
Semantic Discovery and Integration of Urban
Data Streams ?

Feng Gao, Muhammad Intizar Ali and Alessandra Mileo

Insight Centre for Data Analytics,
National University of Ireland, Galway, Ireland

{feng.gao,ali.intizar,alessandra.mileo}@insight-centre.org

Abstract. With the growing popularity of Internet of Things (IoT)
technologies and sensors deployment, more and more cities are leaning
towards the initiative of smart cities. Smart city applications are mostly
developed with aims to solve domain-specific problems. Hence, lacking
the ability to automatically discover and integrate heterogeneous sensor
data streams on the fly. To provide a domain-independent platform and
take full benefits from semantic technologies, in this paper we present an
Automated Complex Event Implementation System (ACEIS), which
serves as a middleware between sensor data streams and smart city ap-
plications. ACEIS discovers and integrates IoT streams in urban infras-
tructures for users’ requirements expressed as complex event requests,
based on semantic IoT stream descriptions. It also processes complex
event patterns on the fly using semantic data streams.

1 Introduction

An increasing number of cities have started to embrace the idea of smart cities
and are in process of building smart city infrastructure for its citizens. Such in-
frastructures, including the deployment of sensors, provision of open data plat-
forms and smart city applications, can improve the day to day life for the citizens.
A typical example of smart city applications is the provision of real-time track-
ing and timetable information for the public transport within the city1. City
of Aarhus provides an open data platform called ODAA2, which contains city
related information generated by various sensors deployed within the city, e.g.,
traffic congestion level, air quality and trash-bin level etc. ODAA also encour-
ages usage of their open data platform for building smart city applications. In
the foreseeable future, more and more urban data will be made available. The
enormous amount of the data produced by sensors in our day to day life need to
be harnessed to help smart city applications taking smart decisions on the fly.

? This research has been partially supported by Science Foundation Ireland (SFI)
under grant No. SFI/12/RC/2289 and EU FP7 CityPulse Project under grant
No.603095. http://www.ict-citypulse.eu

1 Live bus arrivals in London: http://countdown.tfl.gov.uk/#/
2 Open Data Aarhus: http://odaa.dk

However, the uptake of smart city applications is hindered by various issues,
such as difficulty of discovering the capabilities of the available infrastructure
and once discovered, integrating heterogeneous data sources and extracting up-
to-date information in real-time. The smart city data needs to be integrated from
various domains in a federated fashion. Integrated information should be further
processed, aggregated and higher-level abstractions should be created from the
data to make it suitable for complex event processing in real-time. Existing
semantic service discovery and composition approaches (e.g., WSMO3, OWL-
S4) are based on Input, Output, Precondition and Effect. They are not suitable
for describing complex event processing services with event patterns. Moreover,
IoT streams are inherently dynamic and resource constrained. Providing support
for quality-aware distributed event systems consuming IoT streams is still a
challenge [7, 16].

In this paper, we present ACEIS, which is an automated discovery and inte-
gration system for urban data streams. We design a semantic information model
to represent complex event services and utilize this information model for the
discovery and integration of sensor data streams. ACEIS assumes that all avail-
able sensor data streams are annotated using Semantic Sensor Network (SSN)5

and stored in a repository. Various Quality of Service (QoS) and Quality of In-
formation (QoI) metrics are also annotated for each sensor data stream. ACEIS
receives an event service request described using our complex event service in-
formation model and automatically discovers and composes the most suitable
data streams for the particular event request. ACEIS then transforms the event
service composition into a stream query to be deployed and executed on a stream
engine to evaluate the complex event pattern specified in the event service re-
quest. The contributions of this paper can be summarised as below:

∗ We present an Automated Complex Event Implementation System serving
as a middleware between Smart City applications and sensor data streams.
∗ We introduce an information model (Complex Event Service Ontology) and

demonstrate its usage in describing semantic event services and service re-
quests.
∗ We elaborate the mechanisms for QoS-aware discovery and integration of

semantic event services.
∗ We implement an automatic query transformation system to formulate con-

tinuous queries over semantic sensor data streams.

Structure of the Paper: In Section 2, we lay the foundations of our study by
identifying various types of sensor data streams and challenges faced by smart
city applications while using these sensor data streams. We presented a con-
ceptual architecture of our proposed system (ACEIS) in Section 3. Detailed
description of the sensor data streams discovery and integration is provided in
Section 4. Section 5 discusses our automated query transformation algorithm.We

3 Web Service Modeling Ontology: http://www.wsmo.org/
4 OWL-S ontology: http://www.w3.org/Submission/OWL-S/
5 SSN ontology: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

positioned our work by comparing it with state of the art in Section 6 before
concluding in Section 7.

2 Smart City Applications

In this section, firstly, we discuss different types of sensor data streams which
can be potentially utilized by the smart city applications and later we discuss
the requirements and challenges faced by these smart city applications.

2.1 Sensor Data Streams

Sensors are nowadays part of our every day life. IoT technologies not only provide
an infrastructure for the sensor deployment but also provide a mechanism for
better communication among these sensors. Data being produced by these sen-
sors is enormous and there is a strong need to tame these data streams and build
applications to take smart decision by performing analysis of these data streams
in real-time. Data streams produced by various sensors can be categorised into
three different categories:

Physical Sensors: Various sensors are being deployed by city administration
with an aim to closely observe and monitor the city infrastructure. Traffic con-
gestion, air quality, temperature, water pressure and trash bin level sensors are
few examples of the sensors deployed within most of the modern cities. Addition-
ally, various sensors are being deployed in buildings (e.g. airports, train stations)
to detect critical events happened therein.

Mobile and Wearable Sensors: Contrary to the physical sensors deployed
by city administrations and organizations, sensors attached to mobile devices
provide additional information about the context of their carrier. Nowadays,
a modern smart phone, owned and carried by majority of the citizens in the
smart cities is equipped with 10 to 15 sensors on average, including location,
temperature, light and proximity sensors. Modern cars also contain plenty of
sensors to continuously monitor the performance as well as to provide assistance
to the users. Many wearable sensors are gaining popularity and many people are
adopting to the use of wearable sensors particularly in the health care domain.

Virtual Sensors (Social Media Data Streams): Virtual sensors are usually
deployed by integrating multiple physical sensors and provide a cost effective al-
ternative. Social media data streams can also be considered as virtual sensors.
Social media data streams are a major source of information in smart city infras-
tructure and mostly provide latest information about the city events, e.g. Twitter
feeds can provide latest information about the city events like accident and traf-
fic jams etc. Although, trust, reliability and provenance are major concerns over
the information arising from social media streams, but various social streams
analysis methods have been already developed to overcome these concerns.

2.2 Requirements and Challenges

Smart city applications face many challenges because of highly distributed and
dynamic nature of the IoT infrastructures deployed in the smart cities. Below we
discuss few of the requirements and challenges faced by smart city applications.

Federation of heterogeneous data streams: Data Federation combines het-
erogeneous sets of data to provide a unified view. In the context of smart city
data, data federation is a key challenge due to the dynamicity and heterogeneity
of various IoT streams. Querying and accessing the data in many cases will re-
quire real-time (or near-real-time) discovery and access to the streams (and their
data) and the ability to integrate different kinds of heterogeneous streaming data
from various sources. Smart city frameworks should provide mechanisms to (i)
seamlessly integrate real world data streams, (ii) automated search, discovery
and federation of data streams, and (iii) adaptive techniques to handle fail-overs
at run-time.

Large scale IoT processing and data analytics: Smart city applications
not only require to efficiently process large scale IoT streams but also need effi-
cient methods to perform data analytics in dynamic environment by aggregating,
summarizing and abstracting sensor data on demand. Current analytic frame-
works have to be evaluated for applicability in the smart city environment and
the impact on privacy has to be taken into account.

Real-time IoT information extraction, event detection and stream rea-
soning: Smart city applications should be able to process event streams in a
real time, extract relevant information and identify values that do not follow the
general trends. Beyond the identification of relevant events, extraction of high
level knowledge form heterogeneous, multi-modal data streams is an important
component of IoT. Existing stream reasoning techniques use background knowl-
edge and streaming queries to reason over data streams. Current techniques of
stream reasoning do not cater to the needs of IoT due to the lack of proper
treatment of uncertainty (e.g. possible reasons of traffic jam vs. most probable
reason of traffic jam) in the IoT environment.

Reliable information processing, QoI, testing and monitoring: Data
quality issues and provenance play an important role in smart city scenarios.
Smart city frameworks should provide methods and techniques (i) to evaluate
accuracy, trustworthiness, and provenence of IoT streams, (ii) to resolve conflicts
in case of contradictory information, and (iii) continous monitoring and testing
to dynamically update QoI and trustworthiness.

Semantic Annotation

 ACEIS Core

Resource
Management

Application
Interface

Knowledge Base

QoI/QoS

Stream
Description

Data Mgmt,
Indexing,
Caching

User Input

Event Request

Data
Federation

Resource Discovery

Event Service Composer

Composition Plan

Subscription Manager

Query Transformer

Query Engine

Query

Results

Constraint
Validation

Constraint
Violation

Adaptation
Manager

Data Store IoT Data
Stream

Social Data
Stream

Fig. 1. ACEIS architecture overview

3 Overview of ACEIS Architecture

To address the data stream federation and (partially) reliable information pro-
cessing challenges identified in Section 2.2 , various solutions are developed and
integrated into ACEIS. We will discuss briefly the functionalities of the compo-
nents in ACEIS as well as their interactions. Figure 1 illustrates the architecture
view of ACEIS. The architecture consists of three main components: Application
Interface, Semantic Annotation and ACEIS Core component.

3.1 Application Interface

The application interface interacts with end users as well as ACEIS core mod-
ules. It allows users to provide inputs required by the application and presents
the results to the user in an intuitive way. It also augments the users’ queries,
requirements and preferences with some additional, implicit constraints and pref-
erences determined by the application domain or user profile. For example, in
a travel navigation scenario, a user may specify only the start and target loca-
tion on the map, with a constraint on the travel time t, because she needs to
get there on time. The application may add some additional constraints on the

Sensor Network Primitive
Event

Service 1

Primitive
Event

Service 2

Complex Event Service 1
Event Stream 1

Event Stream 2

Event
Engine

Event
Pattern

Complex
Event

Service 2

Complex
Event

Service 3

Fig. 2. Example of event service networks (originally published in [4])

IoT data streams used to calculate the travel time, such as the frequency of the
data streams should be more than 1/t, otherwise the user may not receive any
updates on the traffic condition during her trip and the detour suggestions for
traffic jams will never happen.

These augmented user inputs are transformed into a semantically annotated
complex event service request (event request for short). The event request is
consumed by ACEIS core components to discover and integrate urban streams
w.r.t. the functional and non-functional constraints specified within the event
request.

3.2 Semantic Annotation

The semantic annotation component receives IoT/data streams (e.g., ODAA
realtime traffic sensors data6) as well as static data stores (e.g., ODAA traffic
sensors metadata7) as inputs. It annotates syntactical information with semantic
terms defined in ontologies. The outputs of semantic annotation will be semantic
IoT/data streams and static semantic data stores.

With semantic annotations of both static resource and dynamic data, ACEIS
gains additional data interoperability both at design time for event service dis-
covery/composition and at runtime for semantic event detection.

3.3 ACEIS Core

The ACEIS core module serves as a middleware between low level IoT data
streams and upper level Smart City applications. ACEIS core is capable of dis-
covering, composing, consuming and publishing complex event processing capa-
bilities as reusable services. We call these services (primitive or complex) event
services. An example of event service network is shown in Figure 2. ACEIS core
consists of two major components: resource management and data federation.
In the following, we introduce their functionalities and interactions.

6 Realtime Traffic Data in Aarhus: http://ckan.projects.cavi.dk/dataset/

bliptrack-alpha/resource/d7e6c54f-dc2a-4fae-9f2a-b036c804837d
7 Traffic Sensor Metadata: http://ckan.projects.cavi.dk/dataset/

bliptrack-alpha/resource/e132d528-a8a2-4e49-b828-f8f0bb687716

Resource Management The resource management component is responsible
for discovering and composing event services based on static service descriptions.
It receives event requests generated by the application interface containing users’
functional/non-functional requirements and preferences, and creates composition
plans for event requests, specifying which event services are needed to address
the requirements in event requests and how they should be composed.

Resource management component contains two sub-components: resource
discovery component and event service composer. The resource discovery com-
ponent uses conventional semantic service discovery technique to retrieve IoT
services delivering primitive events. It deals with the primitive event requests
specified within event requests. The event service composer creates service com-
position plans to detect the complex events specified by event requests based
on event patterns. We refer readers to [4] for further details of the composition
algorithm used by the event service composer.

Data Federation The data federation component is responsible for implement-
ing the composition plan over event service networks and process complex event
logics using heterogeneous data sources. The composition plan is firstly used by
the subscription manager which will make subscriptions to the event services
involved in composition plan. Later, the query transformer transforms the se-
mantically annotated composition plan into a set of stream reasoning queries to
be executed on a stream query engine.

The query transformer produces two kinds of stream queries: regular event
queries that detect the complex events specified by event requests and constraint
validation queries that monitor the constraints specified in event requests. Thus
the query engine produces two kinds of results: (i)event query results are for-
warded to the application interface and (ii)constraint violations are detected by
constraint validation queries and sent to the adaptation manager. Adaptation
manager decides whether an automatic adaptation is possible. If so, it creates
and deploys a new composition plan that conforms with the constraints to re-
place the existing one. Otherwise, dispatches a notification to there application
interface.

4 Semantic Sensors Stream Discovery & Integration

In this section, the ontology used for describing event services and event re-
quests are presented, the discovery and integration mechanism for the sensor
data streams are discussed.

4.1 Complex Event Service Ontology

A Complex Event Service (CES) ontology is developed to describe event services
and requests. CES ontology is an extension of OWL-S. OWL-S is a standard-
ized ontology to describe, discover and compose semantic web services. Figure
3 illustrates the overview of CES ontology. An event service is described with a

EventService

EventProfile

owls:Grounding

Pattern

PrimitiveEvent
Service

owls:Service owls:supports

ComplexEven
tService

EventRequest

owls:presents

hasPattern

rdf:_x (contains)

rdf:_x (contains)

Namespaces:
default: <http://www.insight-centre.org/ces#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#>
owls-sp: <http://www.daml.org/services/owl-s/1.2/ServiceParameter.owl#>

Legend:

Class

Object property

subClassOf

owls:ServiceProfile

owls:presents

owls-sp:ServiceParameter

NFP

Constraint

Preference

hasPreference

hasConstraint

QosWeight
Preference

hasWeight

xsd:double

rdf:_x (contains)

owls-sp:serviceParameter

Data property

hasNFP

Fig. 3. CES ontology overview

Grounding and an EventProfile. The concept of Grounding in OWL-S informs
an event consumer, how to access the event service by providing information on
service protocol and message formats etc. An EventProfile is comparable to the
ServiceProfile in OWL-S, which describes the events transmitted by the service.

An Event Profile describes a type of event with a Pattern and Non-Functional
Properties (NFP). A Pattern describes the correlations between a set of member
events involved in the pattern. An event pattern may have other patterns or
(primitive) event services as sub-components, making it a tree structure. An
event profile without a Pattern describes a primitive event service, otherwise it
describes a complex event service. NFP refers to the QoI and/or QoS metrics,
e.g., precision, reliability, cost and etc, which are modelled as sub-classes of
ServiceParameter in OWL-S.

An EventRequest is specified as an incomplete EventService description, with-
out specific bindings to the set of federated event services used by the requested
complex event. Constraints can be specified by users to declare their require-
ments on the event pattern and NFPs in EventRequests. Preferences can be
used to specify a weight between 0 to 1 over different quality metrics represent-
ing users’ preferences on QoS metrics: higher weight indicate the user cares more
on the particular QoS metric.

4.2 Sensors Streams Discovery

The task of sensor stream discovery is to find candidate sensor services based
on sensor service descriptions and request specifications. A sensor stream is an
atomic unit in IoT stream discovery and integration. It is described both as a

PrimitiveEventService in CES ontology, as well as a Sensor device in SSN on-
tology. The CES ontology is mainly used to describe the non-functional aspects
of sensor service requests/descriptions, including sensor event types, quality pa-
rameters and sensor service groundings. SSN ontology is used to describe the
functional aspects, including ObservedProperties and FeatureOfInterest.

Listing 1. Traffic sensor service description

:sampleTrafficSensor a ssn:Sensor ,ces:PrimitiveEventService;

owls:presents :sampleProfile ;

owls:supports :sampleGrounding;

ssn:observes [a ces:AverageSpeed;

ssn:isPropertyFor :FoI_1],

[a ces:VehicleCount;

ssn:isPropertyFor :FoI_2],

[a ces:EstimatedTime;

ssn:isPropertyFor :FoI_3].

:sampleProfile a ces:EventProfile ;

owls:serviceCategory [a ces:TrafficReportService ;

owls:serviceCategoryName "traffic_report "^^ xsd:string].

Listing 2. Traffic sensor service request

:sampleRequest a ssn:Sensor ,ces:EventRequest;

owls:presents :requestProfile ;

ssn:observes [a ces:EstimatedTime;

ssn:isPropertyFor :FoI_3].

:requestProfile a ces:EventProfile ;

owls:serviceCategory [a ces:TrafficReportService ;

owls:serviceCategoryName "traffic_report "^^ xsd:string].

A sensor service description is denoted as sdesc = (td, g, qd, Pd, FoId, fd),
where t is the sensor event type, g is the service grounding, qd is a QoS vector
describing the QoS values, Pd is the set of ObservedProperties, FoId is the set
of FeatureOfInterests and fd : Pd → FoId is a function correlating observed
properties with their feature-of-interests. Similarly, a sensor service request is
denoted sr = (tr, qr, Pr, FoIr, fr, pref, C). Compared to sd, sr do not specify
service groundings, qr represents the constraints over QoS metrics, pref repre-
sents the QoS weight vector specifying users’ preferences on QoS metrics and C
is a set of functional constraints on the values of Pr. sd is considered a match
for sr iff all of the following three conditions are true:

– tr subsumes td,
– qd satifies qr and
– ∀p1 ∈ Pr,∃p2 ∈ Pd =⇒ T (p1) subsumes p2 ∧ fr(p1) = fd(p2), where T (p)

gives the most specific type of p in a property taxonomy.

Listing 1 shows a snippet of a traffic sensor description in turtle syntax. The traf-
fic senosr monitors the estimated travel time, vehicle count and average vehicle
speed on a road segment. Listing 2 shows a snippet of an sensor service request

matched by the traffic sensor service. When the discovery component finds all
service candidates suitable for the request, a Simple-Additive-Weighting algo-
rithm [5] is used to rank the service candidates based on qd, qr and pref.

4.3 Sensors Streams Integration

Sensor stream discovery deals only with primitive event service discovery. To
discover and integrate (composite) sensor streams for complex event service re-
quests, the event patterns specified in the complex event service requests/de-
scriptions need to be considered.

Listing 3. Complex event service request

:SampleEventRequest a ces:EventRequest;

owls:presents :SampleEventProfile.

:SampleEventProfile rdf:type owls:EventProfile;

ces:hasPattern [rdf:type ces:And , rdf:Bag;

rdf:_1 :locationRequest;

rdf:_2 :seg1CongestionRequest;

rdf:_2 :seg2CongestionRequest;

rdf:_4 :seg3CongestionRequest;

ces:hasWindow "5"^^ xsd:integer];

ces:hasConstraint [rdf:type ces:NFPConstraint;

ces:onProperty ces:Availability;

ces:hasExpression

[emvo:greaterThan "0.9"^^ xsd:double]],

[rdf:type ces:NFPConstraint;

ces:onProperty ces:Accuracy;

ces:hasExpression

[emvo:greaterThan "0.9"^^ xsd:double]].

In the context of integrated sensor stream discovery and composition, the
definition of sensor stream description is extended to denote composite sensor
stream descriptions Sd = (epd, Qd, G),where epd consists of a set of sensor stream
descriptions sd and/or a set of composite sensor stream descriptions S′

d, and a set
of event operators including Sequence, Repetition, And, Or, Selection, Filter and
Window, qd is the aggregated QoS metrics for Sd and G is the grounding for the
composite sensor stream. Similarly, a complex event service request is denoted
as Sr = (epr, Qr, pref), where epr is a canonical event pattern consisting of a set
of primitive sensor service requests sr and a set of event operators, Qr describes
the QoS constraints for the requested complex event service and pref specifies
the weights on QoS metrics.

An Sd is a match for Sr iff epd is semantically equivalent to epr and Qd

satisfies Qr. When no matches are found during the discovery process for Sr, it
is necessary to compose Sr with a set of Sd and/or sd which are reusable to Sr.
Informally, these (composite) sensor streams describe a part of the semantics of
epr and can be reused to create a composition plan, which contains an event

pattern with concrete service bindings. The composition plan can be used as a
part of the event service description for the composed event service. The discov-
ery or composition results can be ranked w.r.t the QoS metrics and preferences
in the same way as sensor stream discovery. We refer readers to [4, 5] for detailed
definitions of concepts related to event patterns as well as algorithms to perform
an efficient pattern-based and QoS-aware event service discovery and composi-
tion. Listing 3 shows a snippet of a sample complex event service request with
an event pattern and some NFP constraints.

5 Query Transformation

To implement a composition plan, the subscription manager needs to make sub-
scriptions to the relevant event sources using the service bindings provided in the
composition plan. Then, the query transformer creates (regular and constraint
validation) stream reasoning queries and registers the queries at the stream en-
gine. In this section, the algorithms for transforming regular queries are dis-
cussed.

In the current ACEIS implementation, CQELS[9] is used as the semantic
stream reasoning engine. We consume the semantically annotated sensor data
streams using SSN ontology. A sample traffic sensor reading annotated as Ob-
servation in SSN is shown in Listing 4.

Listing 4. Traffic sensor stream data

:Observation_1 a ssn:Observation;

ssn:observedBy :sampleTrafficSensor

ssn:observedProperty [a ces:EstimatedTime];

ssn:featureOfInterest :FoI_1;

ssn:observationResult :observationResult_1.

:observationResult_1 ssn:hasValue

[ssn:hasQuantityValue "‘25"’^^xsd:integer;

muo:unitOfMeasurement muo:second].

5.1 Semantics Alignment

To ensure the query transformation creates queries that detect the right event
patterns, it is required to map the semantics of event operators to query op-
erators. Each event service description sd or Sd in event patterns should map
to a CQELS StreamGraphPattern (SGP)8 for the ssn:Observations transmitted
in the event stream. A Sequence operator requires its sub-events to occur in a
temporal order. Currently CQELS (version 1.0.0) do not provide functions to
access the timestamps of the stream triples, therefore Sequence is not supported.

8 SGP is an extension of GraphPatternNotTriples in SPARQL 1.1 grammar, CQELS
language grammar and examples available at: https://code.google.com/p/cqels/
wiki/CQELS_language

Repetition is a generalization of sequence, it indicates a sequence pattern should
be repeated several times, therefore it is also not supported. An And operator
indicates all its sub-events should occur, it can be mapped to the Join opera-
tor. An Or operator indicates at least one of its sub-events should occur, it can
be mapped to LeftOuterJoin operator in CQELS (OPTIONAL keyword) with
bound filters. Selection is mapped to Projection in CQELS to select the message
payloads for complex events. Filter and Window operators in event patterns
can be mapped to Filter and Window operators in CQELS, respectively. Ta-
ble 1 summarizes the semantics alignment between event operators and CQELS
operators.

Table 1. Semantics Alignment

Event Pattern sd Sequence Repetition And Or Selection Filter Window

CQELS Operator SGP - - Join Optional Projection Filter Window

5.2 Transformation Algorithm

Previously (see Section 4.1), we briefly described how event patterns are speci-
fied in CES ontology. An event pattern can be recursively defined with sub event
patterns and event service descriptions, thus formulating an event pattern tree.
In this section we elaborate algorithms for parsing event pattern trees and cre-
ating CQELS queries. In an event pattern tree, the nodes can be either any of
the following four types of event operators: Sequence,Repetition,And and Or, or
other event service descriptions. The edges in the tree represent the provenance
relation in the complex event detection: the parent node is detected based on the
detection of the child nodes. Using a top-down traversal of the event pattern tree
and querying the semantics alignment table for each event operator encountered
during the traversal, the event pattern in the composition plan is transformed
into a CQELS query following the divide-and-conquer style. Algorithm 1 shows
the pseudo code of the main parts of query transformation algorithm.

Lines 1 to 6 in Algorithm 1, construct the CQELS query with three parts:
a pre-defined query prefix, a select clause derived from the getSelectClause()
function and a where clause derived from the getWhereClause() function. Lines
7-27 define the getWhereClause() function in a recursive way. It takes as input
the event pattern in the composition plan (Line 7) and finds the root node in
the event pattern (Line 8). Then, it investigates the type of the root node: if it
is a Sequence or Repetition operator, the transformation algorithm terminates,
currently transformation cannot be applied for Sequence or Repetition because
of the limitations of the underlying query language (CQELS) (Lines 9-10). If the
root node is an event service description, a getSGP() function creates the Stream
Graph Patterns (SGP) in CQELS (Lines 11-12) describing the triple patterns
of the observations delivered by the event service, and this SGP is returned

Algorithm 1 Transform event patterns into CQELS queries.

Require: Composition Plan: comp, Query Prefix String prefixStr
Ensure: CQELS Query String: queryStr
1: procedure transform(comp, prefixStr)
2: selectClause← getSelectClause(comp.ep)
3: whereClause← getWhereClause(comp.ep)
4: queryStr ← prefixStr + ”SELECT” + selectClause + ”WHERE” +

whereClause
5: return queryStr
6: end procedure
Require: Event Pattern: ep
Ensure: Where Clause String: whereClause
7: procedure getWhereClause(ep)
8: root← getRootNode(ep), whereClause← ∅
9: if root ∈ Opseq ∪Oprep then

10: fail and terminate
11: else if root ∈ EventServiceDescription then
12: whereClause← getSGP(ep, root)
13: else if root ∈ Opand then
14: for subPattern← getSubPatterns(ep, root) do
15: whereClause← whereClause + getWhereClause(subPattern)
16: end for
17: else if root ∈ Opor then
18: for subPattern← getSubPatterns(ep, root) do
19: whereClause ← whereClause + ”optional” +

getWhereClause(subPattern)
20: end for
21: whereClause← whereClause + getBoundFilters(ep)
22: end if
23: if filters← getFilters(ep) 6= ∅ then
24: whereClause← whereClause + getFilterClause(filters)
25: end if
26: return ”{” + whereClause + ”}”
27: end procedure

as a (part of the) where clause. If the root node is an And or Or operator,
the algorithm invokes itself on all sub-patterns of the root node and combines
the where clauses derived from the sub-patterns (Lines 13-20). In addition, if
the root is an Or operator, an OPTIONAL keyword is inserted for each where
clause of the sub-pattern and a bound filter is created indicating at least one of
the sub-patterns has bound variables (at least one sub-events occurs, Line 21).
If there are filters specified in the event pattern, a getFilterClause() function is
invoked to add the filter clauses to the where clause (Lines 23-25). Finally, the
where clause is returned with a pair of brackets (Line 26). Listing 5 shows the
transformation result for event request in Listing 3.

Listing 5. CQELS query example

Select * Where {

Graph <http :// purl.oclc.org/NET/ssnx/ssn#>

{?ob rdfs:subClassOf ssn:Observation}

Stream <locationStreamURL > [range 5s]

{? locId rdf:type ?ob. ?locId ssn:observedBy ?es4.

?locId ssn:observationResult ?result1.

?result1 ssn:hasValue ?value1.

?value1 ct:hasLongtitude ?lon. ?value1 ct:hasLatitude ?lat.

?loc ct:hasLongtitude ?lon. }

Stream <trafficStreamURL1 > [range 5s]

{? seg1Id rdf:type ?ob. ?seg1Id ssn:observedBy ?es1.

?seg1Id ssn:observationResult ?result2.

?result2 ssn:hasValue ?value2.

?value2 ssn:hasQuantityValue ?eta1.}

Stream <trafficStreamURL2 > [range 5s] {...}

Stream <trafficStreamURL3 > [range 5s] {...} }

6 Related Work

Existing event notification services like SAS9 and WSN10 support only pub-
lish and subscribe simple and syntactical events. Recent research on semantic
event processing endeavor to bring semantics to event specifications. Semantic
event specifications have more flexibility and expressiveness compared to syn-
tactical ones[12]. However, most existing event ontologies, (e.g., [14, 17, 18]) lack
the ability to describe comprehensive event operators and non-functional con-
straints. Moreover, they do not discuss the mechanisms of complex event service
discovery and reusability.

Reusing event queries/subscriptions is also discussed in many other event
based systems, including content-based event overlay networks [2, 3, 10, 8, 11, 6,
13] and CEP query optimisation[1, 15]. In event overlay networks, event sub-
scriptions are reused to facilitate the ”downstream replication” and ”upstream
evaluation” principles (as described in [2]) and reduce the traffic over the net-
work. In event query rewriting and optimisation, sub-queries can be delegated
to existing event processing nodes/agents when their patterns match, in order
to reduce processing burden of event engines.

Although the above works in event overlay networks and query rewriting
share some objectives to our work in terms of improving the network and event
processing efficiency, this paper is different because 1) we do not focus on routing
algorithms which are central parts of event overlay network research, all nodes
in the event service network can host both event producers and consumers and
they are visible to all other peers and 2) we do not re-order query operators in a

9 Sensor Alert Service: http://www.ogcnetwork.net/SAS
10 Web Service Notification: https://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wsn

way such that cpu usage and latency can be minimized, which is central to query
rewriting techniques. Instead, we develop means to create event service compo-
sitions based on the semantic equivalence and reusability of event patterns, and
then composition plans are transformed into a set of federated stream reasoning
queries, enabling a semantic complex event processing over distributed service
networks.

7 Conclusion and Future Directions

In this paper, we have identified several challenges for Smart City applications.
We presented ACEIS to automatically discover and integrate heterogeneous sen-
sor data streams and thus addressing the data stream federation challenge.
ACEIS receives requirements from users and applications as event request and
discovers or composes the relevant data streams to address both functional or
non-functional requirements specified in the event requests. The discovery and
composition process in ACEIS rely on the CES ontology designed for describ-
ing complex event services as extended OWL-S services. Based on the discovery
and composition results, ACEIS automatically generates CQELS queries using
a query transformation algorithm and registers the queries to a CQELS engine.
These queries operate on live semantic data streams produced by various phys-
ical as well as virtual sensors to detect complex events for users.

In future, we plan to implement the adaptation component in ACEIS, which
can dynamically adapt if any of the underlying data stream stops unexpectedly or
has a QoS or QoI update at runtime that violates the quality constraints defined
in the original request. The adaptation component should be able to determine
efficiently whether a situation is critical and the adaptation is necessary, and if
so, take automatic recovery actions accordingly. Defining optimal window size
for live stream queries of complex events while considering individual update
frequency of the all underlying data streams is also part of our future agenda
for the adaptation component. The adaptation component can partially address
the reliable information processing challenge by providing an automatic recovery
mechanism. We also plan to evaluate the correctness of the query transformation
by evaluating query semantics.

References

1. M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex event detection
across distributed sources. Proceedings of VLDB Endowment., 1(1):66–77, Aug.
2008.

2. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-
area event notification service. ACM Trans. Comput. Syst., 19(3):332–383, Aug.
2001.

3. E. Curry. Increasing mom flexibility with portable rule bases. Internet Computing,
IEEE, 10(6):26–32, Nov 2006.

4. F. Gao, E. Curry, and S. Bhiri. Complex Event Service Provision and Composition
based on Event Pattern Matchmaking. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, Mumbai, India, 2014. ACM.

5. F. Gao, E. Curry, A. Intizar, S. Bhiri, and A. Mileo. Qos-aware complex event ser-
vice composition and optimization using genetic algorithms. Technical report, IN-
SIGHT Centre For Data Analytics, 2014. Available at: https://deri.ie/sites/
default/files/publications/icsoc.pdf.

6. S. Hasan, S. O’Riain, and E. Curry. Approximate semantic matching of hetero-
geneous events. In Proceedings of the 6th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS ’12, pages 252–263, New York, NY, USA,
2012. ACM.

7. R. Iyer and L. Kleinrock. Qos control for sensor networks. In Communications,
2003. ICC ’03. IEEE International Conference on, volume 1, pages 517–521 vol.1,
May 2003.

8. J. Keeney, D. Roblek, D. Jones, D. Lewis, and D. O’Sullivan. Extending siena
to support more expressive and flexible subscriptions. In R. Baldoni, editor,
DEBS, volume 332 of ACM International Conference Proceeding Series, pages 35–
46. ACM, 2008.

9. D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In
Proceedings of the 10th international conference on The semantic web - Volume
Part I. Springer-Verlag, 2011.

10. G. Li and H.-A. Jacobsen. Composite subscriptions in content-based publish/-
subscribe systems. In Proceedings of the ACM/IFIP/USENIX 2005 International
Conference on Middleware, Middleware ’05, pages 249–269, New York, NY, USA,
2005. Springer-Verlag New York, Inc.

11. Z. Long, B. Jin, F. Qi, and D. Cao. Reuse strategies in distributed complex event
detection. In Quality Software, 2009. QSIC ’09. 9th International Conference on,
pages 325–330, 2009.

12. T. Moser, H. Roth, S. Rozsnyai, R. Mordinyi, and S. Biffl. Semantic event cor-
relation using ontologies. In On the Move to Meaningful Internet Systems: OTM
2009, pages 1087–1094. Springer, 2009.

13. G. Mühl. Large-scale content-based publish-subscribe systems. PhD thesis, TU
Darmstadt, 2002.

14. A. Sasa and O. Vasilecas. Ontology-based support for complex events. Electronics
and Electrical Engineering, 113(7):83–88, 2011.

15. N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch. Distributed complex event
processing with query rewriting. In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, DEBS ’09, pages 4:1–4:12, New
York, NY, USA, 2009. ACM.

16. R. Stühmer and N. Stojanovic. Large-scale, situation-driven and quality-aware
event marketplace: The concept, challenges and opportunities. In Proceedings of
the 5th ACM International Conference on Distributed Event-based System, DEBS
’11, pages 403–404, New York, NY, USA, 2011. ACM.

17. K. Taylor and L. Leidinger. Ontology-driven complex event processing in hetero-
geneous sensor networks. In The Semanic Web: Research and Applications, pages
285–299. Springer, 2011.

18. K. Teymourian and A. Paschke. Semantic rule-based complex event processing. In
Rule Interchange and Applications, pages 82–92. Springer, 2009.

