Movie Database Case: An EMF-INCQUERY Solution®

Gébor Szarnyas Oszkar Semerdath Benedek [zs6 Csaba Debreceni

Abel Hegediis ~ Zoltdn Ujhelyi ~ Gébor Bergmann

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudésok krt. 2., Budapest, Hungary

{szarnyas, semerath, izso, debreceni, abel.hegedus, ujhelyiz, bergmann}@mit.bme.hu

This paper presents a solution for the Movie Database Case of the Transformation Tool Contest 2014,
using EMF-INCQUERY and Xtend for implementing the model transformation.

1 Introduction

Automated model transformations are frequently integrated to modeling environments, requiring both
high performance and a concise programming interface to support software engineers. The objective of
the EMF-INCQUERY [2] framework is to provide a declarative way to define queries over EMF models.
EMF-INCQUERY extended the pattern language of VIATRA with new features (including transitive
closure, role navigation, match count) and tailored it to EMF models [[1].

EMF-INCQUERY is developed with a focus on incremental query evaluation. The latest develop-
ments extend this concept by providing a preliminary rule execution engine to perform transformations.
As the engine is under heavy development, the design of a dedicated rule language (instead of using the
API of the engine) is currently subject to future work. Conceptually, the environment relies on graph
transformation (GT) rules: conditions are specified as EMF-INCQUERY patterns, while model manipu-
lation and environment configuration is managed using the Xtend language [3]].

One case study of the 2014 Transformation Tool Contest describes a movie database transforma-
tion [4]. The main characteristics of the transformation related to the application of EMF-INCQUERY
are that i) it only adds new elements to the input model (i.e. couple and group are does not modify the
input model), and ii) it is non-incremental (i.e. creating a new group will not affect rule applicability).

The rest of the paper is structured as follows: Section [2] gives an overview of the implementation,
Section 3| describes the solution including measurement results, and Section] concludes our paper.

2 Architecture Overview

The overview of the rule-based solution is illustrated in Figure The input of the transformation is a
movie model. The result is a transformed movie model including various groups (couples and n-cliques)
and their average rating [4]. The transformation runs in a Java application, that uses pattern matchers
provided by EMF-INCQUERY and model manipulation specified in Xtend. The pattern matcher monitors

*This work was partially supported by the MONDO (EU ICT-611125) and TAMOP (4.2.2.B-10/1-2010-0009) projects.
This research was realized in the frames of TAMOP 4.2.4. A/1-11-1-2012-0001 ,National Excellence Program — Elaborating
and operating an inland student and researcher personal support system”. The project was subsidized by the European Union
and co-financed by the European Social Fund.

© G. Szdrnyas et al.
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
TTC 2014

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

© 00 N U WN -

2 Movie Database Case: An EMF-INCQUERY solution

£l ContainedElement]| children 0.* H Root

merat B Movie 0.*
£ MovieType o title : EString commonMovies |
- MOVIE = rating : EDouble
-V © year: Elnt E Group
- VIDEO © type : MovieType © avgRating : EDouble
~ VIDEOGAME © EAttribute0
Java application movies | 0.* x
HPerson Je— [[Couple |
= name : EString |« [1
N tifi i L 1
E Pattern RGN Rule execution E P2 0 5 Cique
matcher engine 0.*
I
Movie model Transformed - persons
movie model
« monitors » «modifies » g Actor [EActress |
(a) The specification and runtime (b) Our extended metamodel

Figure 1: Overview of our approach

the resources to incrementally update match sets. The application initially reads the input movie database,
creates the output resources, then executes the transformation, and finally serializes the results into files.
In the Ecore model of the specification, no containment hierarchy is used and all objects are held in
the contents list of the EMF resource. However, the performance of the transformation was affected by
the resource implementation used (since it will determine the implementation of the list operations). To
avoid this issue, we have extended the metamodel by a Root object (see Figure [Tb). This object serves
as a container for all Group, Movie and Person objects. According to our experiments, this increases the
speed of the pattern matching by a factor of two. For compatibility with the specification, we ensured that
our solution works with the models provided and persists outputs in a format without this root element.

3 Solution

3.1 Patterns and Transformations

Task 1: Generating Test Data The synthetic test data is generated in Xtend (see Listing [A.2.T). The
code tightly follows the specification defined in the case description [4].

Task 2: Finding Couples Couples are listed with the following pattern:

pattern personsToCouple(plname, p2name) {
find cast(plname, M1); find cast(p2name, M1);
find cast(plname, M2); find cast(p2name, M2);
find cast(plname, M3); find cast(p2name, M3);
M1 !1= M2; M2 != M3; M1 != M3;
check (plname < p2name);
}
pattern cast(name, M) { Movie.persons.name(M, name); }
pattern personName(p, pName) { Person.name(p, pName); }

Note that the cast pattern returns the names of persons that play in a given movie. This is important
since the names of the persons can be used to avoid symmetric matches in the personsToCouple pattern
by sorting. The Couple objects are created and configured in Xtend (see createCouples in line {45| of

Listing[A.2.2). This includes setting the p1 and p2 references using a personName pattern and computing
the commonMovies by simple set intersection operators (retainAll).

W N

W N0 WN

G. Szdrnyas et al. 3

Task 3: Computing Average Rankings The average rankings are computed in Xtend by calculating
the mean of the rating attributes of a couple’s common movies (see calculateAvgRatings in line [122] of
Listing[A.2.2). The movies are enumerated with the following pattern:

pattern commonMoviesOfCouple(c, m) { Couple.commonMovies(c, m); 1}

Extension Task 1: Compute Top-15 Couples This task is mostly implemented in Xtend (see top-
GroupByRating in line[70]and topGroupByCommonMovies in line [84] of Listing[A.2.2)), however, it uses
the groupSize pattern in order to filter the groups with the particular number of members.

pattern groupSize (group, S) {

Group (group) ;

S == count find memberO0fGroup(_, group);
}

This pattern uses the count find construct which computes the number of matches for a given pattern.
Additionally, specific comparators are used to sort and determine the top-15 lists by rating or number of
common movies (see Listing[A.2.4).

Extension Task 2: Finding Cliques The pattern for finding cliques is implemented similarly to the
persons ToCouple pattern The pattern for 3-cliques is defined as follows:

pattern personsTo3Clique(P1, P2, P3) {
find cast(P1, M1); find cast (P2, M1); find cast(P3, M1);
find cast(P1, M2); find cast (P2, M2); find cast(P3, M2);
find cast(P1, M3); find cast (P2, M3); find cast(P3, M3);
M1 !'= M2; M2 != M3; M1 != M3;
check (P1 < P2); check(P2 < P3);
check (P1 < P3);

}

The creation of cliques is done similarly to couples (see createCliques in line of Listing [A.2.2).
However, this pattern has a redundant check constraint, as P < P, and P, < P5 already imply P; < Ps.
This works as a hint for the query engine and allows it to filter the permutation of the results (e.g.
(az,a1,a3),(a1,a3,az),...)) earlier.

For performance considerations, additional patterns were defined manually for 4- and 5-cliques. For
larger cliques (n > 5), patterns could be automatically generated using code generation techniques.

General solution for n-cliques. We also provide the outline for a more general solution (for arbitrary
n values). For the sake of clarity, we will refer to couples as 2-cliques. In this approach, the cliques are
built iteratively. Suppose we already have all k-cliques in the graph (e.g. we already added the 2-, 3-, 4-
and 5-cliques with the previous patterns). To get the (k+ 1)-cliques, we look for a group go and a person
po that (i) have at least 3 movies in common, (ii) g = goU{po} is a group that is not a subset of any other
groups (see Figure[2)).

Formally, (ii) can be expressed as (Ag') : g C ¢’. Using g = goU{po}, we derive the following
expression (Ag"): (g0 C &)A(po € &'). The gy C g’ expression can be formulated as follows: (Vp € go) :
p € g'. As the EMF-INCQUERY Pattern Language does not have a universal quantifier, we rewrite this
using the existential quantifier: (Ap € go): p £ &'.

The resulting expression for condition (ii) is the following: (Ag’): ((Ap€go):p €&)N (po € g).
We have implemented this general solution (see Listing [A.2.3). Pattern subsetOfGroup implements
condition (ii), while nextClique pattern is capable of determining the (k + 1)-cliques given a model

4 Movie Database Case: An EMF-INCQUERY solution

@ 2 2 92 9

© o©
Jo Po
'/

g

Figure 2: Matching 3-clique groups in the positive test pattern. gg is a couple.

containing all k-cliques. This approach is functionally correct, however, it only works for very small
input models and hence is omitted from our measurements.

Extension Task 3: The average rankings are computed the same way as in fask 3.
Extension Task 4: The top 15 average rankings are computed the same way as in extension task 2.

3.2 Optimizations

To increase the performance of the transformations, we carried out some optimizations. (1) The com-
mon movies of the two Person objects are computed from Xtend instead of EMF-INCQUERY. (2) The
patterns for 3-, 4- and 5-cliques are implemented manually. (3) Common subpatterns were identified and
extracted them into separate patterns, as the engine can reuse the pattern for each occurrence, and makes
the query definition file easier to maintain. For an example, see the cast pattern in

3.3 Benchmark Results

The implementation was benchmarked in the SHARE cloud, on an Ubuntu 12.04 64-bit operating system
running in a VirtualBox environment. The virtual machine used one core of an Intel Xeon E5-2650 CPU
and had 6 GB of RAM. The transformations were ran in a timeout window of 10 minutes.

3.4 Synthetic model

Results are displayed in Figure[3] The diagram shows the transformation times for creating couples and
cliques for synthetic models. The results show that the transformations run in near linear time.

The dominating factor of the running time is the initialization of the query engine. However, after
initialization, creating groups can be carried out efficiently. Furthermore, our experiments showed that
the limiting factor for our solution is the memory consumption of the incremental query engine. Given
more memory, the solution is capable of transforming larger models as well.

3.5 IMDb model

In the given time range and memory constraints, the transformation of the IMDb model could only
generate the couples and 3-cliques for the smallest instance model. Finding the couples took 3 minutes,

G. Szarnyas et al. 5

Runtime of Transformation Tasks
100

90

. g

60

50

Time (s)

40
30
20

10
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size (N)

—e—Couples —e—3-Clique 4-Clique —e-5-Clique

Figure 3: Benchmark results

while finding 3-cliques took 6. However, in case of a live and evolving model, our solution is capable of
incrementally running the transformation which in practice results in near instantaneous response time.

3.6 Transformation Correctness and Reproducibility

Our solution was developed as Eclipse plug-ins, however, it is also available as a command line applica-
tion compiled using the Apache Maven.The transformation runs correctly for the provided test cases on
SHAREﬂ and the source code is also available in a Git repositoryﬂ The results of the transformations
were spot-checked for both synthetic and IMDb models.

4 Conclusion

In this paper we have presented our implementation of the Movie Database Case. The solution uses
EMF-INCQUERY as a model query engine: the transformation is specified using declarative graph pat-
tern queries over EMF models for rule preconditions, and Xtend code for model manipulations. The
main conclusion of the performance evaluation is that EMF-IncQuery’s incremental approach is not a
good fit for this case study as the transformation is very model manipulation dominant.

References

[1] Géabor Bergmann, Zoltdn Ujhelyi, Istvdn Rath & Daniel Varr6 (2011): A Graph Query Language for EMF
models. In: Theory and Practice of Model Transformations, Fourth Int. Conf., LNCS 6707, Springer.

[2] Eclipse.org (2014): EMF-IncQuery. http://eclipse.org/incquery/|
[3] Eclipse.org (2014): Xtend — Modernized Java. https://wuw.eclipse.org/xtend/\

[4] Matthias Tichy Tassilo Horn, Christian Krause (2014): The TTC 2014 Movie Database Case. In: 7th Trans-
formation Tool Contest (TTC 2014), EPTCS.

Ihttp://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntul2LTS_TTC14_
64bit_TTC14-EIQ-imdb.vdi
“https://git.inf.mit.bme.hu/w?p=projects/viatra/ttcl4-eiq.git (username: anonymous, no password).

http://eclipse.org/incquery/
https://www.eclipse.org/xtend/
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC14_64bit_TTC14-EIQ-imdb.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC14_64bit_TTC14-EIQ-imdb.vdi
https://git.inf.mit.bme.hu/w?p=projects/viatra/ttc14-eiq.git

Movie Database Case: An EMF-INCQUERY solution

A Appendix — Movie Database Case Transformation Code

A.1 EMPF-INCQUERY Graph Patterns

package hu.bme.mit.ttc.imdb.queries

import "http://movies/1.0"

// Shorthand patterns
pattern personName(p, pName) {
Person.name (p, pName) ;

}

// Actor with name is part of the case
pattern cast(name, M) {
Movie.persons.name (M, name) ;

}

// Movie m is a common movie of Couple
pattern commonMoviesOfCouple(c, m) {
Couple.commonMovies (c, m);

}

/ * *

* This pattern determines if a person
*/

pattern member0fGroup (person, group) {
Couple.pl(group,person);

} or {
Couple.p2(group,person) ;

} or {
Clique.persons (group, person);

}

of movie M

is a member of a group.

/ %%
* This pattern determines the size of a group.
*/
pattern groupSize (group, S) {
Group (group) ;
S == count find memberO0fGroup(_, group);

}

// Couple patterns
/ %%

* This pattern looks for two person names (plname, p2name), who were in the cast of

* three different movies (M1, M2, M3).

* The names are ordered lexicographically in order to list the same pair only one
* (the match set contains only {(al, a2)} instead of {(al, a2), (a2, al)l}.

*/

pattern personsToCouple (plname, p2name)

{

find cast(plname, M1); find cast(p2name, M1);
find cast(plname, M2); find cast(p2name, M2);
find cast(plname, M3); find cast(p2name, M3);

M1 != M2; M2 != M3; M1 != M3;

check (plname < p2name) ;

}

/ * %

* This pattern looks for the common movies of a couple.
* The couple is determined with the personsToCouple pattern.

*/

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
4
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

114

115
116
117
118
119

G. Szdrnyas et al.

pattern commonMoviesToCouple (plname,
find personsToCouple (plname, p2name);

Person
Person
Person

.movies(pl, m);
.movies(p2, m);
.name (pl,plname) ;
Person.name (p2,p2name) ;

check(plname < p2name) ;

}

/ **

p2name ,

m) {

* Returns with the number of common movies of a couple.

*/

pattern countOfCommonMoviesOfCouple (pl,
Couple.pl(c, pl);
Couple.p2(c, p2);

== count find commonMoviesOfCouple (c,

}

// Clique patterns

VAL

* Similarly to the couple pattern,
*/

pattern personsTo3Clique(P1, P2,
find cast(P1, M1);
find cast(P1, M2);
find cast(P1, M3);

P3) {
find cast (P2, M1);
find cast (P2, M2);
find cast (P2, M3);

M1

= M2; M2

= M3; M1

1= M3;

check (P1 < P2); check(P2 < P3);
}

/ **
* Similarly to the couple pattern,
*/

pattern personsTo4Clique(P1, P2,
find cast(P1, M1); find cast (P2,
find cast(P1, M2); find cast (P2,
find cast(P1, M3); find cast (P2,

P3, P4)
M1);
M2) ;
M3);
1=

M1 M2

M1

M2; M3; 1= M3;

check (P1 < P2); check(P2 < P3);
}

/ * *
* Similarly to the couple pattern,
*/
pattern personsTo5Clique(P1, P2,
find cast(P1, M1); find cast (P2,
P5, M1);
find cast (P1,
P5, M2);
find cast (P1,
P5, M3);

P3, P4,
M1);

M2); find cast (P2, M2);

M3); find cast (P2, M3);

M1 != M2; M2 != M3; M1 != M3;

check (P1 < P2); check(P2 < P3);

}

p2’

find
find
find

{
find
find
find

check (P3 <

P5)
find

find

find

check (P3 <

n) {

_m) ;

cast (P3,
cast (P3,
cast (P3,

cast (P3,
cast (P3,
cast (P3,

P4);

{
cast (P3,

cast (P3,

cast (P3,

P4);

this pattern looks for

M1);
M2) ;
M3) ;

this pattern looks for

M1);
M2) ;
M3);

this pattern looks for

M1);
M2) ;

M3) ;

check (P4

3-cliques.

4-cliques.

find cast (P4,
find cast (P4,
find cast (P4,

5-cliques.

find cast (P4,

find cast (P4,

find cast (P4,

< P5);

M1);
M2) ;
M3) ;

M1);
M2) ;

M3) ;

find cast(

find cast(

find cast(

8 Movie Database Case: An EMF-INCQUERY solution

A.2 Xtend Code
A.2.1 Generator Code

1 /*x%

2 * This class implements the test model generator logic.
3 x/

4 class Generator {

5

6 // The EMF resource on which the transformation operates
7 public Resource r

8

9 // We define this extension to help with model element creation
10 extension MoviesFactory = MoviesFactory.eINSTANCE

11

12 // method to generate an example of size N

13 def generate(int N) {

14 createExample (N) ;

15 }

16

17 // create N test cases in the model

18 def createExample (int N) {

19 (0 .. N - 1).forEach[createTest (it)]

20 }

21

22 // create a test cases in the model with parameter n
23 def createTest(int n) {

24 createPositive (n)

25 createNegative (n)

26 }

27

28 // create a positive match for the test case

29 // initialize some movies and actors/actresses

30 // create interconnections according to a logic that will yield a positive match
31 def createPositive(int n) {

32 val movies = newArrayList ()

33 (0 .. 4).forEach[movies += createMovie (10 * n + it)]
34

35 val a = createActor ("a" + (10 * n))

36 val b = createActor ("a" + (10 * n + 1))

37 val ¢ = createActor ("a" + (10 * n + 2))

38 val d = createActress("a" + (10 * n + 3))

39 val e = createActress("a" + (10 * n + 4))

40

41 val actors = #[a, b, c, d, el

42 val firstTwo = #[a, b]

43 val lastTwo = #[d, el

44

45 movies.get (0) .persons += firstTwo;

46 (1 .. 3).forEach[movies.get(it).persons += actors]
a7 movies.get (4) .persons += lastTwo

48

49 r.contents += actors

50 r.contents += movies

51 }

52

53 // create a positive match for the test case

54 // initialize some movies and actors/actresses

55 // create interconnections according to a logic that will yield a negative match
56 def createNegative (int n) {

57 val movies = mnewArrayList ()

58 (56 .. 9).forEach[movies += createMovie (10 * n + it)]
59

60 val a = createActor ("a" + (10 * n + 5))

61 val b = createActor("a" + (10 * n + 6))

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

© O N U W N e

NN NN NN B R S R 2 e s s
OB DN RO © N O R W R O

G. Szdrnyas et al.

val ¢ = createActress("a" + (10 * n + 7))
val d = createActress("a" + (10 * n + 8))
val e = createActress("a" + (10 * n + 9))
val actors = #la, b, c, d, el

movies.get (0) .persons += #[a, b]
movies.get (1) .persons += #[a, b, cl
movies.get (2) .persons += #[b, c, dl
movies.get (3) .persons += #[c, d, el
movies.get (4) .persons += #[d, el

r.contents += actors
r.contents += movies

}

// create a movie with the given rating
def createMovie (int rating) {

val movie = createMovie
movie.rating = rating
movie

}

// create an actor with the given name
def createActor (String name) {

val actor = createlActor
actor.name = name
actor

}

// create an actress with the given name
def createActress(String name) {

val actress = createlActress
actress.name = name
actress

A.2.2 Transformation Code

/ * %

* This class implements the transformation logic.

*/

class Transformation {

/ % *x
* Initialize the transformation processor on a resource.
* The runtime of the transformation steps are logged.
* Q@param r The target resource of the transformation.
* Q@param bmr The benchmark logger.

*/
new (Resource r, BenchmarkResults bmr) {
this.r = r;
this.bmr = bmr;
this.root = r.contents.get(0) as Root
}

// to store the benchmark results
protected val BenchmarkResults bmr;
// to store the model

protected Resource r

////// Resources Management
protected val Root root;
/ % %

10 Movie Database Case: An EMF-INCQUERY solution

* Helper function to add elements to the target resource.
* Q@param
*/

def addElementToResource (ContainedElement containedElement) {
root.children.add(containedElement)

}

def addElementsToResource(Collection<? extends ContainedElement> containedElements) {
root.children.addAll (containedElements)

}

def getElementsFromResource () {
root.children

}

[171777777777777777777177777

// to help with model manipulation
extension MoviesFactory = MoviesFactory.eINSTANCE
extension Imdb = Imdb.instance

// create couples
public def createCouples () {
val engine = AdvancedIncQueryEngine.createUnmanagedEngine (r)
val coupleMatcher = engine.personsToCouple
val commonMoviesMatcher = engine.commonMoviesToCouple
val personNameMatcher = engine.personName

val newCouples = new LinkedList<Couple>
coupleMatcher.forEachMatch [
val couple = createCouple ()
val pl = personNameMatcher.getAllValuesOfp(plname) .head
val p2 = personNameMatcher.getAllValuesOfp (p2name) .head
couple.setP1(pl)
couple.setP2(p2)
val commonMovies = commonMoviesMatcher.getAllValuesOfm(plname, p2name)
couple.commonMovies.addAll (commonMovies)

newCouples += couple

println("# of couples = " + newCouples.size)
engine.dispose
addElementsToResource (newCouples) ;

}

// calculate the top group by rating

def topGroupByRating(int size) {
println("Top-15 by Average Rating")
println("========================")
val n = 15;

val engine = IncQueryEngine.on(r)

val coupleWithRatingMatcher = engine.groupSize

val rankedCouples = coupleWithRatingMatcher.getAllValuesOfgroup (size).sort(
new GroupAVGComparator)

printCouples (n, rankedCouples)
}

// calculate the top group by common movies

def topGroupByCommonMovies (int size) {
println("Top-15 by Number of Common Movies")
println("=================================")

val n = 15;
val engine = IncQueryEngine.on(r)
val coupleWithRatingMatcher = engine.groupSize

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116

117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

G. Szdrnyas et al.

}

//
de

}

//
de

}

//

de

}

//

protected def calculateAvgRating(Collection<Movie> commonMovies,

}

//

val rankedCouples = coupleWithRatingMatcher.getAllValuesOfgroup(size) .sort(

new GroupSizeComparator
)
printCouples(n, rankedCouples)

pretty-print couples
f printCouples(int n, List<Group> rankedCouples) {
(0 .. n - 1).forEach [
if (it < rankedCouples.size) {
val ¢ = rankedCouples.get(it);
println(c.printGroup (it))
}

pretty-print groups
f printGroup (Group group, int lineNumber) {
if (group instanceof Couple) {

val couple = group as Couple
return ’’’«lineNumber». Couple avgRating «group.avgRating», «group.commonMovies.
size» movies («couple.pl.name»; <«couple.p2.name»)’’’
}
else {
val clique = group as Clique
return ’’’«lineNumber». «clique.persons.size»-Clique avgRating «group.avgRating»,
group.commonMovies.size» movies («
FOR person : clique.persons SEPARATOR ", "»«person.name>»<ENDFOR»)’’’
}

calculate average ratings
f calculateAvgRatings () {

getElementsFromResource.filter (typeof (Group)) .forEach[x|calculateAvgRating (x.

commonMovies, x)]

calculate average rating
var sumRating = 0.0

for (m : commonMovies) {

sumRating = sumRating + m.rating
}
val n = commonMovies.size
group.avgRating = sumRating / n

create cliques

public def createCliques(int cliques) {

val engine = AdvancedIncQueryEngine.createUnmanagedEngine (r)
val personMatcher = getPersonName (engine)
var Collection<Clique> newCliques

if (cliques =

=3) {
val clique3 =

getPersonsTo3Clique (engine)

newCliques = clique3.allMatches.map[x|generateClique(
personMatcher.getOneArbitraryMatch(null ,x.pl).p,
personMatcher.getOneArbitraryMatch (null ,x.p2).p,
personMatcher.getOneArbitraryMatch (null ,x.p3).p)].toList;
}
else if(cliques == 4) {
val clique4 = getPersonsTo4Clique (engine)

Group group) {

11

<

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

=
B O WO ~NO O WN -

el o
> W N

12

newCliques = clique4.allMatches.map[x|generate
personMatcher.getOneArbitraryMatch (null ,x.pl
personMatcher.getOneArbitraryMatch (null,x.p2
personMatcher.getOneArbitraryMatch (null ,x.p3
personMatcher.getOneArbitraryMatch (null,x.p4
}
else if(cliques == 5) {
val cliqueb = getPersonsTo5Clique (engine)
newCliques = cliqueb.allMatches.map[x|generate
personMatcher.getOneArbitraryMatch (null ,x.pl
personMatcher.getOneArbitraryMatch (null ,x.p2
personMatcher.getOneArbitraryMatch (null,x.p3
personMatcher.getOneArbitraryMatch (null,x.p4
personMatcher.getOneArbitraryMatch (null,x.p5
}
println("# of "+cliques+"-cliques = " + newCliqu
engine.dispose
newCliques.forEach[x|x.commonMovies.addAll(x.col
addElementsToResource (newCliques) ;
}
// generate cliques
protected def generateClique(Person... persons) {
val ¢ = createClique
c.persons += persons
return c
}
// collect common movies
protected def collectCommonMovies(Clique clique) {
var Set<Movie> commonMovies = null;
for (personMovies clique.persons.map [movies]) {
if (commonMovies == null) {
commonMovies = personMovies.toSet;
}
else {
commonMovies.retainAll (personMovies)
}
}
return commonMovies
}
}

A.2.3 General Clique Patterns

The resulting expression for condition (ii) is the following

Movie Database Case: An EMF-INCQUERY solution

Clique (

).p,

)P,

).p,
).p)].tolist;

Clique (

).p,

).p,

).p,

)P,
).p)].tolist;

es.size)

lectCommonMovies)]

t (Ag'): ((Bpo€go):poge)N(peg).

This is equivalent to the following EMF-INCQUERY pattern:

/** Group gO is a subset of Group gx. */
pattern subsetOfGroup (g0 Group, gx Group) {
neg find notSubset0fGroup(p0, g0, gx);

}

/** This pattern returns is a helper for the subsetO

pattern notSubsetO0fGroup (p0 Person, g0 Group, gx
find memberO0fGroup (p0, g0);
neg find memberO0fGroup (p0, gx);

}

/** Person p is a member of Group g.
pattern member0fGroup(p, g) {
Couple.pl(g, p);

A Group is eith

fGroup pattern. */
Group) {
er a Couple or a Clique. */

G. Szdrnyas et al.

15 } or {

16 Couple.p2(g, p);

17 } or {

18 Clique.persons (g, p);
19 }

Based on the subsetOfGroup pattern, we may implement the nextClique pattern like follows:

1 /x* the nextCliques pattern */

2 pattern nextCliques(g : Group, p : Person) {

3 neg find alphabeticallyLaterMemberOfGroup(g, p);

4 n == count find commonMovieOfGroupAndPerson(g, p, m);
5 check(n >= 3);

6 neg find union(g, p);

7}

8

9 /** p is a member of g for which another alphabetically previous member exists */
10 pattern alphabeticallyLaterMemberOfGroup(g : Group, p : Person) {
11 find member0fGroup(m, g);

12 Person.name (p, pName) ;

13 Person.name (m, mName) ;

14 check (mName >= pName) ;

15 }

16

17 /** m is a common movie of g and p */

18 pattern commonMovieOfGroupAndPerson(g, p, m) {

19 find commonMoviesOfGroup (g, m);

20 Person.movies (p, m);

21 }

22

N
w

/** m is a common movie of g */

24 pattern commonMoviesOfGroup(g, m) {
25 Group.commonMovies (g, m);

26 }

27

28 /*% p is in g0 */

29 pattern union(g0, p) {

30 find memberO0fGroup(p, gx);

31 find subset0fGroup (g0, gx);

32 }

A.24 Comparator Code for Top-15

class GroupSizeComparator implements Comparator <Group>{

override compare(Group arg0, Group argl) {
if (arg0.commonMovies.size < argl.commonMovies.size) {return 1}
else if (arg0.commonMovies.size == argl.commonMovies.size) {return 0}
else return -1;
}
}

© 0 N O ;A W N R

-
o

class GroupAVGComparator implements Comparator <Group >{

-
[

12 override compare(Group arg0, Group argl) {

13 if (arg0.avgRating<argl.avgRating) {return 1;}

14 else if (arg0.avgRating == argl.avgRating) {return 0;}
15 else return -1;

16 }

	Introduction
	Architecture Overview
	Solution
	Patterns and Transformations
	Task 1: Generating Test Data
	Task 2: Finding Couples
	Task 3: Computing Average Rankings
	Extension Task 1: Compute Top-15 Couples
	Extension Task 2: Finding Cliques
	General solution for n-cliques.
	Extension Task 3:
	Extension Task 4:

	Optimizations
	Benchmark Results
	Synthetic model
	IMDb model
	Transformation Correctness and Reproducibility

	Conclusion
	Appendix – Movie Database Case Transformation Code
	EMF-IncQuery Graph Patterns
	Xtend Code
	Generator Code
	Transformation Code
	General Clique Patterns
	Comparator Code for Top-15

