
INCOSE Italian Chapter Conference on Systems Engineering (CIISE2014) 

Rome, Italy, November 24 – 25, 2014 

  

Product Architecture Management - an approach to 

Product Life Cycle 

Gaetano Cutrona, Andrea Margini, Cesare Fantuzzi 

Tetra Pak Packaging Solution / University of Modena and Reggio Emilia  

gaetano.cutrona@unimore.it, andrea.margini@unimore.it, 

cesare.fantuzzi@unimore.it  

 

 

Abstract. Today a lot of small, medium and also large companies have a project organizational 

setup.  

This means that the major part of the development activities are gathered thru the conduction of 

a project that at its completion will deliver a new version of the product. 

In this situation managing versions and resources for some of the product components 

(subsystems) could be a problem or performed in a non efficient way. 

This paper shows the approach applied in a company producing machines for the food industry. 

The methodology is based on the application of PLC (Product Life Cycle) principles aiming at 

the rationalization of the decisions made during the planning, analysis and implementation 

phases.  

The goal of the approach is to help designers and product architects to correlate the needs of 

projects stakeholders (requirements) with other needs related to the product strategy and 

roadmap in order to improve efficiency in terms of resource management, product variants and 

other aspects that affect the life cycle of the product. 

Introduction 

Complex products are integrating very different functionalities that are belonging to different 

technologies and disciplines and must coexist all together in order to achieve the common goal 

that is a successful product that brings value to the customer and to the company. 

In order to achieve the above goal a structured company follows different processes to acquire 

the input needed from the customer, translate them into requirements that are satisfied by the 

implemented solution. This implies an organization structure that usually consists of projects 

(responsible for the product delivery) and a set of line organizations (responsible for the 

product development). 

The methodology developed will help product (system/subsystem) owner or responsible to 

efficiently develop a roadmap that will optimize the resource allocation and the releases to the 

related projects. 

As mentioned at the beginning of this paragraph, usually, a common operational model 

consists of a project entity (a team lead by a project manager) and one or more development 

lines (teams lead by line managers). 

Copyright	  ©	  held	  by	  the	  authors.

mailto:gaetano.cutrona@unimore.it
mailto:andrea.margini@unimore.it
mailto:cesare.fantuzzi@unimore.it


 

  

The project is responsible for the acquisition of the requirements, control of the planning and 

deliveries and on the other hand, the lines are responsible for the design of the solutions that 

will fulfil the requirements received by the project (Figure 1). 

Figure 1 Project / Line Setup 

The implication of such organization is that the increasing number of projects is not always 

increasing consequentially the number of resources available from the lines that have to 

develop the solutions. So a certain resource has to work in parallel in more than a project. In 

addition a line have to manage different sets of requirements belonging to different projects 

that sometimes are conflicting each other or causing reworking due to sequential update of 

certain functionalities in a product. 

The detected resulting situation causes big problems in managing the versioning of a certain 

architecture of product (or component) increasing thus the effort in developments and 

configurations taken by the lines that are owning it. 

To support lines in the management of a product a lot of methodologies are available in 

literature [2], [3], [5]. Most of them consist of prioritisation and classification of requirements 

performed by the company's marketing organizations or development governances. The 

outcomes support the decision of what features to include in a certain product. 

The methodology described in this paper will improve the product architecture management by 

enabling the line to actively participate in the decisions regarding the solution evolution by 

directly owning its roadmap.  

Next section explains the motivation behind such particular methodology. 

Afterwards the benefits of its implementation are shown by practically describing the case 

study where this methodology was applied.  



 

  

In the last section the methodology results are discussed and next steps for further 

improvements are briefly mentioned. 

Motivation 

An ideal process of product development and management starts with needs of customers. 

They are analyzed by the company market organization which then creates a set of stakeholder 

requirements. That list together with other internal stakeholder requirements will be satisfied 

by a project with the delivery of a solution. As already mentioned large companies, usually, are 

involved with several concurrent projects and produce different configurations of their 

products. The worst possible case of the above situation is when a development line delivers 

one version of its product per project. Assuming that each version may be considered as a 

stand-alone product, in case of optimized architecture management, every version is the result 

of the new features addition to the older ones (case n.1). In case of non-optimized architecture 

management there is the coexistence of more than one concurrent version in the same life cycle 

phase of the product (case n.2). A simple example (Figure 2) that explains the above situation 

is related to the product user manuals describing the features added to the different product 

versions. In case n.1 the line has to manage one user manual evolving together with the product 

versions along with the product life because the latest version is able to replace (includes) the 

older ones. Three different user manuals have to be generated and separately managed in case 

n.2 due to the partial dependencies between the different product versions. 

Figure 2 Example of number of user manuals per product versions in case of 

two different product management approaches 

The intention of the example is to provide an indication of how much complex could be 

managing different "stand-alone" concurrent versions of the same product. The effort for such 



 

  

management increases proportionally with the number of existing concurrent versions causing 

the need for the line to ask for more budget and resources to keep maintaining those solutions. 

Case Study 

The methodology described in this paper was applied in a real case study that involved the 

development of a mechatronic subsystem. The module was fitting in a packaging machine and 

both it and the complete product are in the maturity phase of their life cycles. Though the 

methodology is applicable to any life cycle phase, the maturity one is where it gives the most 

benefits because it is the phase were the risk to have more than one concurrent versions is 

higher.  

In the starting situation a list of projects (and related requirements) that the subsystem had to 

fulfil was available. The module provided also some supporting documentation that described 

its design and related technical decisions. The initial module roadmap showed that a new 

version of the subsystem would have been released per each project. 

The applied methodology steps are described in the following list: 

 Requirements vs. Projects review 

 Architectures definition 

 Versions Definition 

The first step rearranged requirements together with project in order to provide the full picture 

of what the module had to fulfil. In the Architecture definition task subsystem commonalities 

and variants were defined according to projects and packaging machine families where the 

module was applied. Last step defined the module roadmap by identifying its release versions 

(Figure 3). 

 

Figure 3 Methdology workflow with input and output 



 

  

Inputs 

In this section the inputs for the described case study activities will be described in detail. In 

particular to start with the activity the complete list of project (and related time-plans) was 

required. The list consisted of all the projects (both ongoing and future) that were involving the 

module providing in this way a three years view of the subsystem developments (Figure 4). 

 

 

Figure 4 Extract of Project Roadmap and Requirements vs Projects matrix 

Together with the project roadmap the full list of requirements per each project was requested 

as well. All the requirements were independent each other, identifying thus one feature each. 

No priority was defined yet to those requirements. 

The product baseline that consisted of a functional breakdown of features that the product 

provided and a system breakdown structure showing how the system was built (which are the 

components of the system) were available. Some other architectural views (Architecture 

description, AD) were included in the baseline (Figure 5). In addition to the architectural 

documentation also a System Requirements Specification (SRS) was provided in order to keep 

track of the rationale behind the solution decisions. 



 

  

 

Figure 5 Architecture Description Documentation 

In next paragraphs further details on how those inputs were used are described. 

Requirements vs. Projects Review 

On the reference baseline architecture an impact analysis of the requirements was performed. 

During this activity relevant people (technical experts) were involved in order to assess 

implications of product modifications in terms of effort and technical feasibility. The outcomes 

of the activity were recorded into a Requirements vs. Effort matrix that puts in relation 

requirements to the effort to fulfil them (time, cost and resource).  

Architectures Definition 

The available architecture baseline was rearranged in order to group functionalities / 

subsystems into three categories (Figure 6): 

 Product generic were all those features that are needed by the product as a framework, 

they were in common to all the variants and configuration of a certain product baseline 

(e.g. the functionality to fill and seal a package). 

 Application generic were the features that are applicable to a defined application of the 

product, they defined the functionalities of the product in a certain application (e.g. 

features in low cost machines). 

 The Specific application features were all the characteristics that are requested to a 

product to work according a specific need (e.g. type of food to be packed or specific 

type of package to be produced).  



 

  

 

Figure 6 Example of Architecture Items categories 

The same grouping approach was applied to the new requirements in order to gather the full 

picture of the new versions features grouped into categories. The outcome of this step was to 

update the subsystems vs. requirements matrix with consolidated targets. In order to take into 

consideration specific needs of the line owning the product subject of this case study, the 

following list of additional architectural drivers was developed: 

 Maximize Commonalities: the more commonalities are present in terms of product 

components among the different product configurations the better is from a product 

management point of view (expand as much as possible the Product generic and 

Application generic part). 

 Optimize Development and Management costs: optimization of the resources and costs 

during the development and life cycle management phases. 

 Formalize PLC: a clear picture of the life cycle of the product (i.e. product roadmap, 

strategy, etc.) enables a faster and effective decision making process. 

 Optimize Deliveries: an optimization of the number of product releases improves the 

product management process.  

The above listed drivers were also used to measure the benefits derived from the application of 

this methodology on this case study. 

Release Versions Definition 

At this point of the process the project requirements were allocated to the different architecture 

categories creating a link with the relative projects. Considering the projects timelines a 

prioritization of subsystems developments activities was performed and a map of the 

subsystems releases was defined per each identified specific application. All the subsystems 

releases were grouped to system releases in order to fulfil the projects deadlines (Figure 7). 

The outcome of this final step was the product roadmap according to projects timeline (Figure 

8). 



 

  

 

Figure 7 Example of Subsystems Versions within the Specific Application n.1 

(Product 1) 

 

Figure 8 Example of resulting Product roadmap 

Conclusion and Next steps 

In order to assess the benefits of the proposed methodology, an estimation of how the product 

roadmap would have been, in accordance with the drivers, was performed. That roadmap was 

developed without the application of the process. It was characterized by the following relevant 

information: 

 \item Number of releases for the projects = Number of projects = 15 

 Total number of resources involved = Number of Projects running in parallel = max 13 

 Number of Product versions to be managed = 8  



 

  

The same exercise was performed after the application of the described methodology. The 

related results can be found in the following list: 

 Number of releases for the projects (Specific Applications) = 7 

 Total number of resources involved = 5 

 Number of Product Architectures to be managed (Generic Applications) = 4  

After the analysis a significant improvement in the short term product management was found. 

It is expected that it will affect the long term one as well. The following list represents the main 

improvements detected: 

 Resource optimization 

 System complexity reduction 

 Simpler product life cycle management 

 Improved communication between functional units in the company 

While the first three points are largely explained during the paper, it is important to spend some 

words about the last item. It refers to the capability of the system/subsystem team to clearly 

communicate the development activities to the projects and proactively act in order to fulfill 

new requirements or changes. 

This case study development heavily relied on the expertise and skill of the product experts 

especially in the requirements grouping and prioritization activities. Hence, in order to further 

improve the described methodology, it should be integrated with structured and formal 

techniques supporting the above mentioned requirements management activities.   



 

  

References 

 [1] C. Haskins, ed., "Systems Engineering Hand-book". International Council on Systems Engineering, 

v. 3.2 ed., 2010. 

[2] VDI, Design Methodology for Mechatronic Systems (VDI 2206). Berlin: Beuth Verlag, 2004. 

[3] S. V. Vasi_c and L. P. Mihailo, "Standard Industrial Guideline for Mechatronic Product Design, 

FME Transactions, vol. 36, no. 3,pp. 103{108, 2008. 

[4] A. Pysteer and D. Olwell, "The Guide to the Systems Engineering Body of Knowledge v. 1.1". 

Hoboken, NJ: The Trustees of the Stevens Institute of Technology, 2013. 

[5] M. S. Hundal, "Systematic Mechanical Designing: A Cost and Management Perspective". ASME, 

1997. 

[6] R. A. Boggs, “The SDLC and Six Sigma. an Essay on Which is Which and Why?" Issues in 

Information Systems, vol. 1, no. 1, pp. 36-42,2004. 

[7] INCOSE, “Systems Engineering Vision 2020," tech. rep., International Council on Systems 

Engineering Seattle, USA, 2007. 

[8] J. A. Estefan, "Survey of Model-Based Systems Engineering (MBSE) Methodologies, Rev. B, in 

International Council on Systems Engineering, (San Diego (CAL)), INCOSE, INCOSE Technical. 

Publication, Document No.: INCOSE-TD-2007-003-01, 10, June 2008. 

[9] W. Schfer and H. Wehrheim, “The challenges of building advanced mechatronic systems.," in 

Future of Software Engineering, pp. 72-84, 2007. 

[10] Boston Consulting Group, “Innovation 2006," 

[11] R. Kemp, M. Folkeringa, J. de Jong, and E. Wubben, "Innovation and Firm Performance". 2003. 

[12] H. Loof and A. Heshmati, “On the relationship between innovation and performance: A 

sensitivity analysis," Economics of Innovation and New Technology, vol. 15, no. 4-5, pp. 

317-344,2006. 

[13] D. Dalcher, O. Benediktsson, and H. Thorbergsson, “Development life cycle management: a 

multiproject experiment," in Engineering of Computer-Based Systems, 2005. ECBS '05. 12th IEEE 

International Conference and Workshops on the, pp. 289-296, 2005. 

[14] M. Chechik and J. Gannon, \Automatic analysis of consistency between requirements and 

designs," Software Engineering, IEEE Transactions on, vol. 27, no. 7, pp. 651-672, 2001. 

[15] R. Harrison, A. West, and L. Lee, \Lifecycle engineering of future automation systems in the 

automotive powertrain sector," in Industrial Informatics, 2006 IEEE International Conference 

on, pp. 305{310, 2006. 

 

 


