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Abstract—The amount of RDF data available on the Web has
been increasingly growing over the past few years. Developing
and fine-tuning SPARQL queries in order to sift through the data
may be a very challenging task for human operators who need to
quickly make sense of large graphs. In addition, often multiple
queries need to be issued in order to gather and understand the
context (relevant facts) for the explanation of the query. Thus,
the challenge is not only to answer the query, but also to provide
context, so that the analyst can easily comprehend what the data
is actually conveying.

This paper describes results of an investigation of the possibil-
ity to apply key aspects of Situation Theory, and its ontological
realization in the Situation Theory Ontology, to simplify and
abstract large RDF data sets, given a focus query from the
analyst. In this approach, the query results are presented as
concept maps. The approach was successfully implemented as a
prototype, although this paper does not include a description of
the tool.

I. INTRODUCTION

Development of intelligence products in various domains,
e.g., business or military, requires sifting through tremen-
dously large amounts of data, most of which so far is in
an unstructured (or semi-structured) form (text reports, web
pages). This constitutes a very high challenge to the analyst
who performs this kind of task. While the analyst has in
mind an idea of the focus of the inquiry, the focus may exist
only in the analyst’s head and thus cannot be supported by
a computer-based tool. One way for the analyst to tell the
computer what is being looked for is to issue a search query,
e.g., using keywords. However, the tools that support keyword-
based text search will return documents (or pointers to) that
contain the words; the analyst still needs to do the hard work
of reviewing the plethora of documents returned. Another way
is to first use a text processing tool that will analyze the
documents, extract entities and relations identified in those
documents and represent them in a structured language, e.g.,
Resource Description Language (RDF) [1], and then analyze
the resulting formal representation using an appropriate query
language. An example of the development in this domain is
the idea of Linked Data [2], which has resulted, among others,
in a quite large knowledge base called DBpedia [3].

In fact, DBpedia is just one of the numerous open datasets
that have been published in RDF format. As the chart in
Figure 1 shows, the number of such datasets has been rapidly
growing in the recent years. Unfortunately, the RDF structured
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Fig. 1. Number of datasets that have been published in Linked Data format
between 2007 and 2011 [4].

information is still very difficult to analyze. To illustrate the
problem, consider an example of analyst query about a gang-
related activity:

What were the circumstances of Richard H. Barter’s death?

Such a query can be expressed in SPARQL query language
[5] using the DESCRIBE query and the FILTER command that
makes use of regex pattern matching to extract all the facts
that are related to “Richard H. Barter”. Even though DBpedia
had only one resource (“Richard H. Barter”) that is directly
related to the query, the query returns more than 25 other
resources that are one way or another related to this resource.
DESCRIBE queries return RDF graphs and in order to analyze
such an answer the analyst would have to go over all of the
links and nodes and decide which of them are relevant.

Now the question is how to present the result of the query
to the analyst? One of the formats for visual representation
of complex information structures that has been proved quite
successful in various uses, including knowledge structuring,
learning and even knowledge creation, is the representation
called Concept Map [6], [7], [8]. However, as discussed later
in the paper, concept maps that are direct representations of
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Fig. 2. Example of a concept map, representing the notion of concept maps
itself [12].

RDF graphs can also become quite complex and thus difficult
to comprehend.

The problem addressed in this paper is the transformation
of RDF to concept maps so that the resulting concept map is
relevant to a specific analyst query, includes the appropriate
context, and is presented in a more abstract form than the
original RDF so that it is easy to comprehend. Our approach
is to use key aspects of Situation Theory of Barwise and
Perry [9], as extended and formalized by Devlin [10], map
our problem to this theory and implement algorithms for
constructing concept maps based on such a framework. In this
work, we used the Situation Theory Ontology (STO) [11] that
we developed earlier.

The rest of this paper is organized as follows. In Section II
we briefly overview concept maps. In Section III we briefly
discuss why Situation Theory is a good candidate for the
solution. Then in Section IV we show how we can represent
analyst queries in the STO ontology. This is followed by the
discussion of domain inference in Section V and situation
reasoning in Section VI. Section VII describes the derivation
of (possibly) multiple contexts related to a query. Section VIII
then discusses how the contexts are simplified in order to
make the derived concept maps easier to comprehend. Finally,
Section IX presents the conclusions of the paper and suggests
some of the possible directions for future research.

II. CONCEPT MAPS

A concept is defined [8] as a perceived regularity or pattern
designated by a label. Propositions are statements about some
object or event in the universe, either naturally occurring
or constructed. Propositions contain two or more concepts
connected using linking words or phrases to form a meaningful
statement. Sometimes these are called semantic units, or units
of meaning.

Concept maps (c.f. Figure 2) include concepts (represented
as boxes) and relationships between concepts (propositions)
indicated by connecting lines linking pairs of concepts. Words
in the boxes represent concept names, while words on/above
the lines represent relationships between two concepts. Since
concepts and properties are the building blocks of RDF, RDF
graphs can be seen as concept maps. The CMap tools from
IHMC can be used to provide graphical representations of
RDF graphs as concept maps [8].

Fig. 3. Small RDF graph, returned by a SPARQL DESCRIBE query,
visualized as a concept map using the IHMC CMap tool.

The concept map of Figure 2 shows five concepts and four
propositions, where one of the concepts (Concept Maps) is a
“meta-concept”, since it represents the notion of a concept map
itself. This map is only a fraction of a larger map, which shows
the key features of concept maps [12]. Note that different look
and feel styles can be applied to both concepts and linking
words, e.g., different colors for different types of concepts.

Now returning to our example of the above described query,
the CMap tool can load the answer to the SPARQL query and
convert it to a concept map (c.f. Figure 3), however, the analy-
sis of the map is still not that easy. One of the main reasons for
this difficulty is the fact that concept maps generated in this
way will contain too many concepts and relationships, many
of them not relevant to the query. (Note: Clearly, Figure 3 is
not readable. The sole purpose of this figure is to show the
complexity of such concept maps.) One way to simplify the
presentation would be to display just a small portion of the
concepts and relationships. However, this operation needs to
be performed very carefully so that important facts, without
which the analyst would not be able to understand the answer
to the query, are not omitted. Furthermore, the answer might
include too detailed information, which clutters the global
conceptual picture and defeats the purpose of the concept map.
Hence, a fine balance between the simplicity and the amount
of information must be kept in order to allow the analyst to
quickly explore and understand the data.

III. SITUATION THEORY

Situation Theory is “a set of mathematically-based tools to
analyze, in particular, the way context facilitates and influences
the rise and flow of information” [10]. Situation theory came
about from the attempts to formalize Situation Semantics
– reasoning about common sense and real world situations
[9]. As postulated by Barwise and Perry, situations are first-
class objects, i.e., they have their own existence, can stand in
relation with other objects (including other situations) and can
have their own attributes.

In situation theory, information about a situation is ex-
pressed in terms of infons written as:

⌧ R, a1, . . . , an, 0/1 �
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where R is an n-place relation and a1, . . . , an are objects
appropriate for R. Since situation theory is multi-sorted, the
word “appropriate” means that the objects are of the types
appropriate for a given relation. The last item in an infon is
the polarity of the infon. Its value is either 1 (if the objects
stand in the relation R) or 0 (if the objects don’t stand in the
relation R).

To capture the semantics of situations, situation theory
provides a relation between situations and infons. This re-
lationship is called the supports relationship which relates
a situation with the infons that “are made factual” by the
situation. Given an infon � and situation s the proposition
“s supports �” is written as:

s |= �.

The relation between a situation (in the world) and a
representation of the situation (in a formal framework) is
relative to a specific agent. It is the agent who establishes
such a link. This link is defined by connections that link
entities in the world to formal constructs of the situation-
theoretic framework. These connections are not part of the
formal theory. One refers to situations within a formal theory
by using abstract situations, although the qualifier “abstract”
is often dropped in most discussions of situation theory. An
abstract situation is then a collection of infons supported by a
specific situation.

In our approach we mapped key aspects of Situation Theory
to Situation Theory Ontology (STO). The top-level classes
of STO are shown in Figure 4. The details of this ontology
were described elsewhere [13]. Here we just mention that
the main idea behind this ontology is to capture the concept
of “situation” (the Situation class serves this purpose). An
individual s0 of Situation that corresponds to a situation s in
the real world, serves as the root to the description of the
situation s. The abstract situation associated with s

0 is the
context; it holds all the facts that are relevant to the situation,
s. Other classes included in Figure 4 include Relation (to
represent relations that individuals - instances of the class
Individual - are involved in), Attribute (to represent attributes
of both individuals and situations), Value and Dimensionality
of the attributes, Rule (to represent rules for inferring higher-
arity relations) and Polarity (to represent the values of Polarity;
the only instances of this class are 1 and 0).

It is important to stress here that STO approximates Situa-
tion Theory by capturing the supports relation with a entails
(or derives) relation, `, between the collection of infons
represening a situation and the infon representing a query [13].
Moreover, information is not represented in the form of infons.
Instead, STO uses OWL and/or rules to represent knowledge
about situations, i.e., abstract situations are captured by OWL
sentences. However, as shown in Figure 4, STO includes the
class ElementaryInfon. The sole role that ElementaryInfon
plays in STO is to capture the focus of specific situations.
I.e., queries (expressed in natural language) are formalized
as instances of this class. ElementaryInfon resembles the
structure of the infon in Situation Theory and thus has two
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Fig. 4. Top-level classes in the STO ontology.

types of properties: relation (to point to the relation, R that
the infon represents), and anchor (not shown in Figure 4) to
point to the arguments of R. Polarity in STO is represented
explicitly, i.e., positive assertions correspond to polarity 1 and
negative assertions correspond to polarity 0.

One of the possible alternatives to Situation Theory that we
looked at was the FrameNet approach [14]. FrameNet is based
on a theory of meaning called “frame semantics” derived from
the work of Fillmore et al. (cf. [15]). The basic idea is that the
meanings of most words can best be understood on the basis
of a semantic frame: a description of a type of event, relation,
or entity and the participants in it.

While this idea seems to be close to that of the Situation
Theory (ST) semantics, the latter has a number of advantages
that make ST a better match for this particular problem. (1)
ST grounds meaning in the world rather than in the language.
This allows for the development of situation types that have
meaning in the physical reality (e.g., battlefield, ships, missiles
and so on), and not just in the syntax of the human language.
(2) Unlike in more pure logic-based semantics, meaning in
ST is provided by partial views of the world, not all possible
worlds. This gives an advantage of being able to specify
views of the world (situations) that are globally inconsistent,
but locally consistent. This will allow analysts to specify
situation types that, when taken together, are inconsistent.
This capability allows the deference of the resolution of
inconsistencies to the interactions with the world, rather than
trying to develop a consistent set of types (an impossible state
to achieve) before anything is utilized. (3) Situations in ST
are first-class objects, i.e., they not only stand in relations
with other situations, but can have their own attributes and
properties. (4) In ST the meaning of a declarative sentence is
a relation between utterances and described situations, which
is exactly what is needed for a solution to our problem —
developing concept maps that support the understanding of
answers to specific analyst’s questions (queries).
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IV. REPRESENTING QUERIES

In our approach, the essence of the textual version of analyst
queries needs to be extracted and mapped to to the ontology.
Since situations are explicitly represented in STO, the mapping
of the queries to STO has to be consistent with the intent of this
ontology. In particular, since the intent is to connect a query
with a context (which in STO is captured by a situation), as
well as to ensure that the relevant facts are included in the
context, queries were mapped to the class of ElementaryInfon
and to a specific situation type.1 For instance, the answer to
the query whose textual representation is

“Did an insurgent visit a weapons cache”?”

can be captured by InsurgentWeaponsCacheSituation (a sub-
class of the Situation class), defined in OWL as follows:

InsurgentWeaponsCacheSituation ⌘ Situation and (supporte-
dInfon some (ElementaryInfon and (anchor1 some Insurgent)
and (anchor2 some WeaponsCache) and (relation value visit)))

Answering such a query would involve inferring whether
the current knowledge base supports the conclusion that
there is a situation individual that is a member of the class
InsurgentWeaponsCacheSituation. Note that the above def-
inition assumes that the domain-specific ontology used in
this query extends STO with some classes (e.g., Insurgent,
WeaponsCache) and relations (e.g., visit).

Unfortunately, OWL is not sufficient enough to express
some types of queries. For instance, the following query cannot
be expressed in OWL alone:

“Which insurgents spied on a relative?”

The reason for this is that one needs to refer to variables, which
are not supported by OWL. In particular, the intent of this
query is to identify only those insurgents who spied on their
own relatives, not just any insurgents who spied someone’s
relatives. In such cases one needs to use rules. For instance,
using the STO, the query above could be expressed as the
following rule:

Situation(s) ^ ElementaryInfon(i) ^ Object(a1) ^ Object(a2) ^
Relation(spiedOn) ^ supportedInfon(s,i) ^ anchor1(i, a1) ^ an-
chor2(i, a2) ^ relation(i, spiedOn) ^ Insurgent(a1) ^ Person(a2)
^ relative(anchor1, anchor2) ! RelativeSpySituation(s)

Such rules can be captured in SPARQL 1.1 (using INSERT
to assert new facts) or in an inference engine-specific language
like BaseVISor’s RDF-based BVR [16]. For the ease of use,
since it was already the language in which some of the domain
axioms were expressed (discussed below), BVR was chosen
as the query language. In BVR, rules are defined within a rule
base with each rule consisting of a body element and a head
element (which can occur in either order). The name attribute
can be used to assign a name to a rule base or rule. The heads
and the bodies use the triple syntax, i.e., each rule consists

1In OWL a query about some individuals can be viewed as a class, i.e., a
collection of those individuals that satisfy the definition of the class.

of clauses, each being a triple (predicate, subject, object). The
syntax of BVR is conceptually compatible with RDF. This
kind of rules are easy to write and interpret; the only problem
is that it is verbose. For this reason, BVR offers an abbreviated
syntax [16].

The activities involved in the answering of analyst queries
and creating concept maps that constitute the answers, is
shown in Figure 5. The following sections describe each of
these activities in more detail.

V. DOMAIN INFERENCE

The first step in the processing of an analyst query is to
run the inference on the supplied RDF data and infer implicit
facts about the domain (Step 1 in Figure 5). Since RDF does
not provide strong axioms for inference, the RDF data can
be augmented with additional axioms expressed in OWL and
rules. OWL was the preferred choice, but if for some axioms
it was not expressive enough, axioms were added in the form
of BVR rules.

For instance, for the SynCOIN dataset [17] used in our ex-
periments, examples of domain-specific axioms are definitions
of object properties associate and madeTransactionsWith, both
of which were defined as sub-properties of the transitive and
symmetric isConnectedTo property (left side of Figure 6). An
example of the use of these axioms is shown on the right
side of the figure. Assuming that only John has been to a
weapons cache, and that Mary is the only known insurgent,
if the analyst issues a query “Which known insurgents are
connected to people who have been to a weapons cache?”,
the system should produce a map that includes Mary and
John. In addition, the map should also include Bob and the
relationships between all individuals, in order to fully represent
the context. Without Bob in the result, it is not obvious how
Mary and John are actually connected.

While the process of adding domain-specific axioms needs
to be done manually, it is part of the knowledge engineering
task, which is expected to be performed for each domain
of application. Obviously, automatic ways of generating such
axioms are desirable, but this was not part of this investigation.
In our case, we arbitrarily decided which axioms to include.

isConnectedTo

associate madeTransactionWith

Mary Bob

John

associate

madeTransactionWith

isConnectedTo

isConnectedTo

isConnectedTo

Transitive
Symmetric

ExampleOntology

Fig. 6. Property taxonomy and example of its use. The blue lines represent
implicit, inferred facts.

VI. SITUATION REASONING

Once the domain inference is complete and all implicit
domain facts are asserted in the knowledge base, individuals
of a situation type that corresponds to the query, as well as
relations among them, can be found (Step 2 in Figure 5).
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Fig. 5. The process of transforming RDF data into comprehensible concept maps described in this paper. The situations detected in the RDF graph correspond
to answers to an analyst query, which gives a focus for the produced concept maps.

To begin with, situation type definitions need to be an-
alyzed — both those that are defined in pure OWL and
those that are defined in rules (see Section IV for details).
The main focus here is to extract the relations used in the
definition of the situation types. For instance, for the Insur-
gentWeaponsCacheSituation type, the system should extract
the visit relation. Similarly, for RelativeSpySituation, it would
extract the spiedOn relation. Getting this information from
OWL definitions is trivial, since we know the structure of
the definition of situation types, which use the notion of
ElementaryInfon, which in turn explicitly uses the object
property relation. It gets more complicated with the situation
types defined in rules. In our experiments, the BVR rule
files were processed with regular expressions in order to find
the relations. In the future, the rules themselves could be
formally represented in OWL and the solution could avoid the
use of regular expressions. Once the relations from situation
type definitions are known, the process of asserting situation
individuals is as follows:

• For each relation rel that is part of a situation type:
– For each pair of individuals a1 and a2 that are

associated with each other by the property rel:
1) Assert that there is an individual s of RDF type

sto:Situation
2) Assert that there is an individual i of RDF type

sto:ElementaryInfon, supported by situation s

3) Assert the following facts: (i anchor1 a1), (i
anchor2 a2) and (i relation rel)

Now the reasoner can infer the situation types of the situation
individuals.

VII. DERIVATION OF CONTEXTS

At this point, the answers consist of the anchors and the
relations used in the situation definitions. For instance, for
the weapons cache query and the axioms shown in Figure 6,
given that John has been to a weapons cache, the system
would return a basic concept map including Mary, John and
isConnectedTo, but not include Bob and his relationships with
them, which would explain why Mary is actually connected to
John. Hence, the next processing step is to derive the context
for the answer, i.e., find all individuals and relations that are
relevant to the situation that represents the answer to the query.
This corresponds to step 3 in Figure 5. Recall that “context”
means an abstract situation, as described earlier in the paper.
The main idea is that context is the description of a situation,
including all the relevant individuals and the relevant relations
among the individuals. All of this (the context) is captured by
the relevant facts, i.e., facts that assert which individuals and
relations are relevant and what are the relations among the
relevant individuals.

For deriving context, we implemented a set of domain-
independent rules, that backtrack some of the OWL inference
rules. For instance, if a relation that is relevant to the query is
defined as a property chain, the individuals and relations that
form the chain are inferred to be relevant as well. Similarly,
if a relevant relation is defined as a super-property of another
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property that holds between two relevant individuals, it is also
inferred to be relevant. At the time of writing, the set of the
context derivation rules is not complete, i.e., not every OWL
inference rule that produces new facts has a corresponding
relevance derivation rule. Also, some rules might produce facts
that are not necessary to explain a situation to the analyst, thus
producing some “noise”. Such issues are on our agenda for
future work.

As an example, the following describes one of the relevance
derivation rules related to the transitive properties in OWL2:

• For a situation s, and a query q, if s satisfies the query:
– For every fact (i1 rel i2) relevant to s and an

individual i3, if rel is a transitive property and if
(i1 rel i3) and (i3 rel i2) are facts asserted in the
knowledge base:
1) Add (i1 rel i3) and (i3 rel i2) as facts relevant

to s.
Figure 7 shows how derivation rules can be applied in

the weapons cache example, given the axioms in Figure 6.
First, based on the above rule applied to isConnectedTo,
the inference engine would infer that the individual Bob is
also relevant and should be part of the context (Figure 7b).
Moreover, using a different derivation rule, the reasoner would
infer that associate and madeTransactionWith are also relevant,
because they are sub-properties of a relevant property and hold
between relevant individuals (Figure 7c).

Note that not only individuals and properties are asserted
as relevant to a situation, but entire facts (triples) are also
asserted as such. It is not sufficient to just list the individuals
and properties without showing the associations between them.
In our experiments, we used the notion of OWL annotation
properties in order to annotate facts as relevant to specific
situation individuals. Since OWL does not support reasoning
over annotation properties, the only way to implement such
reasoning is to use rules. As we mentioned earlier in the paper,
our preference was to use OWL reasoning first and add rules
only out of necessity.

VIII. SIMPLIFICATION OF CONCEPT MAPS

One can easily see that as a result of context derivation
reasoning, the number of relevant facts for each situation might
grow fast and if converted into a concept map, it could look
quite convoluted (compare Figure 7a with Figure 7c). More
importantly, it would most likely include redundant facts. For
instance, Figure 7c shows that Mary and Bob are associated
using two properties isConnectedTo and associate, although
the former is just a generalization of the latter.

In order to make such resulting concept map less cluttered,
and thus easier to comprehend, we need to remove facts
that are relevant to a situation, but that are not necessary to
comprehend the graph. We call this step context simplification
and it corresponds to step 4 in Figure 5.

2Note that it is not important whether the facts on which the rule operates
were derived or asserted by the user.

Similarly to the previous steps, for this purpose we de-
veloped a number of domain-independent rules that remove
redundant facts. As an example, the following algorithm
describes the rule that removes from a situation’s context those
properties whose sub-properties, holding between the same
individuals, are relevant, yet not necessary:

• For a situation s, and a query q, if s satisfies the query:
– For every relation r1 and r2 both relevant to s, if r1

is a sub-property of r2:
⇤ For every two facts (i1 r1 i2) and (i1 r2 i2) that

are both relevant to s:
1) Remove (i1 r2 i2) from the context of s.

Back to the weapons cache example, based on the above rule
applied to the graph in Figure 7, the system would remove the
two isConnected links between Bob and the other two people,
since they both provide redundant information. The associate
and madeTransactionWith properties are more specific and
clearly explain the context for the original query.

The resulting concept map could use different graphical
styles when rendering concepts and links, in order to distin-
guish the query answer itself from its context. This approach
gives the analyst a quick focus on the most important concepts
in the graph, but also provides the context without cluttering
the answer.

IX. CONCLUSION

The main objective of the research described in this paper
was to investigate the possibility of using the ideas from
Situation Theory (Barwise, Perry and Devlin), and its onto-
logical realization in the Situation Theory Ontology, to the
task of simplifying and abstracting concept maps, provided
as RDF graphs, so that they are easier to comprehend by an
analyst while still preserving the semantics of the original
representation. This paper covers only some of the aspects
of this investigation. In particular, it shows (by example)
how an analyst’s query can be mapped to an ontological
representation, what it takes to derive facts that are relevant
to the query, and how to represent such facts in graphical
form (both with and without auxiliary facts that provide an
explanation to the analyst of how they were derived). This
investigation ended with a prototype tool (not included in this
paper) for generating, displaying and manipulating concept
maps in order to improve their comprehensibility. The next
logical task for this research is to evaluate the tool on a
representative number of queries and datasets and assess the
approach with respect to its completeness and the strength
of the rules used for the simplification of the query results.
In particular, such an evaluation would require human-in-the-
loop, i.e., the involvement of the analysts performing analyses
of situational awareness in their domains.
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