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Abstract

This paper presents a study that aimed to explaange of techniques for analysing the spatialticelahip
between population density and geographical featafénterest. Three categories of spatial anakggibniques
were explored: traditional methods including dgsteve statistics and spatial distribution maps, tispa
autocorrelation statistics namely Moran’s globand Anselin’s local | and regression analysis ipooating
ordinary least squares (OLS) regression and egsidual testing using the global Moran’s | autoelation
statistic. The correlation between the spatialritistion of Australian cinema screens and a glajraded
population density dataset were used as the cadg far the analysis.

All three categories of spatial analysis techniguwese found to be useful, each with its’ own sttésgand
weaknesses. The analysis was able to visually @tidtgcally identify the spatial distribution ofinema screens
and population density, as well as establish ttgredeto which the two features were correlated. Stey
concluded that a methodology which utilises thevalgpatial analysis techniques in conjunction withlobal
gridded population dataset, provides a sound fraomevior investigating the correlation between papioin
distribution and a geographical feature of interest

Authors

Amanda Johnson holds a Master of Applied Sciend8)@om RMIT University and a Bachelor of Economic
from Monash University. Amanda’s research interestBide the application of spatial information tgyas and
spatial statistics in the field of Public HealttheSis currently working at the Murdoch Children’sdearch
Institute (MCRI) and has 11 years of experienca@lCT consulting industry as a manager for Acaent

Colin Arrowsmith is Associate Professor in the Swhof Mathematical and Geospatial Sciences at RMIT
University. He holds a Doctor of Philosophy fronMR as well as two masters’ degrees and a bactslor’
degree from the University of Melbourne, and a @Gedd Diploma of Education from Hawthorn Institute o
Education. Colin has authored more than 40 refemblications and 6 book chapters in the field$Gis,
tourism analysis and in film studies. Colin’s s interests include the application of spatibimation
systems, including geographic information syste@§S], to investigating the impact of tourism onunat
based tourist destinations, tourist behaviour, el &g investigating the issue of managing micisidrical data
within GIS utilising cinema data.

Keywords: Spatial analysis, Moran’s |, Anselin’s |, Globaidyted dataset, Regression analysis, Cinema and
screen studies.

Introduction

Spatial analysis is the process by which the loaati distribution of a set of features is invediigh in order to
understand the underlying processes which leddio ¢feneration. It has been applied in multiplédBeof study
including: epidemiology, (Hay et al., 2004), ecotpf_uck et al., 2010), criminology, (Wu and Grulze2010)
and geography, (Getis, 1992). Multiple tools areilable for use in spatial analysis and this papi#rexplore
a number of them, with an emphasis on techniqueshwdilow the relationship between population dgnand
the spatial distribution of a geographic featuréntérest to be investigated.



Three categories of spatial analysis techniques il explored, using the correlation between thatiap
distribution of Australian cinema screens and abglogridded population density dataset as a casty.st
Category one is traditional analysis techniques iacdrporates descriptive statistics and spatiatrihution

maps. Category two is spatial autocorrelation siafi and incorporates Moran’s Global |, (Moran48PRand

Anselin’s Local I, (Anselin, 1995). The final catey is regression analysis and incorporates orgiteast

squares (OLS) regression and error residual tessimg the global Moran’s | autocorrelation stétist

A literature review of existing spatial analysisdies was unable to identify any studies in the arecinema
and screen studies however a number of Austrapatiad analysis studies in other fields were iderdi Hu,
(2011) used spatial autocorrelation statistics malysis the spatial distribution of notified dengtever
infections in the state of Queensland and LucK.e{2010) used ordinary least squares regressi@ssess the
correlation between human population density and §gpecies richness across Australia.

Materials and Methods
Study area

Australia is located in the Southern Hemispheréwben the South Pacific Ocean and the Indian Ocatan,
latitudes of 10-45° S and longitudes of 113-153Tke majority of Australia’s population is locatéd the
major metropolitan coastal areas, particularly hie east south-east cities of: Brisbhane, Sydneybéraa,
Melbourne and Adelaide. Australian Bureau of StaSsdata indicates that as at June 2010, 14.3omill
people, or 64% of Australia's population lived lire tcapital cities, (ABS, 2012). In contrast, tleaitcal desert
regions of the country located more than 1000 kmmfthe coast, have extremely sparse populationitteens
(ABS, 2012).

Data Collection
Two primary sources of data were used in this stathema screen locations and population density.

The cinema screen location dataset was a shapefil@ining the longitude and latitude values of thal&@n

cinema screen addresses, along with the numberedss situated at each cinema, as at the staétlef stored
as point features. In total there were 501 cinewils 2,014 screens between them, the details o€hwhiere
collated as part of ARC research project (DP12040)18nd obtained from a third party data collector.

Population density data was sourced from the Sooimemic Data and Applications Centre (SEDAC) at
Columbia University. Three Gridded Population of Morld version 3 (GPW v3) datasets were downloaded
from the SEDAC website, all of which were in a gibgridded raster format as at the Year 2000, witipatial
resolution of 2.5 arc-minute grid cells (~5 kmita equator):

e Population Count Grid, v3 (2000); each cell estaadtuman head count, (Center for InternationalhEart
Science Information Network - CIESIN - Columbia Uaiisity et al., 2005),

e Land and Geographic Unit Area Grids, v3 (2000)}heeall measures land in km2, (Center for Internstlo
Earth Science Information Network - CIESIN - Columbiniversity and Centro Internacional de
Agricultura Tropical - CIAT, 2005a) and

* Population Density Grid, v3 (2000); each cell esti@s the number of people per km?, (Center for
International Earth Science Information NetworklESIN - Columbia University and Centro Internacibna
de Agricultura Tropical - CIAT, 2005b).

A global gridded population density dataset waglusehis study because one of the goals of the ARect
was to develop a methodology for spatial analysi tvas globally applicable. Therefore a populatiensity
dataset that was consistent across national boiesdaas selected. Global gridded density datasetspatial
interpolation to transform native population cendasa of varying resolutions into a set of standgnidded
latitude-longitude cells, (Balk et al., 2006). larri this provides the analyst with the ability telext the
geographic boundaries most appropriate for a gstedy, rather than being restricted by national iatstmative
boundaries, (Linard et al., 2010).



There are four key global gridded population dgndétasets available, (Tatem et al., 2012):

e The Global Rural Urban Mapping Project (GRUMP), ethhas a spatial resolution of ~1km., (Center
for International Earth Science Information NetwelRIESIN - Columbia University et al., 2011),

* LandScan, with a spatial resolution of ~1km., (Dwbst al., 2000),

* The United Nations Environment Programme (UNEP)b@ldPopulation Databases, (UNEP, 2010),
with a spatial resolution of ~5km and

» The Gridded Population of the World version 3 (GBW@th a spatial resolution of ~5km, (Center for
International Earth Science Information Network HESIN - Columbia University and Centro
Internacional de Agricultura Tropical - CIAT, 2005b

The original aim of the study was to use the sretiliwailable spatial resolution size and therefoeeGRUMP
dataset was selected because it has a spatialiesadf ~1 km and is freely available, whereasd%can was
only available for a fee. However the software wasble to cope with high volume of data generatedl a
therefore the GPW3 dataset with a coarser spagidlution of ~5 km was used. The GPW3 dataset was
selected above the UNEP dataset because it is lmsedore recent census data, year 2000 vs. yedr 199
respectively.

Studies which have utilised global gridded popuolatdatasets for global scale analysis include: Béagl.,
(2013) who used spatial mapping techniques to aisabf the global distribution of dengue fever &mbw et
al., (1999) who used spatial mapping techniquesadysis of the global distribution of malaria.

Data Preparation

In order to utilise the spatial analysis tools istigated by this study it was necessary to transfand spatially
join the four original datasets of varying formait®#o one shapefile of consistently formatted d&tast the
three GPW data files were converted from rastea datinteger point data so that it would be possiol
spatially join GPW attribute values with cinemaesar numbers. A fishnet shapefile was then creattédthe
same spatial resolution as the GWP data files §2&cEminute grid cells) and overlayed on the studaaThe
fishnet cells were then used as a template forllabgecell spatial join between the 3 GPW datasetd the
cinema screen location dataset. Finally two additiosalues were calculated for each cell: screamsite per
kmz2 and screen density per person.

The end result was a shapefile of integer points, for each of gridded cells in the original SEDp@pulation
density dataset. Attached to each point were dixat&ibute values: number of cinema screens, lareh in
kmz, population count, population density per ksateen density per km2 and screen density per perso

The software used to prepare the data and subdbgummduct the spatial analysis was ArcGIS® and
ArcMap™ by Esri.

Traditional Spatial Analysis Tools

Traditional spatial analysis tools were utilisecbider to gain an understanding of the underlyiata dtructure
of the features in the study and to visualise tiseatial distribution, using descriptive statistasd spatial
mapping techniques respectively. The descriptiwatistics utilised were: summary statistics, boxtglo
histograms and cumulative percentage diagramsspatal mapping techniques utilised were: graduptadt
patterns, spatial density patterns, geographicsataindeviation ellipses and geographic mean centres

Four datasets were analysed using the above fwéstwo primary sources of data: cinema screertitotaas
a graduated point pattern and population densitykp® and the two datasets created by manipulatieg
original datasets: screen density per km? and sateasity per person.

Spatial Autocorrelation Statistics

Spatial autocorrelation statistics were used tosmesnthe degree of spatial association betweerfietiteres.
They differ from traditional statistics because yth@multaneously consider both locational and (adte
information and include the concept of space inrtieathematical formals (Fischer, 2010). Two spatia
autocorrelation statistics were used in the sttigs:global Moran’s | statistic and the local Ans&lil statistic.
Global statistics measure the degree of spatiaicaEtion between features across the study regsam &@hole
and local statistics measure the variation in feaspatial patterns within the study area.



Both are inferential statistics with a null hypatlseof complete spatial randomness (CSR). A valogecto -1
indicates the presence of strong negative spatiaicarrelation (dispersion) between the featurethénstudy
area. A value close to +1 indicates strong posisipatial autocorrelation (clustering) between festuand a
value near O indicates spatial randomness betvesgures, (Anselin, 1995).

Moran’s global | was calculated at multiple distartbresholds ranging from 5 km to 100 km in order t
identify the distance threshold at which spatigbaarrelation was most pronounced. Five datasets wested:
cinema screen point pattern, cinema screens adgreger fishnet cell, population density per kngieen
density per km2 and screen density per person.n@Girgcreen data was categorised and tested in rauMgys
to determine what format was the most effective fonedentifying spatial autocorrelation; if a datd contains
relatively static values is can be difficult to idify global spatial autocorrelation.

Anselin’s local | was calculated using a distarfueshold of 20 km, the distance at which the gldatan’s |
value peaked during the global spatial autocoimatesting process. Three datasets were testedbdat
spatial autocorrelation: screens per kmz2, populadiensity per km2 and screens per person.

Regressions Analysis

Two regression analysis techniques were used tlomexthe correlation and relationship between cimeareen
density and population density: Ordinary Least $gu@LS) linear regression and spatial autocoimiat
testing of the error residual values using the Maréa statistic. If spatial autocorrelation is peaesin the error
residuals of a model, it is an indication that thelanatory variable is unable to explain the iehérspatial
structure of the dependent variable and therefararodel is missing one or more explanatory spasiahbles.

Two OLS regression models were tested: one whicluded all values in the population density per km?
dataset and a second which excluded the outlieresaih the dataset. In both models the explanatangable
was population density per km? and the dependeidhla was the cinema screen density per kmz.

Results
Traditional Spatial Analysis Tools

Table 1 shows the summary statistics for the faataskts analysed using traditional methods. Theagee
number of screens per cinema is 4 and the meditire 3naximum number of screens per cinema is 26fsnd
distribution has a positive skewness value of Ed¥.those fishnet cells which have 1+ cinemas kxtatithin
them, the average number of screens per km? isshd@he median is 0.29, the maximum is 4 screen&p?
and the distribution has a positive skewness vaflie29. The average population density is 2.7 fgeppr km?
and the median is 0, the maximum cell value is 4pé8ple per km? and the distribution has a positive
skewness value of 42.45. For those fishnet cellelwhave 1+ cinemas located within them, the nundfer
screens per 1000 people is 18.3 and the median ighe maximum is 1500 screens per 1000 peopletend
distribution has a positive skewness value of 12.1.

Table 1. Summary statistics of the four datasets analysed using
traditional methods

No. of No. of No. of No. of

Summary screens per |screens per (people per [screens per
Statistic cinema km? km? 1000 people
Mean 4.00 0.46 2.70 18.32
Median 3.00 0.29 0.00 1.05
Mode 1.00 0.06 0.00 125.00
Skewness 1.60 3.29 42.45 12.05
Minimum 1.00 0.05 0.00 0.04
Maximum 26.00 4.00 4943.00 1500.00




Figure 1 depicts the spatial distribution of Auki&na cinema screens as a graduated point patteapped on
top of the spatial density distribution of Austeadi population as a raster pattern. The one andstandard
deviation ellipses and the geographic mean cemifabe two datasets are also displayed, screemnsnia
population in blue. When these datasets are mapgmether there appears be a strong correlationdasgtw
population distribution values and cinema pointise Hark brown more densely populated areas havephaul
cinema points mapped on them, in particular thdoywelmultiscreen cinemas and red multiplex cinemas.
Correspondingly, the lighter brown less populatezha of Australia have fewer cinema points mappethem
and they are they are often green one screen cierhe triangles representing the geographical reeatre

of the datasets are located in close proximatelyhan south-east corner of mainland Australia, a&sthe
standard deviation ellipses.
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Figure 1. Spatial distribution of Australian Figure 2. Spatial distribution of Australian
Cinema mapped on Population Density Cinema Screens per 1000 people

Figure 2 depicts the spatial distribution of Auk#na cinema screens per 1000 people. In the magtrapolitan
areas the distribution of screens per 1000 pegudeas to be the inverse of population densityidigion. The
central CBD regions have the lowest density ofestseper 1000 people, displayed in pale blue. Salearity
then increases and changes to darker blue as ciisteam the CBD increases. The highest screen yepsi
1000 people cells are displayed in orange and retl axe located away from the major CBD areas. In
comparison to Figure 1, the geographical mean eemd standard deviation ellipses are locatedthlifirther
north but are still near the eastern seaboard.

Spatial Autocorrelation Statistics

Figure 3 plots Moran’s | values against distancd #re yellow line represents the expected Morarnalle
(approximately 0) for complete spatial randomné&sgure 4 plots the corresponding Z-scores of theavis |
results against distance and the yellow and ordings represent the point at which statisticallgngicant
clustering is considered to be present in the datasa 95% Cl and 99% CI respectively.

The green line maps the Moran’s | and Z-score tedlr the population density per km?2 dataset. &br
distances tested, statistically significant glopasitive spatial autocorrelation (clustering) witB9% CI level
was identified. The peak Moran’s | value was 0.88 distance threshold of 15 km. Of the three cimesgreen
dataset formats tested for global spatial autotaiiom, the most effective format for identifyingatial

autocorrelation was the number of screens perdegdiset, displayed as the purple line in both diagr For all
distances tested, the trend of the purple cinemeerdine mirrored that of the green populationsitgriine but
at a lower magnitude. Positive spatial autocon@tatvith a >99% CI was identified at all distanteetsholds
and the peak Moran’s | value was 0.2 at a distah@® km.

Screen density per person is represented by thelipg. The Moran’s | values for this dataset weskatively
static for all distance thresholds tested and weig marginally higher than the expected Moranslues. The
corresponding Z-scores were well below the 95% dClpositive spatial autocorrelation, indicating ttéhen
cinema screens are weighted by population densitstaring is removed the dataset and complete a@pati
randomness is said to exist.
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Figure 4. Z-Scores by Distance.

Figure 5 maps the results of the Anselin localdtisp autocorrelation statistic using a distanaeghold of 20
km, for each screen venue for screens per km2 apdlation per km? datasets. Anselin’s local | wakglated
at a 95% CI for both datasets. Positive spatiab@rtelation was found to be present in both détase
population density clusters are displayed in red sareen density clusters are displayed in pufédis which
were found to be statistically non-significant displayed in grey for the population density datasel yellow
for the screen density dataset. No outliers whewed in the population density dataset but some weemtified

in the screen density dataset and are displayadpask and blue.

The spatial distribution of the clustering variesveeen the two datasets. Screen density clustersrdy found
in the four major south east metropolitan areaBatbane, Sydney, Melbourne and Perth. Populatiosters
are found in all of these areas but to a largeergxand are also present in Perth, Darwin, aloegethstern

seaboard and Tasmania.

Figure 6 maps the results of the Anselin’s locabphtial autocorrelation statistics for the screpes person
dataset. There are only three locations which tsatstically significant results: Kununurra, Kastglie and
Broome, all of which are considered to be outlid&fs.positive spatial autocorrelation was found x@sein the
dataset, indicating that when screen density iged by population density, clustering is remothezl dataset

and complete spatial randomness is said to exist.

Local Moran's I Spatial Autocorrelation Index: Nbr of Screens per km
mapped on Population Density Legend

Darwin : ‘

’+ Brisbang]
Perth ‘; ‘ ) -
4 m ) E Sydney Darwin

Adelaide
®.

Melbourne N Mt
o ws o Jpep—

v
. A
PR
ey

Pei Adelaid, Mell
-
Brisbane
- 1 !

Figure 5. Statistically significant local Anselin’s
| cells: Screen density is mapped on top of
population density.

Regression Analysis

Local Moran's | Spatial Autocorrelation Index:

Nbr of Screens per Person Outlier and Cluster Cell Details

Legend
Kununurra
(B cr-Hioh Cluster SemPerson
[ y High-Low Outler Scm/Person
Broome &
Karlgoorlie
N
A e |

Figure 6. Statistically significant local Anselin’s
| cells: Screens per person.

Table 2 depicts the diagnostic value results fertito OLS regression models. Model 1 was geneltzdsdd on
all values in the screens per km2 dataset and iaskaike's Information Criterion (AIC) value of 48nd an
adjusted R2 value of 19.26%. Model 2 was generafied outlier values were removed from the scrgmmskm?
dataset and as a result both diagnostic valuesowedr the AIC value fell to 157 and the adjustedvBiie
increased to 43.41%. The Jarque-Bera (JB) statisticates model bias by examining whether the rerro
residuals deviate from a normal distribution. Motldtas a JB statistic value of 8007 much highen tadel
2's value of 235, however both have a JB p-valueD®0, indicating that the JB statistic is statisily
significant at a >99% CI and therefore both modeésbiased.



Table 2. OLS Regression Diagnostic Values

Diagnostic| Model 1 | Model 2
Value

AlC 484.8 157.1
Adj R2 0.1926 0.4341
JB 8007.7 235.4
JB-Prob 0.00 0.00

Equations 1 and 2 are the OLS regression equafum#lodels 1 and 2 respectively. In both models the
dependent Y variable is screen density per km&lameéxplanatory X variable is population density km2. For
both models when population density increases lgy merson per kmz?, there is a corresponding increase
screen density of 0.0003 screens per kmz,

Y = 0.1730+ 0.0003X
Equation 2: OLS Regression Model 2

Y = 0.2677+ 0.0003X
Equation 1: OLS Regression Model 1

Figure 7 is a scatterplot of standardised erraduad values vs. expected screen density valuelléatel 2. The
cone shape of the dot distribution indicates tlet model contains bias due to heteroscedasti@tythe
relationship between the dependent and explanatargbles is not consistent in data space. Errsidval
values are smaller for low screen density values larger for high screen density values and in gdribe
magnitude of under estimation errors (red dots akibre line) is greater than the magnitude ovemegion
errors (blue dots below the line). The colour @& ttots matches the legend in Figure 8.

Figure 8 maps the geographic location of the OlrBraesiduals for Model 2: over estimations aresblunder
estimations are red and yellow indicates smallrerr®he location of the outlier cells excluded frtme screen
density dataset in pink. Most error residual calle shaded yellow and located away from the ce@BiD
zones, indicating the model has predicted screarsityerelatively accurately in these areas. Thensjest
coloured red and blue cells are located in ce®@BID regions, indicating that the model predictsesordensity
values poorly in these areas. The pink outlierscate primarily located along the coast line.
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Table 3 depicts the results for both models wheretior residual values were tested for spatiacutelation
using the Moran'’s | statistic. Model 1 has a neapzGlobal Moran’s | value of 0.0039 and a P-vaiti®.8443,

indicating that the distribution of the error rasal values is random, i.e. no spatial autocormais present in
the error residual values. Model 2 also has a mesv Global Moran’'s | value of -0.0117 and a p-eabf

0.8315, again indicating that the distribution o error residuals is random. Based on the abeudtsat could
be concluded that population distribution adeqyaxplains the inherent spatial structure of scrdensity
distribution in both OLS models and therefore amaslpresent in the model is not due to a missiqja@matory
spatial variable.




Table 3. Error Residual Global Moran's |

Results

Model Model

1 2
Global Moran's Index 0.0039 -0.011f7
Expected Index -0.0031 -0.003p
Variance 0.0013 0.0015
Z-score 0.1964 -0.2128
p-value 0.8443 | 0.8315

Conclusions

All of the spatial analysis tools explored by tktsidy were found to be useful aids when conducsipatial
analysis, each having its own strengths and weakses

The traditional spatial analysis tools exploreduded descriptive statistics and spatial distrimutmaps. While
descriptive statistics did not prove to be a tompable of analysing the spatial distribution of atadet or
correlations between the screen density and paopnlatensity datasets, the insight gained regardirey
underlying structure of the input datasets wasliratale input for subsequent analysis processesoiftrast,
spatial distribution maps were found to be veryfulstools for analysing the spatial distributiontiean of
cinema screen locations and population densitytladiegree to which the two were correlated.

In summary traditional spatial analysis tools pdad the following insight. Australia has 501 cinenveth a

total of 2,014 screens and they have a spatiailalision pattern which mirrors population densiigtdbution.

The vast majority of cinema screens and peoplelaraed on or near the Australian mainland coaestim
particular the east and south-east mainland coastind the major metropolitan cities have thedsgtensities
of screens and population.

Spatial autocorrelation statistics were found toubeful tools for understanding the spatial clustepatterns
inherent in the screen density and population dermktasets. Moran’s | autocorrelation statistiaiglobal

statistic and therefore only provided an averagettie whole study area, which to some degree ldnite

diagnostic value. However it was an invaluable tfml identifying the distance threshold at whichatal

clustering was most pronounced, an input paranmetgrired by the local Anselin’s | statistic. Angedi local |

spatial autocorrelation statistic was a particylaukeful tool not only to answer the question “véhare clusters
and outlier values located?” but also for derivemme understanding of the correlation between pladiad

distribution of cinema venues and population dgnsit

The analysis conducted using the spatial auto@dioal statistics indicated that positive spatiaioaarrelation
(clustering) was present in the spatial distribwtdd cinema screens at a 95% Cl, in the four ldrgast coast
metropolitan areas: Adelaide, Melbourne, Sydney Brishane. The population density dataset was faisiod

to be clustered at these locations, as well asnabru of other predominately coastal locations. Addally
when cinema screens were weighted by the numbegueople per screen no spatial autocorrelation was
identified, indicating that a correlation existdween population density and cinema screen density.

Ordinary Lease Squares (OLS) linear regressionfaasd to be a very powerful spatial analysis taml tivo
reasons. Not only was it able to explore the cati@h and relationship between screen and populatmsity,
it was also able to assess the degree to whictepudllues negatively impacted the study.

Regression analysis indicated that population dewistribution is a statistically valid explanayorariable for
cinema screen distribution, with an adjusted Réeaif 43.41% when outliers were removed from thasi.
Analysis of the residual error values indicated thias due to heteroscedasticity was present imbeel and
therefore one or more key explanatory variableseweissing from the model. Specifically the modebvess
accurate at predicting screen density values in @Riropolitan areas. The error residuals were talsied for
the presence of spatial autocorrelation, none astified and therefore it was concluded that pafioth
density distribution adequately explains the inhespatial structure of screen density distribution

In conducting this analysis a number of limitingtfars were identified, the two most prevalent beilagaset
misalignment issues and cinema screen weightingesssThe physical boundaries of the cinema locadiwh
SEDAC population datasets did not totally correlatel therefore when they were combined to creage th
screens per km2 and screens per person datasets cedeemas were excluded from the dataset and &emof



abnormally high outlier values were created. Screeighting issues refer to the fact that all sceegnthe
analysis were given an equal weighting, regardié$ow many times per day they were viewed.

Additional limiting factors include a 12 year tirmisalignment between the Year 2000 SEDAC population
datasets and the Year 2012 cinema location dat@sétrecognised weakness in cartographic mapping
techniques. These include unstable abnormally bigiher values due to the small numbers problem thed
modifiable areal unit problem which may mask theetcorrelation between screen distribution and [atioun
density.

There are a number of factors that could be inaaed in future studies using the above techniqukigh may
help mitigate some of the limiting factors discuksgpatial filtering techniques may help smoothdtge effect
issues related to boundary misalignments, hetedastieity bias may be improved if cinema screensewe
weighted by their viewing rate and the utilisatifra more recent population dataset would addiressssue of
time misalignment.

In conclusion it was found that a methodology whitifises the above spatial analysis tools in coafion with
a global gridded population dataset, provides andolsamework for investigating the correlation beém
population distribution and a geographical feawirénterest. The analysis undertaken was able goally and
statistically identify the spatial distribution efnema screens and population density, as wellstbksh the
degree to which the two features were correlated.
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