An Analytic Approach for Discovery

Eric Dull and Steven P. Reinhardt
Cray, Inc.
{edull,spr} @cray.com

Abstract—With the widespread awareness of Big Data, mission
leaders now expect that the data available to their organizations
will be immediately relevant to their missions. However, the
continuing onslaught of the ’data tsunami”, with data becoming
more diverse, changing nature more quickly, and growing in
volume and speed, confounds all but the simplest analysis and
the most capable organizations. The core challenge faced by
an analyst is to discover the most important knowledge in the
data. She must overcome potential errors and inaccuracies in the
data and explore it, even though she understands it incompletely,
guided by her knowledge of the data’s domain.

We have solved customer problems by quickly analyzing
numerous dimensions of data to check its sanity and to compare
it to expected values. Guided by what we find initially, we
quickly move on to further (unanticipated) dimensions of the
data; discovery depends on this ability. This approach vitally
brings the analyst into direct interaction with the data.

We implement this approach by exploiting the ability of graphs
(vertices and edges) to represent highly heterogeneous data. We
use RDF as the data representation and SPARQL for queries. We
use non-parametric tests, which are readily targeted to any type
of data. This graph-analytic approach, using proven techniques
with widely diverse data, represents a guidepost for delivering
greatly improved analysis on much more complex data.

I. INTRODUCTION

Analyst groups are being strongly challenged to understand
quickly the insights latent in their organization’s data, despite
its diversity, changing nature, volume, and speed. We focus on
the discovery aspect of analysis, where the analyst cannot rely
on techniques that have run previously on the given datasets,
but rather must explore within the data in a way that cannot
be predicted. The organization expects that the analyst will
quickly uncover the most important knowledge in the data.
Using her knowledge of the data’s domain, she must explore
the data despite its potential imperfections.

If we define discovery as finding a connection in the data
of which the analyst was previously unaware, it requires
more than just delivering existing capabilities a little faster
or more easily used. Rather, it requires enabling a subject-
matter expert (SME), i.e. the person with the most knowledge
and intuition about the data, to explore the data quickly, and
even, by appropriate pre-analysis, pulling the SME’s eye to
aspects of the data that are likely to be most fruitful of
further exploration. We have evolved an analytic approach
to discovery, implemented in the semantic technologies RDF
and SPARQL, that enables rapid progress through analytic
questions toward an analytic goal. We have solved high-value
customer problems by quickly analyzing numerous dimen-
sions of data to check its sanity and to compare it to our
expectations, then moving on to further dimensions of the

89

data guided by what we find initially. Sometimes we analyze
data and compare it to our mental expectations. Other times
we compare data from one subset (place, time, etc.) to that
from another subset, to see if they differ in unexpected ways.
Sometimes we analyze the values of the data and other times
the connectivity of the data. Sometimes we create a synthetic
grid or discretization, say of geospace and time, to represent
data for fast comparison. Discovery depends on being able
to compare dimensions quickly, without knowing in advance
the dimensions to compare. Bringing the SME into direct
interaction with the data is essential to accelerating discovery.

We implement this analytic approach by exploiting the abil-
ity of graphs (vertices and edges) to represent the richness of
highly heterogeneous data and enable discovery within it. To
date, we use RDF as the data representation and SPARQL for
queries, queries that can build on each other to focus rapidly on
the highest-value knowledge (in the estimation of the subject-
matter expert) in the data. (We use heterogeneous rather than
semantic, because this approach is not limited to natural lan-
guage.) RDF supports complex, dynamic ontologies, though
that adds a burden of discovering the current ontology, which
we often achieve by summary graphs of vertex-types and the
edge-types that connect them. We use Jaccard scoring [6]
and non-parametric tests (typically Kolmogorov-Smirnov[7]),
which are readily targeted to any type of data when guided by a
SME. Other non-parametric tests could easily be used in place
of these. RDF and SPARQL are one data format and language
that support implementation of this approach, but it may be
implemented with other technologies, such as Spark/GraphX
from the Berkeley Data Analytic Stack [2].

The graph-analytic approach, using proven techniques with
widely diverse data, represents a guidepost for delivering
greatly better analysis on much more complex data.

II. ADDRESSING THE CORE CHALLENGE

The core challenge facing many analytic organizations,
illustrated in Figure 1, has at its center a data repository, with
both new instances of existing types of data and instances of
new types of data flowing into it. Results from existing analyt-
ics must flow out to meet existing production needs, while new
analytics must be created to discover further knowledge in the
data. This paper focuses on this discovery process, based on
our experience working with a customer needing to understand
traffic and vulnerabilities on its corporate network. In that
context, some key entities are IP addresses, ports, protocols,
and Internet domain names. Section III.B provides an example
of these techniques applied to flow-data

Instances of new data types “Production” analytic delivery
,/’--ﬂ =

danity checking, sense making,
and analytic development

ew instances of
existing data types

Fig. 1. High-level Workflow

III. ANALYTIC APPROACHES FOR DISCOVERY

We start from the point of view of an analyst with little
knowledge about a body of data and proceed to the point of
deep knowledge about the data. Many of the techniques we
describe are useful at multiple points along this continuum.

Analysis is an iterative process that consists of framing
the analytic problem, defining an approach, gathering the
applicable data, understanding the biases present in the data
(via sanity-checking and sense-making), applying analytic
techniques consistent with the approach, determining the an-
alytic results that answer the problem, and documenting the
answer to the analytic problem.

A. Sense-making

When an analyst first gets a new corpus of data, even new
instances of an existing corpus, the first task is to ascertain
the sanity of the data, and then understand it deeply enough
to enable further analysis. In practice, an initial sanity-check
on data is often necessary, but even then errors in the data may
still surface as analysis becomes more precise. For instance, if
the data claims to cover the 24 hours of a day, but only has data
in the hours O through 9, there may have been an error in the
software that generates the data. In a heterogeneous context,
if flow-data records use IP addresses that are not found in the
firewall records, it may be that the data is truly disjoint, or
it may be that the IP addresses in the flow data and firewall
data have not been constructed the same and hence do not
match. In either case, the anomaly needs to be understood
before continuing with the data.

With heterogeneous data, sense-making includes discover-
ing the ontology (or schema, in relational database terms) in
which the data is represented, as that ontology is not explicitly
defined anywhere [1]. A summary graph depiction of the
ontology is shown in Fig. 2, with vertices representing the
types of objects in the data. The edges summarize the edges
between instances of the types of objects that are the subject
and object of triples in the data; edge thickness represents
the number of edges between the two types. While this figure
is simpler than many real-world ontologies, it illustrates how
the structure of the data can be readily represented for to
aid an analyst’s understanding. Note that the visualization of

90

http://es org/ontology/DNSrec-A

http:fécs.orgiontology/blacklistéip
http:ffcs.orglontology/ipvé_class#B
Rt E5iorg/o ftolagy ASHh EEDUCs o sl
Y Ny
y. hitp:/'cs rg/ontology/city
<} Vs hitp:fcs.org/ontalg/port
nttpitics. orgiohyaloyisecien >
Sals W TN
[] Y Y
j—‘-‘ ™ X
Hes srglontolagylipvé_typeluallc. \ / T
- A A
— Y - itp: = org/ontalogy/geotash
Ny \i' / Win
o resoke § | Titniics Beglontologylipv4_class#C
wlhittn:ffcs. nrv_njngyz\:tnﬂe \r N
of |
1 -
-
hitpu/ics. nrgrnmnw«,massu hitp:/jcs nrg@@ﬂg)’f‘lcvi_sddr

Fig. 2. Discovered Ontology

the ontology as a graph is natural; whether the underlying
representation is graph-based or not is immaterial at this level.

A next level of sense-making analyzes the values of a
given type of edge. For instance, flow data is often discretized
such that a flow cannot last more than an hour. Similarly,
TCP/UDP ports are limited to 0-65535. If the data has values
outside those ranges, it is suspect. (Additionally, the analyst
must ensure that the right units (e.g., English v. metric) are
being used.) Not all types of edges will have values that
will be readily known by the analyst, but for those that are,
this can be a simple way of surfacing the subject-matter
knowledge of the expert, by showing the values in the data
and letting the analyst respond if the data looks suspect.
Beyond correctness, understanding the semantic meaning of
a field, e.g., a timestamp, is important. What is the format
of the timestamp (absolute, relative)? What is its precision?
When was it collected? What specific event is denoted by the
timestamp?

Once the basic structure of the data and its values are
understood, other questions arise, such as the quantity of the
data and whether that indicates that we have all the data we
expected or not. E.g., if the data purports to capture all flow
data from a 24-hour period, and we know there are about
30,000 flows per second, we should have about 2.6 billion
flows. If we do not, we may be missing data, the data may
be summarized, or there is some other effect; in any case, the
analyst needs to understand the anomaly before proceeding.

Understanding the data values in more detail is another part
of sense-making. What are the dominant moments, and, often
as importantly, what are the outliers? Analysts know that real-
world data is noisy and messy, so will want to avoid actual
noise but at the same time want to understand rare but real
events accurately. In addition to looking at the total data, we
often gain insight by comparing data from entities selected
from different ranges in some important dimension, like place
or time, to see whether the values in a given dimension also
vary; e.g., are the top N most frequent external domains in
Internet flow data from the day before yesterday and yesterday

Fig. 3. Example of Jaccard Scoring

similar? Or, is the distribution of bytes per packet the same
for systems in Europe as in North America?

This phase of the workflow is critical to an analytic process
with meaningful, repeatable results. Performing it requires
tools, methods, and (most significantly for time-sensitive anal-
ysis) time at the beginning of the analytic process.

B. Techniques

1) Jaccard scoring: Jaccard similarity for comparing two
entities is defined as the cardinality of the intersection of
values of the two entities divided by the cardinality of the
union of their values. An example is shown in Fig. 3, where
V1 and V2 each represent the flow data from one hour, with
the circles between representing the eight most commonly
visited Internet domain names, showing five entities in the
intersection from a total of eleven entities in the union. The
SME must judge whether that level of variability merits further
investigation.

When analyzing Internet flow data, Jaccard scoring can be
used to calculate the similarity between two time periods
of the top 20 visited Internet domain names. The Jaccard
calculation can be done either unweighted or weighted; e.g.,
for the top-20-domains case, weighting would mean that the
similarity between large number of visits to (say) google.com
is weighted more than the small number of visits to another
domain. Conversely, the weighting can be for rarity; e.g., if
we want to know whether two people are similar, the fact that
they both visit a domain that is rarely visited population-wide
means more than the fact that they both visit a very common
domain.

2) Synthetic discretization with Jaccard scoring: The ana-
Iytic applications discussed above are all examples where the
analyst has subject matter expertise. Similarity scoring can also
be used when the data is known but the meaning of the data
is unknown; i.e., to tell us if two data sets are similar enough
that sense making can be skipped, thus semi-automating this
critical step at the beginning of the analytic workflow.

Within a semantic context, we can apply Jaccard scoring
to the predicate and object types found in a data set. This

91

o
o

o
o

o
=

=o=Eastern Europe

o
N

«=@=Washington DC

Cumulative Fraction of Activity

o

vvvvv

Hour of the day (GMT)

Fig. 4. Example of Kolmogorov-Smirnov Test

requires two extensions of the canonical algorithm in section
IV.A below. These extensions correct for very popular nodes
and handle different types of nodes (categorical similarity).

3) Kolmogorov-Smirnov: Once similarity scoring demon-
strates a high degree of similarity in the predicate- and object-
type composition of two data sets, another approach that can
be applied is non-parametric goodness-of-fit statistical com-
parison between degree distributions of subjects with identical
semantic types, using tests such as Kolmogorov-Smirnov [7]
or Mann-Whitney U. For example, for each semantic type,
the degree distribution for each predicate type is generated
for the old, analytically-proven dataset and the new, believed-
similar dataset. These degree distributions are compared via
non-parametric goodness-of-fit statistical tests. The success or
failure for each semantic-type/predicate-type pair is noted and
then the aggregate success and failure counts are presented to
the analyst at the end of the evaluation.

In Fig. 4, we use Kolmogorov-Smirnov to compare two
sets of flow data, revealing that the time (measured from
GMT) of the activity is distinctly different, with the blue data
reflecting the normal work day of eastern Europe and the red
data reflecting that of the US East coast.

4) Graph Algorithms: In many cases further insight can be
gained from semantic data by directly analyzing it as a graph.
For instance, knowing a set of IP addresses and the volume of
data between each pair of addresses, the betweenness centrality
algorithm will calculate which IP addresses are most central,
giving insight into which might be most important for covert
communication, or most disruptive were they to be disabled.
Other graph metrics that may be valuable are the length of the
shortest paths between entities, the communities that emerge
by analyzing the connectivity of the graph, and the most
likely path between entities (vertices). Such analysis of social
networks is well known, but any transactional network lends
itself to similar analysis. In our work we have used community
detection [10], betweenness centrality [3], and BadRank [4].

IV. IMPLEMENTATION WITH RDF/SPARQL

Much of our work to date has focused on the RDF data
representation [9] and SPARQL query language [11] imple-
mented on Cray’s Urika-GD™ graph appliance.

0 J NN AW —

L2 L) LW LW W L LW WD NINNDNNDND = = = = === = = =
0N ANN PR WD = OOVOIANNDREWN=—=OOVOIANWNDRWN— OO

A. Jaccard scoring

Both the intersection and union steps in Jaccard scoring map
trivially to SPARQL constructs. In the source listing below,
an almost-identical subquery is repeated 4 times, once for
calculating the cardinality of each set in the intersection and
once for calculating the cardinality of each set in the union.
The first instance of that subquery is in lines 9-14. It focuses
on the first set of data (L11) residing in a named graph g1,
defined by the PREFIX statement (L2), and specifically the
data denoted by relationship (edge-type) :myPred. Those
instances are grouped by the subject, counted within each
group, ordered by descending count, and then only the 20
highest-count subjects are retained. Those partial results are
joined with the same from the second set by the enclosing
query (L7-21), which counts the number of distinct resulting |
subjects. The other subquery (L22-37) similarly calculates the 2
union, with the sole substantive difference (besides variable 3
names) being the UNION keyword inserted (L30) between the 4
two subsubqueries to denote that results that appear in either
subsubquery should be retained. Finally the outer query (L5- 7
38) uses the numerator and denominator values to calculate 8
the final Jaccard score. 9

PREFIX : <http://mydata.org>

PREFIX gl: <urn:g/2014-04-03T10:00:00>
PREFIX g2: <urn:g/2014-04-03T12:00:00>
SELECT (?num/?denom AS ?jaccard)

WHERE {
{ SELECT (COUNT (DISTINCT ?s) AS ?num)
WHERE {
{ SELECT ?s (COUNT (?s) AS ?sl1Ct)
WHERE {
GRAPH gl: { ?s :myPred 7ol }

} GROUP BY ?s ORDER BY DESC (?slCt)

LIMIT 20
}
{ SELECT ?s (COUNT (?s) AS ?s2Ct)
WHERE {
GRAPH g2: { ?s :myPred 202 }
} GROUP BY ?s ORDER BY DESC (?s2Ct)
LIMIT 20
}
}ol
{ SELECT (COUNT (DISTINCT ?s) AS ?denom)
WHERE {
{ SELECT ?s (COUNT (?s) AS ?slCt)
WHERE {
GRAPH gl: { ?s :myPred 20l }
} GROUP BY ?s ORDER BY DESC (?sl1Ct)
LIMIT 20
}
UNION
{ SELECT ?s (COUNT (?s) AS ?s2Ct)
WHERE {

GRAPH g2: { ?s :myPred 2?02 }
} GROUP BY ?s ORDER BY DESC (?s2Ct)
LIMIT 20

92

B. Graph Algorithms

Graph algorithms can be executed via SPARQL in two
ways. The first is to implement the algorithm in SPARQL,
often by a succession of queries [12], with the benefit of
having great flexibility to implement the algorithm and the
downside of needing to implement the algorithm one’s self.
The second, for a small set of algorithms on Urika-GD™
is to call a built-in graph function (BGF) in Summer 2014
or later releases [8], with the benefit of ease of execution and
optimized performance, for the supported functions. The query
below illustrates a simple call to the community-detection
function. The INVOKE function calls the designated BGF and
the PRODUCING keyword assigns the results to SPARQL
variables.

CONSTRUCT {
?vl ?count ?v2

} WHERE ({
SELECT ?v1 ?v2 (COUNT (?v2) as ?count)
WHERE {
?vl :myPred ?v2

} GROUP BY ?vl ?v2
} INVOKE yda:community ()
PRODUCING ?v ?communityID

V. CONCLUSION

We have used an analytic approach successfully with several
different customers requiring discovery in highly diverse Big
Data. The approach grows from initially no knowledge of the
data to eventual deep knowledge, by enabling an analyst to
interact directly with the data and apply her domain knowledge
and intuition. We have implemented this approach with RDF
and SPARQL on Cray’s Urika-GD™ graph-analytic appliance.
We believe this approach represents one way of addressing
the critical challenge of quickly discovering deep knowledge
in highly diverse Big Data.

REFERENCES
(1]

S. Al-Saffar et al, Structure Discovery in Large Semantic Graphs using

Extant Ontological Scaling and Descriptive Semantics, Int’l Conferences

on Web Intelligence and Intelligent Agent Technology, IEEE, 2011.

M.J. Franklin, Making Sense of Big Data with the Berkeley Data Analytics

Stack, Proceedings of the 25th International Conference on Scientific and

Statistical Database Management. ACM, 2013.

L. C. Freeman, A set of measures of centrality based on betweenness,

Sociometry, 40, 35-41, 1977

T.G. Kolda et al. Generalized badrank with graduated trust. Technical

Report SAND2009-6670, Sandia National Labs, Albuquerque, NM, 2009.

T. Mattson et al. Standards for graph algorithm primitives. In High

Performance Extreme Computing Conference, 2013 IEEE (pp. 1-2).

P. Jaccard. Etude comparative de la distribution florale dans une portion

des Alpes et des Jura. Impr. Corbaz, 1901.

FJ. Massey, The Kolmogorov-Smirnov test for goodness of fit. Journal of

the American Statistical Association, 1951.

[8] D. Mizell et al, Extending SPARQL with Graph Functions, High Perfor-
mance Big Graph Data Management, Analysis, and Mining, IEEE, 2014.

[9]1 RDF Working Group, Resource Description Framework (RDF), 2004.

[10] E. J. Riedy et al, Parallel Community Detection for Massive Graphs,
Lecture Notes in Computer Science, Volume 7203, pp 286-296, 2012.

[11] S. Harris et al, SPARQL 1.1 Query Language (W3C Recommendation
21 March 2013), http://www.w3.org/TR/sparql11-query/, 2013.

[12] R. Techentin et al, Implementing Iterative Algorithms with SPARQL,

Third International Workshop on Querying Graph Structured Data, 2014.

(2]

(3]
(4]
[5]
(6]
(7]

