Tabulator: Exploring and analyzing linked data on the
semantic web. In The 3rd Intl. Semantic Web User Interaction Workshop, 2006.

4. D. Lukovnikov, C. Stadler, and J. Lehmann. Ld viewer - linked data presenta-
tion framework. In Proceedings of the 10th International Conference on Semantic
Systems, SEM ’14, pages 124–131, New York, NY, USA, 2014. ACM.

12 http://www.w3.org/TR/rdf-interfaces/
13 http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html
14 http://clarkparsia.com/pelorus/
15 http://facete.aksw.org

ISWC 2014 Developers Workshop Copyright held by the authors 36

http://www.w3.org/TR/rdf-interfaces/
http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html
http://clarkparsia.com/pelorus/
http://facete.aksw.org

	Jassa - A JavaScript Suite for SPARQL-based Faceted Search
	Claus Stadler, Patrick Westphal, Jens Lehmann

