
Instance Specialization – a Pattern for Multi-level Meta

Modelling

Matthias Jahn, Bastian Roth and Stefan Jablonski

Chair for Applied Computer Science IV: Databases and Information Systems
University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

{Matthias.Jahn, Bastian.Roth, Stefan.Jablonski}@uni-bayreuth.de

Abstract. Conciseness is one major quality aspect for meta models. To keep them
concise, language patterns like inheritance or powertypes can be used in an ap-
propriated way. With instance specialization we present a further language pat-
tern that rests on the idea of prototypal inheritance (e.g., known from Python or
ECMAScript). Generally, it allows for a concept to specialize the instance facet
of a particular instance and reuse its configuration. Thereby, all assignments of
the latter are inherited by a specializing instance, which can be overwritten in
different ways within this instance. Beyond describing the instance specialization
pattern, we also introduce a semi-automatic, user-supporting mechanism for ap-
plying this pattern to existing meta models.

Keywords: meta modelling, meta model evolution, instance specialization, in-
heritance, prototypal inheritance

1 Motivation

In the field of software engineering meta models are often utilized to define the abstract
and concrete syntax of domain specific modelling languages (DSMLs). Hence, the
quality of such a DSML depends highly on the quality of those meta models describing
it. The quality of a meta model is influenced by various aspects like conciseness, sim-
plicity and extensibility [4]. For improving these aspects, in recent years several meta
modelling patterns like clabjects [1, 2] or inheritance were discovered.

In general, multilevel meta modelling aims in contrast to common programming lan-
guages at defining more than two meta levels leveraging the modeller to create a higher
degree of abstraction without manually (re-)implementing an instantiation mechanism
[6, 17]. In modelling environments or programming languages supporting two meta
levels the elements of the meta level are typically called classes or types whereas the
elements of the instance level are called objects or instances. For multilevel environ-
ments elements can act as both [14]: as a type for an instance level’s element and as an
instance of another element of a higher meta level. Containing either an instance and a
type facet, such elements are often called Clabjects (CLAss + obJECT) [1, 2] or con-
cepts [12]. Hence, such concepts can define attributes in the type facet and assignments
to attributes of the concept’s type within the instance facet.

23

Beside instantiation, inheritance is another frequently used pattern to improve qual-
ity of meta models symbolizing the “is a” relationship between two different concepts
[8]. Nevertheless, this relationship is limited to the type facet of both involved concepts
whereas the instance facet is not affected. In modern programming languages like
ECMAScript with prototypal inheritance a different pattern occurs, which expresses a
specialization of the instance facet. Furthermore, this pattern can be observed in various
domains like process modelling (type-usage) [11], car modelling (chapter 4.3) or graph-
ical frameworks [18]. Bridging the described gap in meta modelling, in this paper we
introduce the pattern of instance specialization for meta modelling and show how it can
be integrated into a meta modelling platform. Furthermore, we present an operator that
allows for applying the presented pattern to an existing meta model with full support of
model migration.

2 Related Work

The pattern of instance specialization occurs in various domains. Also many program-
ming languages use the paradigm of prototype-based inheritance, e.g. ECMAScript,
Ruby, Python, Logtalk or OpenLaszlo. Beside programming languages the pattern of
instance specialization is also used in the modelling domain. Lieberman [13] introduces
the prototype pattern for object oriented systems and shows the advantages (flexibility)
of delegation in contrast to inheritance. As mentioned in the paper [13], inheritance
implements sets whereas delegation implements prototypes. Up to our knowledge, in
the field of meta modelling there is only one approach that introduces the pattern of
instance specialization. Volz presents the pattern of instance specialization in [20].

Other domains like process modelling (type-usage[11]) or graphical model environ-
ments [18] also use this pattern. Nevertheless, those approaches mainly need to imple-
ment the aimed behavior of the pattern manually since the according environments do
not provide instance specialization support.

Additional to the lacking of out of the box support, none approach exists that sup-
ports applying instance specialization to an existing model. In the field of meta model
evolution several operators were discovered [9, 10, 22] but none of them provide sup-
port for the presented pattern.

3 Inheritance and Instance Specialization

In this section we first take a look at traditional type specialization, which is typically
called inheritance. Afterwards, we introduce the instance specialization pattern and ex-
plain how it can coexist and interact with inheritance.

3.1 Inheritance

The principle of inheritance is an often used pattern for object oriented software design
(e.g. [15]). It is generally represented as an “is a” relationship between two concepts.

24

However, this is problematic, since instantiation is also used for that relationship [8].
The base class is called generalization and the other class specialization. Inheritance
influences the structure of the according specialization concept. On the one hand attrib-
utes of the generalization are inherited and on the other hand the substitution principle
is applied to the specialization, i.e., if an instance of the generalization is expected an
instance of the specialization is valid as well.

In the multilevel meta modelling context this definition has to be more precise since
each element has a type facet and an instance facet. According to the common semantic
of inheritance, inheritance influences the type facets of both involved concepts whereas
the instance facet is not affected. Hence, this relation links the type facet of the special-
ization to the type facet of the generalization with the effect that attributes declared at
the generalization are inherited to the specialization.

3.2 Instance Specialization

As explained above, inheritance is a relationship that merely extends the type facet of
a generalized concept. Nevertheless, in various use cases a specialization of the instance
facet is needed (e.g. Process Modelling [11], Lieberman [13]). Similar to common pro-
gramming languages, declaring a prototype (the base concept) of a specific concept (the
instance specialization) enables inheriting concrete attribute values (assignments). Ac-
cordingly, the instance specialization is a relationship between two concepts linking
their instance facets. The difference between inheritance and instance specialization
was discussed in the programming language community for years (e.g. [13, 19]). Nev-
ertheless, for multi-level meta modelling instance specialization is not limited to the
instance level but can be applied to any concept.

To interact with inheritance the substitution principle needs to be extended for in-
stance specialization. Hence, instance specialization defines the substitution principle
for the instance facets of both concepts, i.e., if an instance of a concept is expected as
an attribute value, an instance specialization of that instance is also a valid value. For
example, if concept A declares an attribute attr with concept B as its attribute type.
Furthermore, let InstB be an instance of B and Special an instance specialization
of InstB. Then, each instance of A may assign Special (and InstB) for attr.

Instance specialization is hence a new relation between two concepts that does not
exclude an inheritance between those two concepts. Since both relationships use differ-
ent concept facets they can interact harmless with each other (on a conceptual point of
view).

Overwrite Behavior.
The core idea of this pattern is an inheritance of assignments that are defined at the
prototype of an instance specialization concept. However, these assignments may be
overwritten by the instance specialization if needed. Since this behavior is not always
suitable, the prototype can define whether and how an assignment can be overwritten
by an instance specialization.

25

To configure this, each prototype can declare the overwrite behavior for every as-
signment. The possible strategies are:

 Type 0 (forbidden): An instance specialization is not allowed to overwrite the value
of its prototype. The assigned value is always inherited from the prototype.

 Type 1 (normal, default type): The prototype’s value for the specific attribute can
be overwritten in any way by an instance specialization. If no type is specified ex-
plicitly type 1 is applied for the particular assignment. This type is also supported by
languages like ECMAScript [7] that provide prototypal inheritance as an idiom.

 Type 2 (limited): The assignment at the prototype defines the domain of all values
that are assigned at an instance specialization, i.e., the values of the instance special-
ization are a subset of the values defined at the prototype. A similar type is shown
by Pirotte et.al. [16] with the difference that the type is not declared at the assignment
but at the attribute and thus acts for all according assignments. This type is restricted
to assignments which base upon a multi-valued attribute.

 Type 3 (append): The value of an instance specialization is appended to the value
of the prototype for getting the concrete attribute’s value.

 Type 4 (prepend). Similar to type 3 the concrete value of the instance specialization
is a result of the assigned value together with the prototype’s value. Instead, the in-
stance specialization’s value is prepended to the prototype’s value.

The two types 3 and 4 are only applicable to assignments whose attribute is multi-val-
ued or a string attribute. For strings, assignments within an instance specialization re-
sults in a concatenation. For collections, however, it leads to appending or prepending
the value(s) of the specialization concept to the prototype’s values. Apparently, the both
types are equal if they are not ordered within the according collection (e.g., a set). A
similar declaration (with some differences) of such types was introduced by Volz [20]
but he limits the overwrite behavior types 3 and 4 to strings. The information about the
overwrite behavior is stored within the linguistic meta model [21], which is an imple-
mentation of the orthogonal classification.

Example.
A typical scenario for instance specialization could be a model for cars. Often manu-
facturers offer their cars in a base series that can be specialized in various ways. In Fig.

1 we give a possible example. At level M1 we have modeled the concept Car, which is
a representation of the real world counterpart and declares the attributes typeName,
manufacturer and releaseDate. Each car may have some equipment (concept
Equipment with a relation to Car).

At level M0 an instance model is shown. Therein, a car Ibiza is modeled that has
the name “Ibiza” (according assignment to typeName), produced by Seat (as-
signment to manufacturer), was released on the 1st of January 2009 (assignment to
releaseDate) and may be equipped with the packages ABS and ESC (assignment
to equipment). Each of these attributes defines a specific overwrite behavior. Since
every instance specialization of the Ibiza base series will be produced by the same
manufacturer (Seat), the attribute manufacturer declares the overwrite type 0. In

26

contrast to that releaseDate can be overwritten in any way. Owing to the fact that
a new special car series may only have a subset of all possible equipment packages, the
overwrite behavior of equipment is set to type 2 (limited). At last, typeName can
be extended by any instance specialization. That is why the according assignment of
Ibiza has the overwrite behavior type 3. Additionally, an instance specialization
IbizaReference is available, which concretely uses the according prototype Car.
The relationship between these two concepts is equipped with an arrow labeled with
<<concreteUseOf>> to designate the instance specialization.

The instance specialization IbizaReference is a special series of Ibiza that has
a special type name (“Ibiza Reference”), a different release date and the ABS equipment
package as standard equipment. Because of that, IbizaReference overwrites re-
leaseDate with the value “2010-04-01”, sets typeName to “ Reference”,
which implicitly results in “Ibiza Reference”, and finally chooses ABS for
equipment. The attribute manufacturer cannot be overwritten and is hence inherited
from the prototype Ibiza.

Fig. 1. Car model example

4 Extract Prototype

In this section we present a way for (semi-)automatically introducing an instance spe-
cialization into an existing model. This mechanism is supplied by a specific operator,
which extracts a prototype out of instances that are similar. It can be seen as a counter-
part of the extract super class refactoring method that is provided by many IDE or mod-
elling systems [10, 22].

27

4.1 Overview

The Extract Prototype Operator creates a prototype out of similar instances of one type.
Thereby, the operator sets the assignments at the prototype according to the chosen
overwrite behavior and updates each instance specialization assignment if necessary.

4.2 Operator process

The operator process is shown by Fig. 2. Therein all steps or decisions that need user
interaction are highlighted in black. At the beginning the operator is invoked on a con-
cept Base, which instantiates another concept Type. In the first step this instantiated
type is ascertained together with all instances of it. Out of this set a subset of all future
instance specializations (including Base by default) is chosen. In the following we call
this subset Instances. Afterwards, the operator fetches all attributes declared at
Type that can be set at Base.
In the next step, a subset (AttrsToSet) out of these attributes have to be chosen,
which will be set on the prototype. Of course, all attributes of Type that are mandatory
(multiplicity 1 or 1..*) have to be part of this subset. After that, for each attribute of
AttrsToSet the according assignments that were declared at an element of In-
stances are ascertained since they influence the attributes value at the prototype.
Subsequently, the prototype is created. Thereby, the prototype’s name is defined and
an instantiation to Type is created. After that, an assignment for each attribute of At-
trsToSet is created at the new prototype and together with it, the overwrite behavior
is defined by the user. In the last activity of the operator the value of each assignment
is determined depending on the chosen overwrite behavior:

 Type 0 (forbidden): If a change of the assignment’s value is forbidden at an instance
specialization, a specific value that was assigned at an element of Instances has
to be chosen, which acts as new value for the prototype. Since the assignments of all
elements of Instances are not valid anymore, they will be deleted afterwards.

 Type 1 (normal): If this type is selected, each instance specialization may overwrite
the attributes value in any way. Hence, just a selection of the new value out of those
made at the elements of Instances for the prototype is needed. Then, all assign-
ments that are equal to the chosen value and those that should be deleted (user se-
lection) are removed from the according elements of Instances.

 Type 2 (limited): For this type all assignment values of Instances are inserted
into a set that acts as the resulting value for the prototype. Here, no further adaption
is needed since all instance specializations values lie in the created domain.

 Type 3 (append) and Type 4 (prepend): In this case a base value for the prototype
has to be chosen. This value may consist of some values or a substring that was
assigned at an element of Instances.

In the last step the relationship for the instance specialization is created. Thereby, all
instantiations of Instances are deleted since an implicit instantiation exists via the
instance specialization. Furthermore, all assignments of new instance specializations

28

(Instances) are deleted if overwriting is forbidden (type 0) or are adapted (respec-
tively new chosen) if a base value was selected for the prototype assignment (type 3
and 4).

Fig. 2. Process of the Extract Prototype Operator

4.3 Example

In Fig. 2 a model is shown on which we will demonstrate how the operator works.
Therein a DSML for describing cars is presented. Hence, at the top level M1 a concept
Car is modeled representing the according real world element with a manufacturer
attribute, a type (typeName), a release date (releaseDate) and a relationship to
Equipment (attribute is called equipment). In general, a car may have various
equipment parts.

Choose future instance specializations

Create the prototype

Create the prototypes assignments

Start
Base:

Concept
Get instantiated

type of Base
Type:

Concept
Get instances of

Type

:Set<Concept>
Choose future

instance
specializations

Instances:
Set<Concept>

Get instantiable
attributes of

Type

:Set<Attribute>
Choose attributes

to set
AttrsToSet:

Set<Attribute>

Get
assignments for

AttrsToSet

Assignments
:Set<Assignment>

Create the
prototype

Prototype:
Concept

Choose overwrite
behavior

Type 0, Type 1

Stop

Union of all
assignment

values

Type 3, Type 4

Choose
prototypes

value
Type 2

Set Value für
Prototype

Create
prototype

assignment
:Set<Assignment>

Set Instantiation

Wähle Wert von
Prototype

Set Concrete
Use Of

29

One level below (M0) an instance model is given containing two instances of Car
(IbizaStyle, IbizaReference). Both cars are produced by the manufacturer
“Seat” and their type is almost equal to their concept’s name. Additional to the both
Car instances, the M0 level contains two instances of Equipment (ABS, ESC) repre-
senting the anti-blocking system and the electronic stability control of a car. According
to the modeled scenario (not the real life), IbizaReference provides only ABS
whereas the IbizaStyle also has an ESC.

Fig. 3. Application of the operator to the car model example

Since both instances of Car can be seen as two different instance specializations of the
car Ibiza we now invoke the Extract Prototype operator to create this prototype. That
is why we select IbizaReference and call the operator on it. Afterwards, all in-
stances of Car are gathered by the operator and we decide to add IbizaStyle to the
set of future instance specializations. In the next step, all attributes of Car are calcu-
lated (manufacturer, typeName and equipment) that can be instantiated at
IbizaReference. In our example we decide to set all of these attributes at the pro-
totype and hence, all assignments relating to these three attributes of IbizaStyle
and IbizaReference are collected. Subsequently, the new prototype can be cre-
ated, which is called Ibiza and which becomes an instance of Car. Next, all assign-
ments are created at the prototype with the following overwrite behaviors:

 manufacturer should not be overwritten by instance specializations and gets
thus type 0 (forbidden)

 typeName can be extended by an instance specialization with any further string
value and consequently gets type 3 (append)

 equipment gets type 2 (limited) because the prototype should declare all possible
equipment parts

30

 releaseDate gets type 1 since the date can differ in each car series.

Owing to those overwrite behaviors, the assignments of IbizaStyle and Ibi-
zaReference for manufacturer are deleted and for typeName and re-
leaseDate a value for Ibiza is selected (“Ibiza” and “2009-01-01”). Ac-
cording to that, the assignments of the two instance specializations for typeName are
adapted to the new values “ Style” or “ Reference” respectively and thus the
original value is retained virtually. The assignment for releaseDate of Ibi-
zaReference is not affected whereas the assignment of IbizaStyle is deleted
because the value is equal to the prototype’s value. For equipment the resulting value
for Ibiza is the union of all values of the future instance specializations and hence
{ABS, ESC}. The other assignments need not be adapted here since they are valid
anymore. In the last step the instantiation of IbizaStyle and IbizaReference
to Car is deleted and the instance specialization to Ibiza is created. Finally, the op-
erator terminates. The resulting model is free of any redundant attribute values, which
is a great benefit especially in case of models.

5 Conclusion and Outlook

Instance specialization as described in this paper is a language pattern that solely
impacts on the instance facet of concepts. It enables users to easily define a default
configuration regarding a certain use case, which then can be adapted through instance
specialization for specific scenarios. We greatly utilize this patterns for the definition
and usage of concrete syntaxes for DSMLs (similar to [18]). Thereby, a concrete syntax
is determined as an instance of a given meta model designed for this particular purpose.
Later on, the concepts of this syntax can be instance-specialized to shape the visual
parts of concrete diagrams or documents. As a result, only one meta model is required
to formulate diagrams and documents as well as the concrete syntax they base upon.
Above all, the common model base extremely reduces the implementation effort for
building a dedicated processing module, which can handle both, concrete syntax and
all associated instance specializations, in an analogous manner. A suchlike DSML tool
as well as the Extract Prototype operator introduced in section 4 is implemented on top
of the Model Workbench [5], a web-based modelling platform. Since each atomic and
complex model manipulation action has to be encapsulated by an operator, they consti-
tute the core of this platform. Besides, the Model Workbench provides support for fur-
ther multilevel meta modelling patterns (e.g., deep instantiation [3] and materialization
[16]). For the future, we plan to offer user-guided support for the introduction of these
patterns by means of suitable operators.

References

1. Atkinson, C.: Meta-modelling for distributed object environments. Proceedings of the
1st International Conference on Enterprise Distributed Object Computing (EDOC ’97
). pp. 90–101 IEEE (1997).

31

2. Atkinson, C., Kühne, T.: Meta-level independent modelling. Int. Work. Model Eng.
14th Eur. Conf. Object-Oriented Program. 12, 16 (2000).

3. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. «UML» 2001—
The Unified Model. Lang. Model. Lang. Concepts, Tools, Lect. Notes Comput. Sci.
2185, 19–33 (2001).

4. Bertoa, M., Vallecillo, A.: Quality attributes for software metamodels. Proceedings of
the In 13th TOOLS Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE 2010) (2010). (2010).

5. Chair of Applied Computer Science IV - University of Bayreuth: Model Workbench,
http://www.ai4.uni-
bayreuth.de/de/research/projects/003_ModelWorkbench/index.html.

6. Demuth, A.: Cross-layer modeler: a tool for flexible multilevel modeling with
consistency checking. Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found.
Softw. Eng. 452–455 (2011).

7. Flanagan, D.: JavaScript: The Definitive Guide (Definitive Guides). O’Reilly Media,
Inc, Sebastopol, CA (2011).

8. Frank, U.: Thoughts on classification/instantiation and generalisation/specialisation,
http://www.econstor.eu/handle/10419/68462, (2012).

9. Herrmannsdoerfer, M. et al.: An extensive catalog of operators for the coupled
evolution of metamodels and models. Softw. Lang. Eng. Lect. Notes Comput. Sci.
6563, 163–182 (2011).

10. Herrmannsdoerfer, M.: Evolutionary Metamodeling. PhD Thesis, Fakultät für
Informatik, Technische Universität München (2011).

11. Jablonski, S., Bussler, C.: Workflow management: modeling concepts, architecture
and implementation. International Thomson Computer Press (1996).

12. Jahn, M. et al.: Remodeling to Powertype Pattern. Proceedings of the Fifth
International Conferences on Pervasive Patterns and Applications (PATTERNS 2013).
pp. 59– 65 (2013).

13. Lieberman, H.: Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems. Conference proceedings on Object-oriented programming systems,
languages and applications (OOPLSA ’86). pp. 214–223 (1986).

14. Odell, J.: Power types. J. Object-Oriented Program. 7, 2, 8–12 (1994).
15. OMG: Unified Modeling Language (OMG UML)-Infrastructure. Available

http//www. omg. org/spec/UML/2.4.1. August, (2011).
16. Pirotte, A. et al.: Materialization : a powerful and ubiquitous pattern abstraction. Proc.

20th Int. Conf. Very Large Data Bases (VLDB ’94). 630–641 (1994).
17. Roth, B. et al.: IT-as-a-Service for Building Virtual Research Environments.

Proceedings of the 2rd International Conference on Cloud Computing and Service
Science. , Porto, Portugal (2012).

18. Roth, B.: Konzeption und Implementierung eines generischen
Modellierungswerkzeugs zur Unterstützung der domänenspezifischen
Prozessmodellierung. (2010).

19. Stein, L.A.: Delegation Is Inheritance. Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA). pp. 138–146 , Orlando, Florida, USA (1987).

20. Volz, B.: Werkzeugunterstützung für methodenneutrale Metamodellierung. PhD
Thesis, Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth (2011).

21. Volz, B., Jablonski, S.: Towards an open meta modeling environment. Proceedings of
the 10th Workshop on Domain-Specific Modeling - DSM ’10. p. 1 ACM Press, New
York, New York, USA (2010).

22. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. ECOOP 2007 –
Object-Oriented Program. Lect. Notes Comput. Sci. 4609, 600–624 (2007).

32

