Integration of Cache Related Preemption Delay Analysis in
Priority Assignment Algorithm

Hai Nam Tran, Frank Singhoff, Stéphane Rubini, Jalil Boukhobza
Univ. Bretagne Occidentale, UMR 6285, Lab-STICC, F-29200 Brest, France
{hai-nam.tran,singhoff,rubini,boukhobza}@univ-brest.fr

ABSTRACT

Handling cache related preemption delay (CRPD) in a pre-
emptive scheduling context for real-time systems stays an
open subject despite of its practical importance. Priority
assignment algorithms and feasibility tests are usually based
on the assumption that preemption cost is negligible. Then,
a system that could be schedulable at design time can fail
to meet its timing constraints in practice due to preemption
cost. In this article, we propose an elementary approach to
take into consideration the CRPD while assigning priorities
to tasks. The goal is to acquire a priority assignment al-
gorithm guaranteeing the schedulability of the system when
its tasks suffer CRPD at run-time.

Categories and Subject Descriptors

C.3 [[Special-Purpose and Application-Based Systems|:

Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification— Validation

Keywords

Real-Time Embedded System, Real-Time Scheduling, Pri-
ority Assignment

1. PROBLEM STATEMENT

Cache related preemption delay (CRPD) introduces two
issues. First, it accounts a high proportion in preemption
cost and causes preemption cost to be significant [5]. Second,
the total CRPD of a task set during its feasibility interval,
which is an interval for which testing of task feasibility is
needed [2], depends on the applied priority assignment poli-
cies.

Most of the research in priority assignment algorithms
on uniprocessor systems have mainly focused on finding the
optimal priority assignment algorithm for a specific system
model [6], [4], [1], [3]. To the best of our knowledge, there is
no existing work in the domain of priority assignment con-
sidering CRPD.

EWiLi’2014, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

If a system is not schedulable under a priority assignment
policy because of CRPD, a method to work around could
be reordering task priorities. The goal is to reduce the total
CRPD while still maintaining the feasibility of tasks. For ex-
ample by lowering the number of preemptions. The solution
consists in evaluating CRPD of tasks, which is computed
by using timing analysis techniques,the total number of pre-
emptions and also the feasibility of each tasks. As far as we
know there is no existing method to achieve this goal. The
problem is that total CRPD depends on the applied prior-
ity assignment policy but solving this dependency is still an
open issue.

2. INTEGRATION OF CRPD ANALYSIS IN
PRIORITY ASSIGNMENT ALGORITHM

We assume an uniprocessor system running n tasks with
a preemptive fixed priority scheduler. Classical notations
for real-time scheduling analysis are used. Assuming system
starts execution at time 0, a task 7; makes an initial request
at offset O;, and then releases periodically every T; units of
time. Each release of a task is called a job. It requires C;
units of time of computation and must finish before D; units
of time. Exact computation of CRPD for each pair of tasks,
for example when task 74 preempts task 7z, using timing
analysis technique is out of the scope of this article.

To break the dependency stated in Section 1, we propose
a priority assignment algorithm, if it finishes assigning a pri-
ority level to each tasks of the system, the resulted system
is guaranteed to be schedulable while experimenting the im-
pact of CRPD. It includes the integration of a feasibility test
into the priority assignment algorithm of Audsley [1].

For n tasks, Audsley’s algorithm performs at most n(n +
1)/2 schedulability tests and guarantees to find a schedulable
priority assignment if one exists. We have n priority levels
corresponding to n tasks, with n being lowest priority level.
The algorithm starts by assigning the lowest priority level
to a task. This task is called assessing task in the sequel.
If the assessing task is not schedulable, the algorithm tries
to assign the priority level to a different task, i.e. the as-
sessing task is changed. If the assessing task is schedulable,
the algorithm actually assigns this priority level to this task
and then, moves to the next higher priority level. Then, it
checks whether a task in the unassigned priority tasks is fea-
sible with this higher priority level. The algorithm continues
until all tasks are assigned a priority level. If there are not
any schedulable tasks at a given priority level, the system is
not schedulable and the algorithm terminates. The pseudo
code for the Audsley’s algorithm is given below.



for each priority level i, lowest first{
for each unassigned task 7{
if 7 is schedulable at priority i{
assign 7 to priority i
break (continue outer loop)}}
return unschedulable}
return schedulable

In the original work of Audsley, that does not take CRPD
into account, a feasibility test is used to verify the schedu-
lability of a task under a given lowest priority level while
relative priorities among higher priority tasks are unknown.
Existing feasibility test with CRPD taken into account is
not able to test the feasibility of a task in this context. For
example, in [7], the authors assumed that task priorities are
preliminarily assigned.

Contrary to the approach of existing feasibility tests which
consists of computing a task worst case response time, we
verify the feasibility for each job of a task during its feasi-
bility interval. A task is schedulable if all its jobs released
during the feasibility interval can meet their deadlines. As-
suming a job of task 7; is released at time ¢, requires C;
unit of computation time and must finish before D;, the job
experiences interference I; caused by other jobs of higher
priority tasks during the interval [¢,¢ + D;). Then, the job
of task 7; is feasible if:

Ci+1I, <D (1)

I; includes three delays components. First, it is the execu-
tion time of jobs of higher priority tasks which are released
during the interval [¢,t+ D;). Second, I; includes the CRPD
caused by those jobs of higher priority tasks directly or in-
directly preempting a job of task 7;. Third, I; also includes
the CRPD caused by the those jobs preempt each other.

Computation of the third component of I; is the main
challenge when tasks priorities are not assigned. A naive
approach is to perform scheduling simulation for those jobs
with all possible combinations of priority assignments and
compute the total CRPD.

‘We propose a solution to compute that third delay compo-
nent based on three information: release time, capacity and
CRPD relationship. The idea is to compute a tree structure,
which presents all preempting decisions the scheduler has to
do. The tree T = (N, E) is defined by N, the set of node
and F, the set of edge. Each node n of N models a running
job at a point of time. Each node n is defined by a 4-uplet
(a,b,c,d) where a is an instant, b is the job executing at the
instant a, ¢ is the remaining capacity of the task and d is
the CRPD caused by the activation of this task. Each edge
e from E models a decision of the scheduler. We can have
three types of edges modeling three different events during
scheduling: allow preemption, deny preemption, select a job
in the set of jobs waiting to be executed. Each branch of
the tree presents a non-conflict priority assignment scheme.
By non-conflict, we mean that there are not any cases two
tasks can preempt each other, for example, if 74 preempts
7p then later 75 cannot preempt 74. Based on the tree, we
can compute the upper-bound total CPRD.

We illustrate the tree by an example in Figure 1. Assum-
ing that we have information of each job activation time,
capacity and the CRPD when those tasks preempting each
other. In this example, we have the activation of jobs of

Ca

Cs

)

Figure 1: An example of computing the tree with 3
jobs. Only the decisions of the scheduler to choose
which task to run are shown.

three task A, B and C in an interval. By computing the tree,
we can assess all possible preemptions of the jobs, which can
occur in a specific priority assignment scheme. Thus, evalu-
ating the total CRPD in each branch of the tree.

3. CONCLUSIONS

In this article, we discuss a problem of CRPD and prior-
ity assignment and propose an elementary approach to solve
this issue. We extend Audsley’s optimal priority assignment
algorithm [1] by considering the impact of CRPD when as-
signing a priority level to a task. The approach consists in
verifying the feasibility of each job of each task during its fea-
sibility interval while accounting the interference due to jobs
of higher priority tasks, including CRPD. A tree structured
is implemented to compute the CRPD of jobs with unknown
task priorities during an interval. We plan to evaluate the
proposed approach in terms of complexity and optimality in
the future works.

4. REFERENCES

[1] N. C. Audsley. Optimal priority assignment and
feasibility of static priority tasks with arbitrary start
times. In Technical Report YCS 164, Dept. Computer
Science. University of York, UK, 1991.

[2] L. Cucu and J. Goossens. Feasibility intervals for
fixed-priority real-time scheduling on uniform
multiprocessors. In Emerging Technologies and Factory
Automation, 2006. ETFA’06. IEEE Conference on,
pages 397-404. IEEE, 2006.

[3] R. I. Davis and A. Burns. Robust priority assignment
for fixed priority real-time systems. In Real-Time
Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, pages 3—14. IEEE, 2007.

[4] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance evaluation, 2(4):237-250, 1982.

[5] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 workshop on
Ezxperimental computer science. ACM, 2007.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM (JACM), 20(1):46-61, 1973.

[7] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling
analysis of real-time systems with precise modeling of
cache related preemption delay. In Real-Time Systems,
2005.(ECRTS 2005). Proceedings. 17th Euromicro
Conference on, pages 41-48. IEEE, 2005.



