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Abstract. We present WECTL∗KD, a weighted branching time temporal logic
to specify knowledge, and correct functioning behaviour in multi-agent systems
(MAS). We interpret the formulae of the logic over models generated by weighted
deontic interpreted systems (WDIS). Furthermore, we investigate a SAT-based
bounded model checking (BMC) technique for WDIS and for WECTL∗KD.

1 Introduction

The formalism of interpreted systems (IS) [4] provides a useful framework to model
multi-agent systems (MASs) [13], and to verify various classes of temporal and epis-
temic properties. The formalism of deontic interpreted systems (DIS) [7] is an extension
of ISs, which makes possible reasoning about temporal, epistemic and correct function-
ing behaviour of MASs. An important assumption in this line of models is that there are
no costs associated to agents’ actions. The formalism of weighted deontic interpreted
systems (WDISs) [16] extends DISs to make the reasoning possible about not only tem-
poral, epistemic and deontic properties, but also about agents quantitative properties.
In particular, in the Kripke model of WDIS each transition is labelled by a pair: a joint
action and a positive integer value that represents the cost of acting agents.

The basic idea in SAT-based bounded model checking (BMC) [1, 9] is to translate
the existential model checking problem for a modal (e.g., temporal, epistemic, deontic)
logic [2, 13] to the propositional satisfiability problem. In particular, in BMC we first
represent a counterexample, whose length is bounded by some integer k, by a propo-
sitional formula, and then check the resulting propositional formula with a specialised
SAT-solver. If the formula in question is satisfiable, then the SAT-solver returns a satis-
fying assignment that can be converted into a concrete counterexample. Otherwise, the
bound k is increased and the process repeated; we increases k until either a witness is
found, the problem becomes intractable, or some pre-known upper bound is reached.

To model check the requirements of MASs various extensions of temporal logics
[3] with epistemic [4], beliefs [6], and deontic [7] components have been proposed. In
this paper we aim at completing the picture of applying the SAT-based BMC techniques
to MASs by looking at the existential fragment of the weighted CTL∗KD (i.e. weighted
CTL∗ extended with epistemic and deontic components), interpreted over the weighted
deontic interpreted systems (WDISs). The proposed BMC encoding is based on the
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BMC encoding introduced in [16, 21, 24]. Namely, in [24] a propositional encoding of
the BMC problem for ECTL∗ and for standard Kripke models has been introduced. The
method has been experimentally evaluated. Next, in [16] weighted deontic interpreted
systems (WDIS) and a propositional encoding of the BMC problem for WECTLKD
and for WDIS have been introduced. Finally, in [21] a BMC method for WELTLK and
for weighted interpreted systems has been introduced and experimentally evaluated.

The rest of the paper is organised as follows. In Section 2 we introduce WDIS
together with its Kripke model. In Section 3 we define the WECTL∗KD language to-
gether with the bounded semantics. In Section 4 we provide a SAT-based BMC method
for WECTL∗KD and for WDIS. In the last section we conclude the paper.

Fig. 1. Classical temporal and weighted logics with discrete semantics, and their epistemic and
deontic extensions. The dedicated SAT-based BMC methods have been defined for the logics
placed in rectangles. The logics for which SAT-BMC methods can be easily inferred from the
dedicated one are placed in ”dashed” rectangles.

Related work. Figure 1 provides diagram showing the relations between classical tem-
poral logics, weighted temporal logics, and their epistemic and deontic extensions, and
indicates for which logic a SAT-based BMC method (SAT-BMC for short) has been
developed. For classical temporal logics with discrete semantics over Kripke mod-
els SAT-BMC has been defined in [1] for LTL, in [10, 23] for ECTL, in [14, 24] for
ECTL?, in [22] for RTECTL, and in [12] for MTL. For classical weighted tempo-
ral logics with discrete semantics over weighted Kripke models generated, for exam-
ple, by simply timed systems, SAT-BMC has been defined for WECTL [20] only. For
epistemic and deontic variants of classical temporal logics with semantics over Kripke
models generated by (deontic) interpreted systems SAT-BMC has been defined in [9,
5] for ECTLK, in [15] for ECTLKD, in [11, 8] for ELTLK, in [19] for RTECTLK,
in [18] for RTECTLKD, and in [17] for EMTLKD (this method provides obviously
a SAT-BMC solution for EMTLK). There is no paper about SAT-BMC for ECTL?K



and for ECTL?KD. These missing methods can however be easily designed as a fu-
sion of SAT-BMC methods for ECTL? and for ECTLK / ECTLKD. For epistemic
and deontic variants of classical weighted temporal logic with semantics over Kripke
models generated by (deontic) weighted interpreted systems SAT-BMC has been de-
fined in [21] for WELTLK (this method provides obviously a SAT-BMC solution for
WELTL), and in [16] for WECTLKD (this method provides obviously a SAT-BMC
solution for WECTLK).

2 Weighted Deontic Interpreted Systems

Let Ag = {1, . . . , n} be the non-empty and finite set of agents. We assume that a
MAS consists of n agents and a special agent E that represent the environment in which
the agents operate. Next, we assume that a given MAS is modelled by the weighted
deontic interpreted system (WDIS), in which each agent c ∈ Ag ∪ {E} is modelled
using a non-empty set Lc = Gc ∪ Rc of local states such that Gc is a non-empty
set of faultless (green) states and Rc is a set of faulty (red) states, a non-empty set
ιc ⊆ Lc of initial states, a non-empty set Actc of possible actions, a protocol function
Pc : Lc → 2Actc that defines rules according to agents operate, a (partial) evolution
function tc : Lc ×Act→ Lc with Act = Act1 × · · · ×Actn ×ActE (each element of
Act is called a joint action), a weight function dc : Actc → IN, and a valuation function
Vc : Lc → 2PV that assigns to each local state a set of propositional variables that are
assumed to be true at that state. Further, we do not assume that the setsActc are disjoint
for all c ∈ Ag ∪ {E}.

Now for a given set of agents Ag, the environment E and a set of propositional
variables PV , we define the weighted deontic interpreted system as a tuple WDIS =
({ιc, Lc,Gc, Actc, Pc, tc,Vc, dc, }c∈Ag∪{E}). For a given WDIS we define:
• a set of all possible global states S = L1 × . . . × Ln × LE such that L1 ⊇
G1, . . . , Ln ⊇ Gn, LE ⊇ GE ; by lc(s) we denote the local component of agent
c ∈ Ag ∪ {E} in a global state s = (`1, . . . , `n, `E);
• a global evolution function t : S × Act→ S as follows: t(s, a) = s′ (or s a−→ s′)

iff for all c ∈ Ag, tc(lc(s), a) = lc(s
′) and tE(lE(s), a) = lE(s

′);
• a weighted model (or a model) as a tuple M = (ι, S, T,V, d), where
• ι = ι1 × . . .× ιn × ιE is the set of all possible initial global state;
• S is the set of all possible global states as defined above;
• T ⊆ S×Act×S is a transition relation defined by the global evolution function

as follows: (s, a, s′) ∈ T iff s a−→ s′. We assume that the relation T is total,
i.e., for any s ∈ S there exists s′ ∈ S and an action a ∈ Act\{(ε1, . . . , εn, εE)}
such that s a−→ s′;

• V : S → 2PV is the valuation function defined as V(s) =
⋃

c∈Ag∪{E} Vc(lc(s)).
• d : Act → IN is a “joint” weight function defined as follows: d((a1, . . . ,
an, aE)) =

∑
c∈Ag∪{E} dc(ac); note that this definition is reasonable, since

we are interested in MASs, in which transitions carry some cost;
• an indistinguishability relation ∼c⊆ S × S for agent c as follows: s ∼c s′ iff
lc(s

′) = lc(s);
• a deontic relation ∝c⊆ S × S for agent c as follows: s ∝c s

′ iff lc(s′) ∈ Gc.



A path in M is an infinite sequence π = s0
a1−→ s1

a2−→ s2
a3−→ . . . of transitions.

For such a path, and for j 6 m ∈ IN, by π(m) we denote the m-th state sm, by
πm we denote the m-th suffix of the path π, which is defined in the standard way:
πm = sm

am+1−→ sm+1
am+2−→ sm+2 . . .. Next, by π[j..m] we denote the finite sequence

sj
aj+1−→ sj+1

aj+2−→ . . . sm with m− j transitions and m− j +1 states, and by Dπ[j..m]
we denote the (cumulative) weight of π[j..m] that is defined as d(aj+1) + . . .+ d(am)
(hence 0 when j = m). By Π(s) we denote the set of all the paths starting at s ∈ S,
and by Π =

⋃
s0∈ιΠ(s0) we denote the set of all the paths starting at initial states.

3 The logic WECTL∗KD

Our specification language, which we call WECTL∗KD, extends ECTL∗ [3] with cost
constraints on temporal modalities and with epistemic and deontic modalities. More
precisely, the basic modalities of WECTL∗KD consist of the path quantifier E (for some
path) followed by a temporal-epistemic-deontic formula, which is built up from: propo-
sitional variables; the boolean operators (∧-conjunction, ∨-disjunction, ¬-negation);
the temporal modalities (XI -weighted next step, UI -weighted until, RI -weighted re-
lease, GI -weighted always, and FI -weighted sometime); the epistemic modalities Kc

(for “agent c does not know whether or not”), DΓ , EΓ , and CΓ (for the dualities to the
standard group epistemic modalities representing distributed knowledge in the group Γ ,
everyone in Γ knows, and common knowledge among agents in Γ ); the deontic modal-
ities (Oc and K̂

c2

c1
representing the correctly functioning circumstances of agents).

Syntax of WECTL∗KD. Let p ∈ PV be a propositional variable, c, c1, c2 ∈ Ag, Γ ⊆
Ag, and I be an interval in IN = {0, 1, 2, . . .} of the form: [a, b) and [a,∞), for a, b ∈
IN and a 6= b. We have the following syntax for WECTL∗KD. We inductively define a
class of state formulae (interpreted at states) and a class of path formulae (interpreted
along paths) by the following grammar:

ϕ ::=true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Eφ | Kcφ | EΓφ | DΓφ | CΓφ | Ocφ | K̂
c2

c1
φ

φ ::=ϕ | φ ∧ φ | φ ∨ φ | XIφ | φUIφ | φRIφ

where ϕ is a state formula and φ is a path formula. WECTL∗KD consists of the set of
state formulae generated by the above grammar.

The derived basic temporal path modalities for weighted eventually (FI ) and weighted
globally (GI ) are defined as follows: FIφ ::= trueUIφ, and GIφ ::= falseRIφ.

Note that the combination of weighted temporal, epistemic and deontic operators
allows us to specify how agent’s knowledge or correctly functioning circumstances of
agents evolve over time and how much they cost.
Semantics of WECTL∗KD. The semantics of WECTL∗KD formulae is determined
with respect to a model, defined in Section 2. In the semantics we assume the follow-

ing definitions of epistemic relations: ∼EΓ
def
=
⋃

c∈Γ ∼c, ∼CΓ
def
= (∼EΓ )+ (the transitive

closure of ∼EΓ ), ∼DΓ
def
=
⋂

c∈Γ ∼c, where Γ ⊆ Ag.

Definition 1. Let M be a model, s a state of M , π a path in M , and m ∈ IN. For
a state formula α over PV , the notation M, s |= α means that α holds at the state



s in the model M . Similarly, for a path formula ϕ over PV , the notation M,π |=
ϕ means that ϕ holds along the path π in the model M . Moreover, let p ∈ PV be
a propositional variable, α, β be state formulae of WECTL∗KD, and ϕ, ψ be path
formulae of WECTL∗KD. The relation |= is defined inductively as follows:
M, s |= true, M, s 6|= false, M, s |= p iff p ∈ V(s), M, s |= ¬p iff p /∈ V(s),
M, s |= α ∧ β iff M, s |= α and M, s |= β,
M, s |= α ∨ β iff M, s |= α or M, s |= β,
M, s |= Kcα iff (∃π∈Π)(∃i > 0)(s ∼c π(i) and M,πi |= α),
M, s |= Y Γα iff (∃π∈Π)(∃i > 0)(s ∼YΓ π(i) and M,πi |= α), Y ∈{D,E,C},
M, s |= Ocα iff (∃π∈Π)(∃i > 0)(s ∝c π(i) and M,πi |= α),
M, s |= K̂

c2

c1
α iff (∃π∈Π)(∃i > 0)(s ∼c1

π(i) and s ∝c2
π(i) and M,πi |= α),

M, s |= Eϕ iff (∃π∈Π(s))(M,π0 |= ϕ),
M,πm |= α iff M,π(m) |= α,
M,πm |= ϕ ∧ ψ iff M,πm |= ϕ and M,πm |= ψ,
M,πm |= ϕ ∨ ψ iff M,πm |= ϕ or M,πm |= ψ,
M,πm |= XIϕ iff Dπ[m..m+ 1] ∈ I and M,πm+1 |= ϕ,
M,πm |= ϕUIψ iff (∃j > m)

(
Dπ[m..j] ∈ I and M,πj |= ψ and

(∀m 6 i < j)M,πi |= ϕ
)
,

M,πm |= ϕRIψ iff (∃j > m)
(
Dπ[m..j] ∈ I and M,πj |= ϕ and (∀m 6 i 6 j)

M,πi |= ψ
)

or (∀j > m)(Dπ[m..j] ∈ I implies M,πj |= ψ).

A WECTL∗KD state formula α is true in the model M , denoted by M |= α, iff for
some s ∈ ι, M, s |= α, i.e., α holds at some initial state of M . The model checking
problem asks whether M |= α.
Bounded semantics of WECTL∗KD. A bounded semantics for WECTL∗KD is the ba-
sis of the translation of bounded model checking problem to the satisfiability of propo-
sitional formulae problem (i.e., SAT-problem) that is defined in the next section. To
define the bounded semantics we need to represent infinite paths of a model in a special
way. To this aim, as usually, we define the notions of k-paths and loops.

Definition 2. Let M be a model, k ∈ IN a bound, and 0 6 l 6 k. A k-path πl is a pair
(π, l), where π is a finite sequence s0

a1−→ s1
a2−→ . . .

ak−→ sk of transitions. A k-path
πl is a loop if l < k and π(k) = π(l).

Note that if a k-path πl is a loop, then it represents the infinite path of the form uvω ,
where u = (s0

a1−→ s1
a2−→ . . .

al−→ sl) and v = (sl+1
al+2−→ . . .

ak−→ sk).Πk(s) denotes
the set of all the k-paths of M that start at s, and Πk =

⋃
s0∈ιΠk(s

0).
As in the definition of bounded semantics we need to define the satisfiability relation

on suffixes of k-paths, we denote by πml the pair (πl,m), i.e. the k-path πl together with
the designated starting point m, where 0 6 m 6 k. Further, let s be a state and πl be a
k-path. For a state formula α over PV , the notation M, s |=k α means that α is k-true
at the state s in the model M . Similarly, for a path formula ϕ over PV , the notation
M,πml |=k ϕ, where 0 6 m 6 k, denotes that the formula ϕ is k-true along the suffix
π(m)

am+1−→ π(m+ 1)
am+2−→ . . .

ak−→ π(k) of π.



Definition 3. LetM be a model, s a state ofM , πl a k-path inM , 0 6 m 6 k, p ∈ PV
a propositional variables, α, β state formulae of WECTL∗KD, and ϕ, ψ path formulae
of WECTL∗KD. The relation |=k is defined inductively as follows:
M, s |=k true, M, s 6|=k false, M, s |=k p iff p ∈ V(s), M, s |=k ¬p iff p /∈ V(s),
M, s |=k α ∧ β iff M, s |=k α and M, s |=k β,
M, s |=k α ∨ β iff M, s |=k α or M, s |=k β,
M, s |=k Kcα iff (∃πl ∈ Πk)(∃0 6 j 6 k)(M,πjl |=k α and s ∼c π(j)),
M, s |=k Y Γα iff (∃πl ∈ Πk)(∃0 6 j 6 k)(M,πjl |=k α and s ∼YΓ π(j)),

where Y ∈ {D,E,C},
M, s |=k Ocα iff (∃πl ∈ Πk)(∃0 6 j 6 k)(M,πjl |=k α and s ∝c π(j)),
M, s |=k K̂

c2

c1
α iff (∃πl ∈ Πk)(∃0 6 j 6 k)(M,πjl |=k α and s ∼c1

π(j)
and s ∝c1

π(j)),
M, s |=k Eϕ iff (∃πl ∈ Πk(s))(M,π0

l |=k ϕ),
M,πml |=k α iff M,π(m) |=k α,
M,πml |=k ϕ ∧ ψ iff M,πml |=k ϕ and M,πml |=k ψ,
M,πml |=k ϕ ∨ ψ iff M,πml |=k ϕ or M,πml |=k ψ,
M,πml |=k XIϕ iff (m < k and Dπ[m..m+ 1] ∈ I and M,πm+1

l |=k ϕ) or
(m = k and l < k and π(k) = π(l) and Dπ[l..l + 1] ∈ I
and M,πl+1

l |=k ϕ),
M,πml |=k ϕUIψ iff (∃m 6 j 6 k)(Dπ[m..j] ∈ I and M,πjl |=k ψ and

(∀m 6 i < j)M,πil |=k ϕ)or(l < m and π(k) = π(l)

and (∃l < j < m)(Dπ[m..k] +Dπ[l..j] ∈ I and M,πjl |=k ψ
and (∀l < i < j)M,πil |= ϕ and (∀m 6 i 6 k)M,πil |=k ϕ)),

M,πml |=k ϕRIψ iff (Dπ[m..k] > right(I) and (∀m 6 j 6 k)(Dπ[m..j] ∈ I
implies M,πjl |=k ψ)) or (Dπ[m..k] < right(I) and π(k) = π(l)

and (∀m 6 j 6 k)(Dπ[m..j] ∈ I implies M,πjl |=k ψ) and
(∀l 6 j 6 k)(Dπ[m..k] +Dπ[l..j] ∈ I implies M,πjl |=k ψ)) or
(∃m 6 j 6 k)(Dπ[m..j] ∈ I and M,πjl |=k ϕ and
(∀m 6 i 6 j)M,πil |=k ψ) or (l < m and π(k) = π(l)

and (∃l < j < m)(Dπ[m..k] +Dπ[l..j] ∈ I and M,πjl |=k ϕ
and (∀l < i 6 j)M,πil |= ψ and (∀m 6 i 6 k)M,πil |=k ψ)).

A WECTL∗KD state formula α is k-true in M , denoted M |=k ϕ, iff for some
s ∈ ι, M, s |=k ϕ. The bounded model checking problem asks whether there exists
k ∈ IN such that M |=k ϕ.

Lemma 1. Let M be a model, s a state of M , and α a WECTL∗KD state formula.
• for some k ∈ IN, if M, s |=k α, then M, s |= α.
• if M, s |= α, then M, s |=k α for some k ∈ IN.

The following theorem follows from Lemma 1 and it states that for a given model
M and a formula α there exists a bound k such that the model checking problem can
be reduced to the bounded model checking problem.

Theorem 1. Let M be a model and α be a WECTL∗KD state formula. Then, for some
s ∈ ι, M, s |= α iff M, s |=k α for some k ∈ IN.



4 Bounded Model Checking

In the section we present a propositional encoding of the bounded model checking
problem for WECTL∗KD and for weighted deontic interpreted systems (WDIS).

Let M = (ι, S, T,V, d) be a model, α a WECTL∗KD state formula, and k > 0
a bound. The BMC encoding relies on defining the following propositional formula:
[M,α]k := [Mα,ι]k ∧ [α]M,k, which is satisfiable if and only if M |=k α holds.

The definition of [Mα,ι]k assumes that the states, the joint actions of M , and the
sequence of weights associated to the joint actions are encoded symbolically, which is
possible, since both the set of states and the set of joint actions are finite. Formally, let
c ∈ Ag ∪ {E}. Then, each state s = (`1, . . . , `n, `E) ∈ S is represented by a symbolic
state which is a vector w = (w1, . . . , wn, wE) of symbolic local states. Each symbolic
local state wc is a vector of propositional variables (called state variables) whose length
depends on the number of green and red local states of agent c. Next, each joint action
a = (a1, . . . , an, aE) ∈ Act is represented by a symbolic action which is a vector
a = (a1, . . . , an, aE) of symbolic local actions. Each symbolic local action ac is a
vector of propositional variables (called action variables) whose length depends on
the number of actions of agent c. Next, each vector of weights associated to a joint
action is represented by a symbolic weight which is a vector d = (d1, . . . , dn, dE)
of symbolic local weights. Each symbolic local weight dc is a vector of propositional
variables (called weight variables), whose length depends on the weight functions dc.

Further, we assume that SV , AV and WV denote, respectively, the set of all the
state variables, the set of all the action variables, and the set of all the weight variables
such that SV ∩ AV = ∅, SV ∩ WV = ∅, and AV ∩ WV = ∅. Next, we assume
that SV (w), SV (wc), AV (a), AV (ac), and WV (d) denote, respectively, the set of all
the state variables occurring in the symbolic state w, the set of all the state variables
occurring in the local symbolic state wc of agent c, the set of all the action variables
occurring in the symbolic action a, the set of all the action variables occurring in the
local symbolic action ac of agent c, and the set of all the weight variables occurring in
the symbolic weight d. Furthermore, we assume that NV denotes the set of proposi-
tional variables (called the natural variables) such that SV ∩NV = ∅, AV ∩NV = ∅,
and WV ∩ NV = ∅. Moreover, by u = (u1, . . . , uy) we denote a vector of natural
variables of length y = max(1, dlog2(k + 1)e), which we call a symbolic number, and
by NV (u) we denote the set of all the natural variables occurring in u. Furthermore,
we assume that:
• PV = SV ∪AV ∪WV ∪NV .
• lit : {0, 1} × PV → PV ∪ {¬q | q ∈ PV } is a function defined as: lit(1, q) = q

and lit(0, q) = ¬q.
• V : PV → {0, 1} is a valuation of propositional variables (a valuation for short).
• rw denotes the length of symbolic state, i.e. w = (w1, . . . , wn, wE) = (w1, . . . ,wrw).
• ra denotes the length of a symbolic action, i.e. a = (a1, . . . , an, aE) = (a1, . . . , ara),
• rd = rd1 + . . . + rd(n+1) denotes the length of a symbolic weight, i.e. d =

(d1, . . . , dn, dE) = (d11, . . . , d
1
rd1
, . . . , dn+1

1 , . . . , dn+1
rd(n+1)

), where rd1, . . . , rd(n+1)

denote lengths of local symbolic weights.
For every rw, ra, rd ∈ IN+, each valuation V induces the functions S : SV rw →
{0, 1}rw , A : AV ra → {0, 1}ra , W : WV rd → IN, and J : NV y → IN defined



in the following way: S((w1, . . . ,wrw)) = (V (w1), . . . , V (wrw)), A((a1, . . . , ara)) =

(V (a1), . . . , V (ara)), W((d11, . . . , d
1
rd1
, . . . , dn+1

1 , . . . , dn+1
rd(n+1)

)) =
∑n+1
j=1

∑rdj
i=1 V (dji )·

2i−1, J((u1, . . . , uy)) =
∑y
i=1 V (ui) · 2i−1.

Let w and w′ be two different symbolic states such that SV (w)∩SV (w′) = ∅, d a
symbolic weight, a a symbolic action, and u a symbolic number. We assume definitions
of the following auxiliary Boolean formulae:

• p(w) is a Boolean formula over SV (w) that is true for a valuation V iff p ∈
V(S(w)). It encodes a set of states of M in which p ∈ PV holds.

• Is(w) =
∧rw
i=1 lit(s[i],wi). This Boolean formula is defined over SV (w), and it

encodes the state s of the model M .
• H(w,w′) =

∧rw
i=1 wi ⇔ w′i. This Boolean formula is defined over SV (w) ∪

SV (w′), and it encodes equality of two symbolic states, i.e. it expresses that the
symbolic states w and w′ represent the same states.

• Hc(w,w
′) is a Boolean formula over SV (w)∪SV (w′) that is true for each valua-

tion V ∈ {0, 1}SV such that V satisfiesHc(w,w
′) iff S(w) ∼c S(w′); it expresses

that the local states of agent c are the same in the symbolic states w and w′.
• Ha(ac) for c ∈ Ag ∪ {E} and a ∈ Actc ∪ {ε} is a Boolean formula over AV (ac)

that is true for each valuation V ∈ {0, 1}AV such that V satisfies Ha(ac) iff
A(ac) = a.

• A(a) =
∧
a∈Act(

∧
c∈Ag(a)Ha(ac) ∨

∧
c∈Ag(a)Hε(ac)), where Ag(a) = {c ∈

Ag ∪ {E} | a ∈ Actc}. This formula is defined over AV (a), and it encodes that
each symbolic local action ac of a has to be executed by each agent in which it
appears.

• Tc(wc, (a,d), w′c) is defined over SV (wc) ∪ SV (w′c), and is true for a valuation
V iff tc(S(wc),A(a)) = S(w′c). This Boolean formula encodes the local evolution
function of agent c.

• T (w, (a,d),w′) =
∧

c∈Ag∪{E} Tc(wc, (a,d), w′c) ∧ A(a). This Boolean formula
is defined over SV (w)∪SV (w′)∪AV (a)∪WV (d), and it encodes the transition
relation of the model M .

• N∼
j (u) is a formula over NV (u) that is true for a valuation V iff j ∼ J(u), where

∼∈ {<,>,6,=,>}. This formula encodes that the value j is in the arithmetic
relation ∼ with the value represented by the symbolic number u.

Further, in order to define [Mα,ι]k we need to specify the number of k-paths of the
model M that are sufficient to validate α. Let p ∈ PV . To calculate the number, we de-
fine the following auxiliary function fk : WECTL∗KD→ IN: fk(true) = fk(false) =
0, fk(p) = fk(¬p) = 0, fk(ϕ∧φ) = fk(ϕ)+fk(φ), fk(ϕ∨φ) = max{fk(ϕ), fk(φ)},
fk(XIϕ) = fk(ϕ), fk(ϕUIφ) = k·fk(ϕ)+fk(φ), fk(ϕRIφ) = (k+1)·fk(φ)+fk(ϕ),
fk(CΓϕ) = fk(ϕ) + k, fk(Y ϕ) = fk(ϕ) + 1, for Y ∈ {Kc,DΓ ,EΓ ,Oc, K̂

c2

c1
,E}.

Furthermore, we define the j-th symbolic k-path πj as the sequence of symbolic

transitions: (w0,j
a1,j ,d1,j−→ w1,j

a2,j ,d2,j−→ . . .
ak,j ,dk,j−→ wk,j ,u), where wi,j are symbolic

states, ai,j are symbolic actions, di,j are symbolic weights, for 0 6 i 6 k and 1 6 j 6
fk(α), and u is the symbolic number, and we define the following auxiliary Boolean
formulae. Let w and w′ be two different symbolic states, d a symbolic weighs, a a



symbolic action, u a symbolic number, I an interval in IN of the form: [a, b) and [a,∞),
for a, b ∈ IN and a 6= b, and right(I) denote the right end of the interval I .
• Llk(πn) := N=

l (un) ∧H(wk,n,wl,n).
• BIk(πn) is defined over

⋃k
i=1WV (di,n), and is true for a valuation V iff∑k

i=1 W(di,n) 6 right(I). This Boolean formula encodes that the weight rep-
resented by the sequence d1,n, . . . ,dk,n is less than or equal to right(I).
• DIa,b(πn) for a 6 b: if a < b, then the formula encodes that the weight represented

by the sequence da+1,n, . . . ,db,n belongs to the interval I , i.e. the formula is true
for a valuation V iff

∑b
i=a+1 W(di,n) ∈ I; otherwise, i.e. if a = b, then DIa,b(πn)

is true for a valuation V iff 0 ∈ I .
• DIa,b;c,d(πn) for a 6 b and c 6 d:

1. if a < b and c < d, then the formula encodes that the weight represented by the
sequences da+1,n, . . . ,db,n and dc+1,n, . . . ,dd,n belongs to the interval I , i.e.
the formula is true for a valuation V iff

∑b
i=a+1W(di,n)+

∑d
i=c+1W(di,n)∈I;

2. if a = b and c < d, then the formula encodes that the weight represented by
the sequence dc+1,n, . . . ,dd,n belongs to the interval I , i.e. the formula is true
for a valuation V iff

∑d
i=c+1 W(di,n) ∈ I;

3. if a < b and c = d, then the formula encodes that the weight represented by
the sequence da+1,n, . . . ,db,n belongs to the interval I , i.e. the formula is true
for a valuation V iff

∑b
i=a+1 W(di,n) ∈ I;

4. if a = b and c = d, then DIa,b;c,d(πn) is true for a valuation V iff 0 ∈ I .
The formula [Mα,ι]k, which encodes the unfolding of the transition relation of the

model M fk(α)-times to the depth k, is defined as follows:

[Mα,ι]k :=
∨
s∈ι

Is(w0,0) ∧
fk(α)∧
j=1

k∨
l=0

N=
l (uj) ∧

fk(α)∧
j=1

k−1∧
i=0

T (wi,j , (ai,j ,di,j),wi+1,j)

where wi,j , ai,j , di,j , and uj are, respectively, symbolic states, symbolic actions, sym-
bolic weights, and symbolic numbers, for 0 6 i 6 k and 1 6 j 6 fk(α).

Then, the next step is a translation of a WECTL∗KD state formula α to a proposi-
tional formula [α]M,k. In order to define [α]M,k, we have to know how to divide the set
A of k-paths such that |A| = fk(α) into subsets needed for translating the subformu-
lae of α. To accomplish this goal we use some auxiliary functions that were defined in
[24]. We recall their definitions now. First, the relation ≺ is defined on the power set
of IN as follows: A ≺ B iff for all natural numbers x and y, if x ∈ A and y ∈ B,
then x < y. Further, let A ⊂ IN be a finite non-empty set, and n,m ∈ IN, where
m 6 |A|. Then, gl(A,m) denotes the subsetB ofA such that |B| = m andB ≺ A\B,
gr(A,m) denotes the subset C of A such that |C| = m and A \C ≺ C, gs(A) denotes
the set A \ {min(A)}, and if n divides |A| − m, then hp(A,m, n) denotes the se-
quence (B0, . . . , Bn) of subsets of A such that

⋃n
j=0Bj = A, |B0| = . . . = |Bn−1|,

|Bn| = m, and Bi ≺ Bj for every 0 6 i < j 6 n. Now let hUk (A,m) :=
hp(A,m, k) and hRk (A,m) := hp(A,m, k+1). Note that if hUk (A,m) = (B0, . . . , Bk),
then hUk (A,m)(j) denotes the set Bj , for every 0 6 j 6 k. Similarly, if hRk (A,m) =
(B0, . . . , Bk+1), then hRk (A,m)(j) denotes the set Bj , for every 0 6 j 6 k + 1.



The functions gl and gr are used in the translation of the formulae with the main
connective being either conjunction or disjunction: for a given WECTL∗KD formula
ϕ ∧ ψ, if the set A is used to translate this formula, then the set gl(A, fk(ϕ)) is used to
translate the subformula ϕ and the set gr(A, fk(ψ)) is used to translate the subformula
ψ; for a given WECTL∗KD formula ϕ∨ψ, if the set A is used to translate this formula,
then the set gl(A, fk(ϕ)) is used to translate the subformula ϕ and the set gl(A, fk(ψ))
is used to translate the subformula ψ.

The function gs is used in the translation of the formulae with the main connective
Q ∈ {E,Kc,DΓ ,EΓ ,Oc, K̂

c2

c1
}: for a given WECTL∗KD formula Qϕ, if the set A is

used to translate this formula, then the path of the number min(A) is used to translate
the operator Q and the set gs(A) is used to translate the subformula ϕ.

The function hUk is used in the translation of subformulae of the form ϕUIψ: if
the set A is used to translate the subformula ϕUIψ at the symbolic k-path πn (with
the starting point m), then for every j such that m 6 j 6 k, the set hUk (A, fk(ψ))(k)
is used to translate the formula ψ along the symbolic path πn with starting point j;
moreover, for every i such that m 6 i < j, the set hUk (A, fk(ψ))(i) is used to translate
the formula ϕ along the symbolic path πn with starting point i. Notice that if k does
not divide |A| − d, then hUk (A, d) is undefined. However, for every set A such that
|A| = fk(ϕUIψ), it is clear from the definition of fk that k divides |A| − fk(ψ).

The function hRk is used in the translation of subformulae of the form ϕRIψ: if
the set A is used to translate the subformula ϕRIψ along a symbolic k-path πn (with
the starting pointm), then for every j such thatm 6 j 6 k, the set hRk (A, fk(ϕ))(k+1)
is used to translate the formula ϕ along the symbolic paths πn with starting point j;
moreover, for every i such that m 6 i 6 j, the set hRk (A, fk(ϕ))(i) is used to translate
the formula ψ along the symbolic path πn with starting point i. Notice that if k + 1
does not divide |A| − 1, then hRk (A, p) is undefined. However, for every set A such that
|A| = fk(ϕRIψ), it is clear from the definition of fk that k + 1 divides |A| − fk(ϕ).

Let α be a WECTL∗KD state formula andA ⊂ IN+ be a set of numbers of symbolic
k-paths such that |A| = fk(α). If n ∈ IN \ A and 0 6 m 6 k, then by 〈α〉[m,n,A]

k we
denote the translation of a WECTL∗KD state formula α at the symbolic state wm,n

by using the set A. Let ϕ be a WECTL∗KD path formula and B ⊂ IN+ be a set of
numbers of symbolic k-paths such that |B| = fk(ϕ). If n ∈ IN+ \ A and 0 6 m 6 k,
then by [ϕ]

[m,n,A]
k we denote the translation of a WECTL∗KD path formula ϕ along the

symbolic k-path πn with starting point m by using the set A. Furthermore, we define
[α]M,k as 〈α〉[0,0,Fk(α)]

k , where Fk(α) = {j ∈ IN | 1 6 j 6 fk(α)}, and:
〈true〉[m,n,A]

k := true, 〈false〉[m,n,A]
k := false,

〈p〉[m,n,A]
k := p(wm,n), 〈¬p〉[m,n,A]

k := ¬p(wm,n),

〈α ∧ β〉[m,n,A]
k := 〈α〉[m,n,gl(A,fk(α))]k ∧ 〈β〉[m,n,gr(A,fk(β))]k ,

〈α ∨ β〉[m,n,A]
k := 〈α〉[m,n,gl(A,fk(α))]k ∨ 〈β〉[m,n,gr(A,fk(β))]k ,

〈Eϕ〉[m,n,A]
k := H(wm,n,w0,min(A)) ∧ [ϕ]

[0,min(A),gs(A)]
k ,

[α]
[m,n,A]
k := 〈α〉[m,n,A]

k ,
[ϕ ∧ ψ][m,n,A]

k := [ϕ]
[m,n,gl(A,fk(ϕ))]
k ∧ [ψ]

[m,n,gr(A,fk(ψ))]
k ,

[ϕ ∨ ψ][m,n,A]
k := [ϕ]

[m,n,gl(A,fk(ϕ))]
k ∨ [ψ]

[m,n,gr(A,fk(ψ))]
k ,



[XIα]
[m,n,A]
k :=

{
DIm,m+1(πn) ∧ [α]

[m+1,n,A]
k , if m < k∨k−1

l=0 (DIl,l+1(πn) ∧ Llk(πn) ∧ [α]
[l+1,n,A]
k ), if m = k

[αUIβ]
[m,n,A]
k :=

∨k
j=m(DIm,j(πn) ∧ [β]

[j,n,hU
k (k)]

k ∧
∧j−1
i=m[α]

[i,n,hU
k (i)]

k )∨
(
∨m−1
l=0

(
Llk(πn)) ∧

∨m−1
j=0 (N>

j (un) ∧ [β]
[j,n,hU

k (k)]
k ∧∨m−1

l=0 (N=
l (un) ∧ DIm,k;l,j(πn))∧∧j−1

i=0 (N
>
i (un)→ [α]

[i,n,hU
k (i)]

k )
)
∧
∧k
i=m[α]

[i,n,hU
k (i)]

k ),

[αRIβ]
[m,n,A]
k :=

∨k
j=m(DIm,j(πn) ∧ [α]

[j,n,hR
k (k)]

k ∧
∧j
i=m[β]

[i,n,hR
k (i)]

k )∨
(
∨m−1
l=0 (Llk(πn)) ∧

∨m−1
j=0 (N>

j (un) ∧ [α]
[j,n,hR

k (k)]
k ∧∨m−1

l=0 (N=
l (un) ∧ DIm,k;l,j(πn))∧∧j

i=0(N
>
i (un)→ [β]

[i,n,hR
k (i)]

k ) ∧
∧k
i=m[β]

[i,n,hR
k (i)]

k )∨
(¬BIk(πn) ∧

∧k
j=m(DIm,j(πn)→ [β]

[j,n,hR
k (k)]

k ))∨
(BIk(πn) ∧

∧k
j=m(DIm,j(πn)→ [β]

[j,n,hR
k (k)]

k )∧∨k−1
l=0 [Llk(πn) ∧

∧k
j=l(DIm,k;l,j(πn)→ [β]

[j,n,hR
k (k)]

k )]),〈
Kcα

〉[m,n,A]

k
:=
∨
s∈ι Is(w0,min(A)) ∧

∨k
j=0([α]

[j,min(A),gs(A)]
k

∧Hc(wm,n,wj,min(A))),〈
DΓα

〉[m,n,A]

k
:=
∨
s∈ι Is(w0,min(A)) ∧

∨k
j=0([α]

[j,min(A),gs(A)]
k ∧∧

c∈Γ Hc(wm,n,wj,min(A))),〈
EΓα

〉[m,n,A]

k
:=
∨
s∈ι Is(w0,min(A)) ∧

∨k
j=0([α]

[j,min(A),gs(A)]
k ∧∨

c∈Γ Hc(wm,n,wj,min(A))),〈
CΓα

〉[m,n,A]

k
:=
〈∨k

j=1(EΓ )
jα
〉[m,n,A]

k
.

Theorem 2. Let M be a model and α be a WECTL∗KD state formula. Then for some
s ∈ ι and for every k ∈ IN,M, s |=k α if, and only if, the propositional formula [M,α]k
is satisfiable.

5 Conclusions

We have proposed the SAT-based BMC for WECTL∗KD and for WDIS. The BMC of
the WDIS may also be performed by means of Ordered Binary Diagrams (OBDD). This
will be explored in the future. Moreover, our future work include an implementation of
the algorithm presented here, a careful evaluation of experimental results to be obtained,
and a comparison of the OBDD- and SAT-based BMC method for WDIS.

References

1. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.

2. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
3. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,

volume B, chapter 16, pages 996–1071. Elsevier Science Publishers, 1990.



4. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

5. X. Huang, C. Luo, and R. van der Meyden. Improved bounded model checking for a fair
branching-time temporal epistemic logic. In Proc. of MoChArt 2010, volume 6572 of LNAI,
pages 95–111. Springer, 2011.

6. H. Levesque. A logic of implicit and explicit belief. In Proc. of the 6th National Conference
of the AAAI, pages 198–202. Morgan Kaufman, 1984.

7. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.
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11. W. Penczek, B. Woźna-Szcześniak, and A. Zbrzezny. Towards SAT-based BMC for LTLK
over interleaved interpreted systems. Fundamenta Informaticae, 119(3–4):373–392, 2012.

12. M. Pradella, A. Morzenti, and P. San Pietro. A Metric Encoding for Bounded Model Check-
ing. In Proc. of FM’2009, volume 5850 of LNCS, pages 741–756. Springer, 2009.

13. M. Wooldridge. An introduction to multi-agent systems - Second Edition. John Wiley &
Sons, 2009.
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