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Abstract. In this paper, we propose a new method for choosing impli-
cations. Our method allows to compare two fuzzy implications. If the
truth value of the antecedent and the truth value of the implication are
given, by means of inverse fuzzy implications we can easily optimize the
truth value of the implication consequent.
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1 Introduction

In 1975 Lotfi Zadeh introduced the theory of fuzzy logic [13]. Fuzzy logic was
an extension of Boolean logic so that it allowed using not only Boolean values
to express reality. One of basic logical operations in fuzzy logic are so-called
implications. From over eight decades a number of different fuzzy implications
have been proposed [2]-[12]. In the family of basic fuzzy implications the partial
order induced from [0,1] interval exists. Pairs of incomparable fuzzy implications
can generate new fuzzy implications by using min (inf) and max (sup) opera-
tions. As a result the structure of lattice is created ([1], page 186). This leads to
the following question: how to choose the relevant functions among basic fuzzy
implications and other generated as described above. In our paper, we propose
a new method for choosing implications. Our method allows to compare two
fuzzy implications. If the truth value of the antecedent and the truth value of
the implication are given, by means of inverse fuzzy implications we can eas-
ily optimize the truth value of the implication consequent. In other words, we
can choose fuzzy implication, which has the greatest or the smallest truth value
of the implication consequent or which has greater or smaller truth value than
another implication. Primary results regarding this problem are included in the
paper [10].

The rest of this paper is organized as follows. In Sect. 2 the main research
problem is formulated. Sect. 3 presents the solution of the given research prob-
lem. An example illustrating our approach is given in Sect. 4. Sect. 5 includes
remarks on directions for further research.
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2 Problem Statement

There is given a basic fuzzy implication z = I(x, y), where x, y belong to [0,1].
x is the truth value of the antecedent and is known. z is the truth value of
the implication and is also known. In order to determine the value of the truth
of the implication’s consequent y it is needed to compute the inverse function
InvI(x, z). In other words, the inverse function InvI(x, z) has to be determined.
Not every basic implication can be inverted. The function can be inverted only
when it is injective.

3 Results

There are a few examples of basic fuzzy implications in Table 1.

Name Year Formula of basic fuzzy implication

 Lukasiewicz 1923, [7] ILK(x, y) = min(1, 1 − x + y)

Gödel 1932, [4] IGD(x, y) =

{
1 if x ≤ y
y if x > y

Reichenbach 1935, [8] IRC(x, y) = 1 − x + xy

Kleene-Dienes 1938, [6]; 1949, [2] IKD(x, y) = max(1 − x, y)

Goguen 1969, [5] IGG(x, y) =

{
1 if x ≤ y
y
x
if x > y

Rescher 1969, [9] IRS(x, y) =

{
1 if x ≤ y
0 if x > y

Yager 1980, [12] IY G(x, y) =

{
1 if x = 0 and y = 0
yx if x > 0 or y > 0

Weber 1983, [11] IWB(x, y) =

{
1 if x < 1
y if x = 1

Fodor 1993, [3] IFD(x, y) =

{
1 if x ≤ y
max(1 − x, y) if x > y

Table 1. Examples of basic fuzzy implications

Table 2 lists inverse fuzzy implications and their domains.
The resulting inverse functions can be compared with each other so that it

is possible to order them. However, some of those functions are incomparable in
the whole domain. Nevertheless, by dividing the domain into separable areas (see
Figure 1), we have obtained the below given inequalities for any x, z belonging to
(0,1). The interval to which x and z belong to is open, since we did not manage
to deduce any inequalities on the edges of the domain. From the definition of a
fuzzy implication ([1], page 2) we can conclude that every fuzzy implication I is
constant for x = 0 and also for y = 1, i.e., I(0, y) = 1 for y ∈ [0, 1], and I(x, 1) = 1
for x ∈ [0, 1]. So, one can not infer any inequality on the edges x = 0 and z =
1. For the edge z = 0 the following functions exist: InvIGD, InvIGG, InvIY G.
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Formula of inverted fuzzy implication Domain of inverted fuzzy implication

InvILK(x, z) = z + x− 1 1 − x ≤ z < 1, x ∈ (0, 1]

InvIGD(x, z) = z 0 ≤ z < x, x ∈ (0, 1]

InvIRC(x, z) = z+x−1
x

1 − x ≤ z ≤ 1, x ∈ (0, 1]

InvIKD(x, z) = z 1 − x < z ≤ 1, x ∈ (0, 1]

InvIGG(x, z) = xz 0 ≤ z < 1, x ∈ (0, 1]

InvIY G(x, z) = z
1
x 0 ≤ z ≤ 1, x ∈ (0, 1]

InvIFD(x, z) = z 1 − x < z < x, x ∈ (0, 1]

Table 2. Inverted fuzzy implications

Values of those functions on this edge are equal to zero, hence, no inequality
can be inferred from them. Likewise, on the edge x = 1 the inverse functions are
InvILK , InvIGD, InvIRC , InvIKD, InvIGG, InvIY G, InvIFD. Values of these
functions are equal z on this edge. For this reason it is not possible to infer any
inequality.
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Fig. 1. The unit square [0, 1]2 divided into separable areas

1. For z ≥ x and z < x
x

1−x

InvIY G < InvIGG

2. For z < x and z < 1 − x
InvIY G < InvIGG < InvIGD

3. For z > 1 − x and z < x
x

1−x

InvILK < InvIRC < InvIY G < InvIGG < InvIGD = InvIKD = InvIFD

4. For z < 1 − x and z > x
x

1−x

InvIGG < InvIY G
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5. For z > 1 − x and z ≥ x and z < 1
1+x

InvILK < InvIRC < InvIGG < InvIY G < InvIKD

6. For z > x
x

1−x and z < 1 − x and z < 1
1+x

InvILK < InvIRC < InvIGG < InvIY G < InvIKD = InvIGD = InvIFD

7. For z > 1
1+x and z ≥ x

InvILK < InvIGG < InvIRC < InvIY G < InvIKD

8. For z > 1
1+x and z < x

InvILK < InvIGG < InvIRC < InvIY G < InvIKD = InvIGD = InvIFD

9. For z = 1 − x and x ∈ (0, 1
2 )

InvILK = InvIRC < InvIGG < InvIY G

10. For z = 1
2 and x = 1

2
InvILK = InvIRC < InvIGG = InvIY G

11. For z = 1 − x and x ∈ ( 1
2 , 1)

InvILK = InvIRC < InvIY G < InvIGG < InvIGD

12. For z = x
x

1−x and x ∈ (0, 1
2 )

InvIY G = InvIGG

13. For z = x
x

1−x and x ∈ ( 1
2 , 1)

InvILK < InvIRC < InvIY G = InvIGG < InvIGD = InvIKD = InvIFD

14. For z = 1
1+x and x ∈ (0, 1)

InvILK < InvIRC = InvIGG < InvIY G < InvIKD

By means of these inequalities it is possible to find a fuzzy implication which
has, for example, the greatest or the smallest truth value of a consequent y
whereas the truth value of the antecedent x and the truth value of the implication
z are given. First, it should be checked to which area of the domain the point
(x, z) belongs. It is one of the areas 1 - 14. Then, according to the inequality
in the given area, the function of the smallest or the greatest truth value of the
consequent InvI(x, z) can be selected.

Then, wanting to expand the set of tested fuzzy implications we have started
to study new fuzzy implications H1 −H15 generated from the basic fuzzy impli-
cations, which form an algebraic structure of lattice ([1], pages 184-185). Below
given functions H1 − H15 are presented in one or two forms. The first form is
taken from [1], while the second version is the transformation of the first to a
form which is composed of pieces that are basic functions. It turned out that the
inverses of fuzzy implications H1 −H15 are equal to the inverses of basic fuzzy
implications in various areas of the unit square.

H1(x, y) =

{
1 if x ≤ y
max( y

x , 1 − x + xy) if x > y

H1(x, y) =


1 if x ≤ y
y
x if x > y ≥ x

1+x

1 − x + xy if y < x
1+x
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H2(x, y) =

{
1 − x + xy if x ≤ y
min( y

x , 1 − x + xy) if x > y

H2(x, y) =

{
1 − x + xy if y > x

1+x
y
x if y ≤ x

1+x

H3(x, y) =

{
1 if x ≤ y
1 − x + xy if x > y

H4(x, y) =

{
1 − x + xy if x ≤ y
y if x > y

H5(x, y) =

{
1 if x ≤ y
max( y

x , 1 − x) if x > y

H5(x, y) =

1 if x ≤ y
y
x if x > y ≥ x− x2

1 − x if y < x− x2

H6(x, y) =

{
max(1 − x, y) if x ≤ y
min( y

x ,max(1 − x, y)) if x > y

H6(x, y) =


y
x if y < x− x2

1 − x if x− x2 < y ≤ 1 − x
y if 1 − x < y

H7(x, y) =

{
max(1 − x, y) if x ≤ y
y if x > y

H7(x, y) =

{
1 − x if x ≤ y ≤ 1 − x
y if y < x or y ≥ x

H8(x, y) =

{
1 − x + xy if x ≤ y
max(1 − x,min( y

x , 1 − x + xy)) if x > y

H8(x, y) =


1 − x if y ≤ x− x2

y
x if x− x2 < y x

1+x

1 − x + xy if x
1+x < y

H9(x, y) =

{
1 − x + xy if x ≤ y
max(1 − x, y) if x > y

H9(x, y) =

1 − x if y < x and y ≤ 1 − x
y if 1 − x < y < x
1 − x + xy if x ≤ y ≤

H10(x, y) =

{
1 if x ≤ y
min( y

x , 1 − x + xy) if x > y

H10(x, y) =


y
x if y ≤ x

1+x

1 − x + xy if x
1+x < y < x

1 if x ≤ y

H11(x, y) =

{
1 if x ≤ y
min( y

x ,max(1 − x, y)) if x > y
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H11(x, y) =


y
x if y ≤ x− x2

1 − x if x− x2 < y < 1 − x
y if 1 − x < y ≤ x
1 if x ≤ y

H12(x, y) =

{
1 if x ≤ y
min(1 − x + xy,max( y

x , 1 − x)) if x > y

H12(x, y) =


1 − x if y < x− x2

y
x if x− x2 ≤ y < x

1+x

1 − x + xy if x
1+x ≤ y < x

1 if x ≤ y

H13(x, y) =

{
1 − x + xy if x ≤ y
min( y

x ,max(1 − x, y)) if x > y

H13(x, y) =


y
x if y ≤ x− x2

1 − x if x− x2 < y ≤ 1 − x and y < x
y if 1 − x < y < x
1 − x + xy if x ≤ y

H14(x, y) =

{
1 − x + xy if x ≤ y
0 if x > y

H15(x, y) =

{
max(1 − x, y) if x ≤ y
0 if x > y

H15(x, y) =

0 if y < x
1 − x if x ≤ y ≤ 1 − x
y if x ≤ y and 1 − x < y

4 Illustrating Example

In order to illustrate our approach, let us describe a simple example coming from
the domain of train traffic control. We consider the following situation: a train B
waits at a certain station for a train A to arrive in order to allow some passengers
to change train A to train B. Now, a conflict arises when the train A is late. In
this situation, the following alternatives can be taken into consideration:

1. Train B waits for train A to arrive. In this case, train B will depart with
delay.

2. Train B departs in time. In this case, passengers disembarking train A have
to wait for a later train.

3. Train B departs in time, and an additional train is employed for the train
A passengers.

To make a decision, several inner conditions have to be taken into account
such as the delay period, the number of passengers changing trains, etc. The
discussion regarding an optimal solution to the problem of divergent aims such
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as: minimization of delays throughout the traffic network, warranty of connec-
tions for the customer satisfaction, efficient use of expensive resources, etc. is
disregarded at this point. In order to describe the traffic conflict, we propose to
consider the following three IF-THEN fuzzy rules:

– r1: IF s2 OR s3 THEN s6
– r2: IF s1 AND s4 AND s6 THEN s7
– r3: IF s4 AND s5 THEN s8

where:

– s1: ’Train B is the last train in this direction today’,
– s2: ’The delay of train A is huge’,
– s3: ’There is an urgent need for the track of train B’,
– s4: ’Many passengers would like to change for train B’,
– s5: ’The delay of train A is short’,
– s6: ’(Let) train B depart according to schedule’,
– s7: ’Employ an additional train C (in the same direction as train B)’, and
– s8: ’Let train B wait for train A’.

In the further considerations we accept the following assumptions:

1. The logical operators OR, AND we interpret as max and min fuzzy opera-
tors, respectively.

2. The statements s1, s2, s3, s4 and s5 we assign the fuzzy values 0.6, 0.4, 0.7,
0.5 and 1, respectively.

3. The truth-values of rules r1, r2 and r3 are equal to 0.6, 0.7, 0.8, respectively.
4. The threshold values for three rules are equal to 0.1.
5. Each of rules r1, r2 and r3, firstly, we interpret as the  Lukasiewicz implica-

tion.

Assessing the statements from s1 up to s5, we observe that the rule r1 and r3
can be fired (activated). Firing these rules according to the above assumptions
allows computation of the support for the alternatives in question. In this way,
the possible alternatives are ordered with regard to the preference they achieve
from the knowledge base. This order forms the basis for further examinations
and simulations and, ultimately, for the dispatching proposal. If one chooses a
sequence of rules r1, r2 then they obtain the final value, corresponding to the
statement s7, equal to 0. In the other case (i.e., for the rule r3 only), the final
value, this time corresponding to the statement s8, equals 0.3. Secondly, if we
interpret these three rules as the Reichenbach implications, and if we choose
the same sequences of transitions as above we obtain the final values for the
statements s7 and s8 equal to 0.3, 0.6, respectively. Thirdly, if we execute the
similar simulation of approximate reasoning for three rules considered above and,
if we interpret the rules as the Kleene-Dienes implications we obtain the final
values for s7 and s8 equal to 0.7, 0.8, respectively. This example shows clearly
that different interpretations for the rules may lead to quite different decision
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results. Nevertheless, they are conformable with the relationships between in-
verted fuzzy implication functions presented above (see, for example, items 3,
5-8, 13-14). Choosing a suitable interpretation for fuzzy implications we may try
to obtain the optimal final values for decisions s7 and s8. The rest in this case
certainly depends on the experience of the decision support system designer to
a significant degree.

5 Conclusion and Further Research

In this paper, we presented an approach to finding the fuzzy implication which
has for example the largest or the smallest truth value of the consequent when
the truth value of the antecedent and the truth value of the implication are
given.

Our next problem to be solved is how to choose the fuzzy implication so
that the truth value of the antecedent is optimized at the given truth value of
implication’s conclusion and given value of truth of implication.
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