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Abstract. In this paper we present i) an approach for clustering authors 
according to their citation distributions and ii) an ontology, the Bibliometric 
Data Ontology, for supporting the formal representation of such clusters. This 
method allows the formulation of queries which take in consideration the 
citation behaviour of an author and predicts with a good level of accuracy future 
citation behaviours. We evaluate our approach with respect to alternative 
solutions and discuss the predicting abilities of the identified clusters. 
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1 Introduction 

Exploring and analysing scholarly data [1] help to understand the research dynamics, 
forecast trends and derive new knowledge, which can be effectively represented by 
semantic technologies. Within this context, two important tasks are:  

1) classifying authors according to a variety of semantic categories in order to 
facilitate querying, sharing and reusing such data in different context; 

2) forecasting their career trends, allowing us to estimate their future citation 
behaviour.  

In this paper we will present an innovative approach to address both tasks by 
exploiting author citation distributions.  

Most of today systems for the exploration of academic data offer citations or 
citations-based indexes (e.g., h-index, g-index) as ranking metrics and provide 
interesting visualizations of citation distributions. However, they do not exploit many 
interesting features which can be derived by the analysis of citation distributions, such 
as: 1) the trend of the distribution within a certain time interval (e.g., it is steadily 
rising), 2) the timing of possible acceleration/deceleration (e.g., it started to rise much 
faster in the last 3 years), 3) the slope of the citation curve (e.g., every year it gains 
20% more citations than the year before), 4) the shape of the citation curve (e.g., it is 
growing according to a logarithmic function), and 5) the estimated citation behaviour 
in the following years (e.g., authors with a similar pattern usually receive 200±50 
citation in their 8th career years). 



These features can support formulating queries that take in consideration the 
diachronic citation behaviour of authors. Examples are: “find all PhD students 
working in Semantic Web who exhibit a possible rising star pattern”, “find all the 
senior researchers who in their young years exhibited the same citation pattern as 
author X” or “find all the postdoc working in UK whose citations exhibit a positive 
trend in the last two years and are rising exponentially”.  

Analysing the citation distributions can also foster a better understanding of the 
dynamics of an author career, since it makes possible to categorize different kinds of 
patterns and to study how they evolve. Moreover, it can allow us to forecast the future 
citation behaviour of research communities or organizations by studying the patterns 
of their members. 

In this paper we present an approach for clustering authors according to their 
citation distributions, with the aim of extracting useful semantic information and 
producing statistical evidence about the potential citation behaviour of specific 
categories of researchers. In addition, we introduce an ontology, i.e., the Bibliometric 
Data Ontology (BiDO), which allows an accurate representation of such clusters (and 
their intended semantics) according to specific categories. 

The rest of the paper is organized as follows. In Section 2, we discuss existing 
approaches for clustering authors and predicting future citations. Section 3 describes 
our approach for clustering authors’ citation distributions, while Section 4 illustrates 
BiDO and introduces the steps for associating the identified clusters to ontological 
categories. In Section 5, we evaluate our approach versus alternative solutions and 
discuss the predictive abilities of the identified clusters. Finally, in Section 6, we 
summarize the key contributions of this paper and outline future directions of 
research. 

2 Related Work 

Classifying entities associated to a time series is a common task that is traditionally 
addressed with a variety of clustering techniques [2]. Citation distributions and their 
mathematical properties have been carefully analysed in a number of empirical 
studies (e.g., [3]). However, while academic authors are often classified by 
community detection and clustering algorithms with the aim of identifying different 
kinds of research communities [4,5], no current model exploits clusters of citation 
distributions to classify researchers according to the features described earlier and 
estimate their future citation behaviour. 

In the past, several works have been published about the identification of the 
factors that allow the prediction of future citations. Their analyses, and the related 
statistical models and machine learning techniques proposed for such predictions, are 
usually performed according to specific hypotheses: taking into consideration only 
articles of high-rated journals of a certain discipline; analysing only particular kinds 
of articles (e.g., clinical articles); choosing only multidisciplinary journals so as to 
increase the coverage (and the variability) of the research communities involved; and 



so forth2. As a result, different starting hypothesis gave rise to different (even 
contrasting) discriminating factors and prediction models. 

However, most of these works agree on the existence of two different and 
complementary kinds of factors: 

• intrinsic factors, i.e., those related with the qualitative evaluation of the content 
of articles (quality of the arguments, identification of citation functions, etc.); 

• extrinsic factors, i.e., those referring to quantitative characteristics of articles 
such as their metadata (number of authors, number of references, etc.) and 
other contextual characteristics (the impact of publishing venue, the number of 
citation received during time, etc.). 

The use of intrinsic factors data can be very effective but also time consuming. 
They can be gathered manually by humans, e.g., through questionnaires to assess the 
intellectual perceptions of an article (as in peer review processes). For instance, in [7] 
the authors show how the editor’s and reviewer’s ratings (in the context of the 
Journal of Cardiovascular Research, http://cardiovascres.oxfordjournals.org) are 
good predictors of future citations.  

The data of some intrinsic factors, such as the identification of citation functions 
(i.e., author’s reasons for citing a certain paper), can also be gathered automatically 
with the aim of being used to provide alternative metrics for assessing or predicting 
the importance of articles through machine learning techniques (cf. [8]), probabilistic 
models (cf. [9]), and other architectures based on deep machine reading (cf. [10]),  

However, these approaches use extrinsic factors, rather than intrinsic ones, for the 
analysis of the importance of articles, because of the time-consuming nature of the 
latter ones and the quick availability (usually at publication time) of most of the 
extrinsic-based data. In [11], Didegah and Thelwall investigate the extrinsic factors 
that better correlate with citation counts, identifying three factors as the best ones for 
such prediction: the impact factor of the journals where articles have been published, 
the number of references in articles, and the impact of the papers that have been cited 
by the articles in consideration. Other extrinsic factors identified in other studies are 
article length (in terms of printed pages) [12], number of co-authors [13], rank of 
author’s affiliation [13], number of bibliographic databases in which a journal was 
indexed [14], proportion of the journal articles published that had been judged of high 
quality by some authoritative source [14], and price index [6]. Slightly different kinds 
of extrinsic factors were considered in Thelwall et al.’s work on altmetrics [15]. The 
authors analysed eleven different altmetrics sources and found that six of them were 
good predictors of future citations (i.e., tweets, Facebook posts, Nature research 
highlights, blog mentions, mainstream media mentions and forum posts). 

3 Clustering Citation Distributions 

In this section, we will present our approach for detecting clusters of researchers who 
share a similar citation distribution. We want to identify clusters characterized by 
citation distributions which represent the typical patterns of some categories of 

                                                           
2 A good literature review of a large number of such approaches is available in [6]. 



authors, so that each cluster will suggest a common future behaviour. More formally, 
we want to subdivide the authors in sets, in such a way that the population of each set 
will remain homogenous with respect to the number of citations collected in the 
following years, i.e., the members of each cluster will have a similar number of 
citations also in the future. 

Our approach takes as input the citation distributions of authors in a certain time 
interval and returns 1) a set of clusters with centroids that describe the most typical 
citation patterns, 2) a matrix associating each author with a number of clusters via a 
membership function, and 3) a number of statistics associated to each cluster for 
estimating the evolution of the authors in that cluster. 

We cluster the citation distributions by exploiting a bottom-up hierarchical 
clustering algorithm. The algorithm takes as input a matrix containing the distance 
between each couple of entities and initially considers every entity as a cluster. It then 
computes the distance between each of the clusters, joining the two most similar 
clusters at each iteration. We adopt a single-linkage strategy by estimating the 
distance between two clusters C1 and C2 as the shortest distance between a member of 
C1 and a member of C2. The algorithm stops when it reaches a certain distance 
threshold t. 

To obtain cluster sets that are fit for our purpose we must thus define accordingly 
1) the metric to compute the distance between each couple of citation distributions 
and 2) a method to decide the threshold t. 

It is possible to measure the distance between two time series by means of metrics 
such as the Euclidean distance or cosine similarity. Unfortunately both of these 
solutions have some shortcomings in this case. In fact, when using the Euclidean 
distance, covariates with the highest variance will drive the clustering process: a 
threshold value that allows clustering distributions of a certain scale (e.g., 200 
citations) will also merge together perfectly valid clusters of minor scale (e.g., 20 
citations). The distance based on the cosine similarity (e.g., the inverse minus one) 
will solve this problem since it is scale-invariant; unfortunately it would also cluster 
together distributions of completely different scale but with the same shape (e.g., 
[1,1,2] and [100,100,200]). Let us assume a couple of citation distributions A and B 
having both a total of n citations, and a different couple of them C and D with m 
citation each, C having the same distribution as A, and D the same as B. We want a 
distance that will yield dis{A,B} = dis{C,D} (avoiding the covariate with the highest 
variance to drive the clustering) and also dis{A,C} > 0 (making scale a feature), and 
furthermore can be calculated incrementally (thus sparing processing time by 
stopping the computation over a threshold). A simple way to satisfy these three 
requirements makes use of a Euclidean distance normalized with the number of total 
citations of both distributions (similarly to [16]): 
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where �� and �� are the number of citations of the two distributions in the i-th year. 
We also want to choose a threshold value t that will maximize the homogeneity of 

the cluster populations in the following years. We compute the homogeneity of a 
population with respect to citations using the Median Absolute Deviation (MAD). 
MAD is a robust measure of statistical dispersion [17] and it is used to compute the 



variability of an univariate sample of quantitative data. It was first used by Gauss for 
determining the accuracy of numerical observations and it is defined as the median of 
the absolute deviations from the original data's median: 
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The procedure for computing the MAD consists in calculating the median of the n 
original data (x1,x2,…,xj,…,xn), computing the differences between each one of the n 
original values xi and the median of the whole data distribution and finally computing 
the median of the previous differences. We preferred MAD to different solutions, 
such as standard deviation, for its robustness. In fact, standard deviation is too much 
influenced by outliers such as a few authors with a very high number of citations. 
Hence, we estimate the quality of a set of clusters in a certain year by computing the 
weighted average of their MAD: 
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where	����1�� and ����1�� are respectively the MAD and the number of authors 
associated with the i-th cluster. 

We set the threshold t by running the hierarchical algorithm with different t values 
and then selecting the threshold which yields clusters with the lowest average MADav 
in the following n years (n=10 in the herein presented evaluation). For characterizing 
completely the author space we compute the clusters for different intervals of time, 
e.g., 1-5, 1-10 and 1-15 career years, using a significant author sample (e.g., 5000). 
We then compute the memberships of all authors in our dataset with the centroids of 
the resulting clusters, so as to determine exactly how much a specific author is similar 
to each cluster centroid. For associating authors to clusters, we adopt the well known 
membership formula of the Fuzzy C-Mean algorithm [18], that is: 
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where ���2��� is the membership value of author x with cluster k, ��C�1�!D�E� , �� the distance between x and the centroid of cluster i, and m is a 
constant for modulating the level of cluster fuzziness (m=2 in the prototype).  

Finally we analyse the distribution of each cluster population with respect to the 
number of citations received in the following years, in order to extract statistical 
evidence about their future behaviour. As mentioned before, standard deviation is 
severely influenced even by few outliers, making it hard to use the mean on the full 
population as a predictor. Hence, for each year we automatically select a percentage p 
of the population (e.g., 90%) in the most populated area of the distribution and 
compute its interval of citations (e.g., 40-80), mean (e.g., 45) and standard deviation 
(e.g., 14). Technically, we do so by computing the number of authors who fall into 
different ranges of citations, ordering those categories in decreasing order and then 
selecting the authors from subsequently smaller categories until the percentage of 
authors selected is equal to p. The citation interval, mean and standard deviation of 
this sample produce accurate, intuitive and statistically sound predictions which are 
more resilient to outliers. 



Intuitively, some categories of authors are too mundane to suggest a common 
future behaviour, and may be used only for classification purposes. Hence, in this 
phase we care especially about the “uncommon signature” that points to particularly 
homogenous population of authors. Figure 1 shows the distributions of authors in 
their seventh career year associated to some clusters detected by analysing their first 
five career years (the dashed line refers to the overall distribution). Clusters C29 and 
C30 are associated with a very specific citation patterns and thus their distributions 
have a small kurtosis and point to two narrow categories of authors who normally 
receive a relatively low number of citations. Clusters C25 and C28 are also quite 
homogeneous and represent two distinct populations of more frequently cited authors. 
Naturally, the homogeneity of the population associated with a cluster will decrease in 
the following years and so will the accuracy of the predictions.  

 

Figure 1. Percentage of authors vs. number of their citations in their 7th career 
year. The clusters were derived by the citations received over the first 5 career years.  

4 An ontology for describing bibliometric data 

Having a model developed according to a well-known format (such as OWL) for 
enabling the classification of authors and journals according to bibliometric data is 
crucial to allow one to query, share and reuse such data in different context, e.g., for 
providing smart visualisation of bibliometric data for sense-making activities and for 
enabling automatic reasoning on them. 

However, bibliometric data are not simple objects, since they are subject to the 
simultaneous application of different variables. In particular, one should take into 
account at least:  

• the temporal association of such data to entities, in order to say that a 
particular value, e.g., the fact that an article has been cited 42 times, was 
associated to such article only for a time period; 

• the particular agent who provided such data (e.g., Google Scholar, Scopus, our 
algorithm), in order to keep track of the way data evolve in time according to 
particular sources; 



• the characterisation of such data in at least two different kinds, i.e., numeric 
bibliometric data (e.g., the standard bibliometric measures such as h-index, 
journal impact factor, citation count) and categorial bibliometric data (so as to 
enable the description of entities, e.g., authors, according to specific 
descriptive categories). 

The time-indexed value in time (TVC) ontology design pattern [19] seems to be a 
good starting model for the development of an ontology for bibliometric data, since 
TVC’s entities enable the precise description of all the aforementioned variables: 
time, responsible agent and kinds of data. 

 

Figure 2. A: the core module of BiDO, describing generic bibliometric data with 
their characterising variables. B: the module modelling a particular kind of categorial 
bibliometric data, i.e., the research career categories, according to the main 
dimensions used by the algorithm in Section 3. 

 
Starting from TVC, we have created the Bibliometric Data Ontology (BiDO, 

available at http://purl.org/spar/bido), i.e., a modular OWL 2 ontology that allows the 
description of bibliometric data of people, articles, journals, and other entities 
described by the SPAR Ontologies (http://purl.org/spar) in RDF.  

The core module of the ontology, shown in Fig. 2.A, allows us to describe any 
entity and the related bibliometric data (through the property 
holdsBibliometricDataInTime) at a certain time (i.e., tvc:atTime, a property defined 
by the imported TVC ontology for specifying temporal instants or intervals) and 
according to a certain agent (through the property accordingTo, which is a sub-
property of prov:wasAttributedTo and allows us to indicate the agent responsible for 
such bibliometric data). In addition, BiDO imports PROV-O [20] for adding 
provenance data about the activities related to the creation of such bibliometric data. 



Two alternative kinds of bibliometric data are specifiable (through the property 
withBibliometricData) in BiDO: numeric and categorial bibliometric data. Numeric 
bibliometric data are those characterised by a certain integer or float value related to a 
particular bibliometric measure. Some of these measures – i.e., h-index, author 
citation count, e-index, and journal impact factor – are available in a particular 
module of BiDO responsible for describing the most common bibliometric measures. 

We have developed an additional module of BiDO that extends the class 
CategorialBibliometricData of the core module with specific categories describing 
the research career of people, in order to address the mapping of the clusters identified 
by the algorithm presented in Section 3 with specific facets. As shown in Fig. 2.B, 
these facets are described by the class ResearchCareerCategory, which is 
characterised by four specific dimensions that have been used by our algorithm to 
cluster citation data: 

• the research period considered, i.e., the interval of research years that the 
algorithm is taking into consideration (e.g., the first 5/10 years); 

• the curve, i.e., the specific shape proper to the clusters identified by the 
algorithm, which is characterised by a trend (flat/increasing/decreasing) and, 
in the latter two cases, by an acceleration or deceleration point (none or 
premature, median, overdue acceleration/deceleration); 

• the slope of such curve, in terms of strength (low/moderate/high) and kind of 
growth (linear/polynomial/exponential/logarithmic); 

• the order of magnitude, which categorises the number of citations received 
in the considered period according to a uniform model of common-sense 
estimation [21], which describes intervals of half-order of magnitude – i.e., 
“[0,1)”, “[1,3)”, “[3,9)”, “[9,27)”, “[27,81)”, “[8 1,243)”, “[243,729)”, etc.  

The combinations of all these values related to the aforementioned dimensions 
have been used to define all the possible descriptive categories of research career of 
people as instances of the class ResearchCareerCategory.  

Even if we did not define a particular category for each cluster found by the 
algorithm – rather, more clusters can be described by the same category –, we have 
defined an algorithmic procedure to determine the association between the cluster 
centroids and the categories described by the ontological model. For instance, let us 
consider the centroid “[31.3, 46.1, 52.8, 55.3, 60.8]”3 of one of the clusters detected 
by our algorithm according to the first 5 years of research career. The related 
dimensions are identified in the following way: 

• order of magnitude: we sum the values of the cluster centroid and select the 
interval containing such sum, i.e., “[243,729)”;  

• curve trend: the linear regression of the centroid is calculated, and then its 
slope is divided by the mean of all the centroid values. If the result of such 
division is greater than 0.05, then we have an increasing trend (which is the 
case of our example, since that value is 0.14), if it is less than -0.05 we have 
a decreasing trend, otherwise we have what we can approximately consider a 
flat trend;  

                                                           
3 The five values of the centroid identify the number of citations that have been received during 

the five years of the research period considered. 



• curve acceleration: the ratio of the slopes of the linear regressions of series 
k-n and 1-k (for each k between 2 and n - 1, where n is length of the list of 
values defining a cluster centroid) is calculated, in order to identify in which 
year (i.e., k) the acceleration or deceleration (this is the case of our example) 
happens, if any. Then, the acceleration/deceleration is considered premature 
if F G H	!/3J (as in our example), overdue if k ≥ H	2!/3J, and median 
otherwise;  

• slope strength: the linear regression of the centroid is calculated, its slope is 
divided by the mean of all the centroid values, and then we calculate the 
absolute value s of this division. We say that the slope strength is low if 
s<0.25 (as in our example), high if s>0.45, and moderate otherwise;  

• slope growth: by means of the least squares method, we create the four 
functions (one linear, one polynomial, one exponential and one logarithmic) 
that best match with the cluster centroid. Then we compare the centroid data 
with such functions through Wilcoxon’s non-parametric test for matched 
data and choose the best fitting function (logarithmic in our example).  

Following these steps, the example cluster we considered is mapped in the 
following category: 

 
:increasing-with-premature-deceleration-and-low-logarithmic-slope-in-[243,729)-5-
years-beginning a :ResearchCareerCategory ; 
  :hasCurve [ a :Curve ;  
    :hasTrend :increasing ; :hasAccelerationPoint :premature-deceleration ] ; 
  :hasSlope [ a :Slope ; :hasStrength :low ; :hasGrowth :logarithmic ] ; 
  :hasOrderOfMagnitude :[243,729) ; 
  :concernsResearchPeriod :5-years-beginning . 

 
Thus, combining the results of our clustering algorithm with BiDO it is possible to 

associate authors with specific categories describing their research career as follows: 
 

ex:john-doe :holdsBibliometricDataInTime [ 
  a :BibliometricDataInTime ; 
  tvc:atTime [ a time:Interval ; time:hasBeginning :2014-07-11 ] ; 
  :accordingTo [ a fabio:Algorithm ;  
    frbr:realization [ a fabio:ComputerProgram ] ] ; 
  :withBibliometricData 
    :increasing-with-premature-deceleration-and-low-logarithmic-slope-in-
[243,729)-5-years-beginning . 

 
The RDF descriptions of such bibliometric data make easier to query them with 

standard languages such as SPARQL, in order to retrieve, for instance, all the authors 
that in the first 5 years of their research career had a citation behaviour pattern like 
that described by the aforementioned category. 

5 Evaluation  

We evaluated our method on a dataset of 20000 researchers working in the field of 
computer science in the 1990-2010 interval. This dataset was derived from the 
database of Rexplore [1], a system that combines statistical analysis, semantic 
technologies and visual analytics to provide support for exploring scholarly data, and 
integrates several data sources (Microsoft Academic Search, DBLP++ and DBpedia). 



In particular we wanted to show that the normalized Euclidean distance introduced 
in Section 3 works better than other choices for the task of clustering citation 
distributions. Hence, we compared three metrics: the normalized Euclidean distance 
(label NEU), the Euclidean distance (EU) and the distance based on the cosine 
similarity (CO). We measured the quality of the produced set of clusters in a certain 
year by their MADav, as in Formula (3). 

 

Figure 3. Comparison between NEU, EU and CO applied on the first five and ten 
career years according to their MADav in the following five years.  

Figure 3 shows the performance of the three techniques when clustering the first 
five and ten career years. In all cases the normalized version of the Euclidean distance 
performs much better than the other solutions, being characterized by a smaller 
MADav value, e.g., a smaller degree of dispersion. CO performs slightly better than 
EU in the 1-5 years interval while EU performs better than CO in the 1-10 years 
interval. Analogous results were obtained by considering the weighted average of 
standard deviation rather than MADav. 

 

Career 

year 

C18 (1.4%) C22 (2.5%) C25 (2.7%) C28 (2.3%) C29 (8.8%) 

range   mean±s.d.  range  mean±s.d.  range  mean±s.d.  range  mean±s.d.  range  mean±s.d. 
6 420-800   567±98  160-280   209±34  100-180   129±25  60-100   72±14  40-60   39±9  
7 440-960   610±120  160-320   225±45  100-200   138±30  60-120   79±18  40-80   45±14  
8 440-1020   650±137  160-400   246±58  100-260   158±45  60-160   90±26  40-100   50±18  
9 440-1260   699±186  160-440   269±74  100-340   187±68  60-200   104±37  40-120   57±25  

10 480-2940   751±411  160-500   292±85  100-400   211±82  60-280   125±57  40-160   68±35  
11 480-2480   826±336  180-660   331±112  100-520   241±100  60-540   155±103  40-200   82±47  
12 480-3520   914±467  180-860   370±151  100-640   270±126  60-440   166±96  40-260   97±60  

Table 1. Range of citations and mean citations in subsequent career years 
predicted with 75% accuracy for authors associated with clusters detected in the 1-5 
career year interval. In parenthesis the percentage of authors in each cluster.  

 

Our approach yields a number of clusters with different prediction capabilities. We 
can suggest a narrower or larger interval of predicted citations for increasing or 
lowering the precision of our predictions. Table 1 shows some example of predictions 
that yield 75% accuracy. For example we are able to suggest with 75% precision that 
2.5% authors in Computer Science associated with cluster C22 will have 225±45 
average citations in their seventh career years (with a minimum number of citations 
equal to 160 and a maximum one equal to 320).  



The left panel of Figure 4 shows the citation distributions of the centroids of the 
cluster in Table 1 and the algorithm predictions. Even if the predictions become less 
accurate in time, however they still can give a fair idea of the kind of potential citation 
behaviour of the authors. Moreover, these predictions are particular valuable for 
forecasting the future citation behaviour of an organization or research communities. 
In fact, while it is relatively hard to foresee a single author’s citation behaviour (e.g., 
she/he may be an outlier), it is much easier to compute the predicted citations of a 
group of authors since in a large sample statistical fluctuations have a smaller weight. 

Finally, the right panel of Figure 4 shows the evolution of some the main clusters 
in terms of average citations of the associated authors. We can notice that our 
approach allows a very good coverage of the possible career trajectories, from the 
most modest to the outstanding ones. This variety of patterns allow also for a very 
fine-grained semantic classification of researcher careers.  

 

Figure 4. Left Panel: the citation distributions of the centroids of the clusters in 
Table 1 and the resulting predictions (the error bars represent the standard deviations 
of the predicted citations). Right Panel: the evolution in term of average number of 
citations of the authors associated to the main clusters in the 1-5 interval. 

6 Conclusion 

In this paper, we presented a novel approach for clustering author’s citation 
distributions, with the aim of 1) classifying authors with a variety of semantic facets, 
and 2) forecasting the citation behaviour of categories of researchers. We also 
introduced the Bibliometric Data Ontology, a.k.a. BiDO, which is an OWL ontology 
that allows an accurate representation of such semantic facets describing people’s 
research careers. In addition, we showed that our approach outperforms other 
solutions in terms of population homogeneity and is able to categorize a variety of 
career trajectories, some of which allow predicting future citations with fair accuracy. 

For the future we plan to augment the clustering process with a variety of other 
features (e.g., research areas, co-authors), to extend BiDO in order to provide a 
semantically-aware description of such new features, and to make available a 
triplestore of bibliometric data linked to other datasets such as Semantic Web Dog 
Food and DBLP.  
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