
Missing Value Imputation in Time Series using Top-k Case
Matching

Kevin Wellenzohn
Free University of
Bozen-Bolzano

kevin.wellenzohn@unibz.it

Hannes Mitterer
Free University of
Bozen-Bolzano

hannes.mitterer@unibz.it

Johann Gamper
Free University of
Bozen-Bolzano

gamper@inf.unibz.it
M. H. Böhlen

University of Zurich
boehlen@ifi.uzh.ch

Mourad Khayati
University of Zurich

mkhayati@ifi.uzh.ch

ABSTRACT
In this paper, we present a simple yet effective algorithm, called
the Top-k Case Matching algorithm, for the imputation of miss-
ing values in streams of time series data that are similar to each
other. The key idea of the algorithm is to look for the k situations
in the historical data that are most similar to the current situation
and to derive the missing value from the measured values at these k
time points. To efficiently identify the top-k most similar historical
situations, we adopt Fagin’s Threshold Algorithm, yielding an al-
gorithm with sub-linear runtime complexity with high probability,
and linear complexity in the worst case (excluding the initial sort-
ing of the data, which is done only once). We provide the results
of a first experimental evaluation using real-world meteorological
data. Our algorithm achieves a high accuracy and is more accurate
and efficient than two more complex state of the art solutions.

Keywords
Time series, imputation of missing values, Threshold Algorithm

1. INTRODUCTION
Time series data is ubiquitous, e.g., in the financial stock mar-

ket or in meteorology. In many applications time series data is in-
complete, that is some values are missing for various reasons, e.g.,
sensor failures or transmission errors. However, many applications
assume complete data, hence need to recover missing values before
further data processing is possible.

In this paper, we focus on the imputation of missing values in
long streams of meteorological time series data. As a case study,
we use real-world meteorological data collected by the Südtiroler
Beratungsring1 (SBR), which is an organization that provides pro-
fessional and independent consultancy to the local wine and apple
farmers, e.g., to determine the optimal harvesting time or to warn
about potential threats, such as apple scab, fire blight, or frost. Es-

1http://www.beratungsring.org/

Copyright © by the paper’s authors. Copying permitted only for
private and academic purposes.
In: G. Specht, H. Gamper, F. Klan (eds.): Proceedings of the 26th GI-
Workshop on Foundations of Databases (Grundlagen von Datenbanken),
21.10.2014 - 24.10.2014, Bozen, Italy, published at http://ceur-ws.org.

pecially frost is dangerous as it can destroy the harvest within a
few minutes unless the farmers react immediately. The Südtiroler
Beratungsring operates more than 120 weather stations spread all
over South Tyrol, where each of them collects every five minutes
up to 20 measurements including temperature, humidity etc. The
weather stations frequently suffer outages due to sensor failures or
errors in the transmission of the data. However, the continuous
monitoring of the current weather condition is crucial to immedi-
ately warn about imminent threats such as frost and therefore the
need arises to recover those missing values as soon as they are de-
tected.

In this paper, we propose an accurate and efficient method to
automatically recover missing values. The need for a continuous
monitoring of the weather condition at the SBR has two important
implications for our solution. Firstly, the proposed algorithm has
to be efficient enough to complete the imputation before the next
set of measurements arrive in a few minutes time. Secondly, the
algorithm cannot use future measurements which would facilitate
the imputation, since they are not yet available.

The key idea of our Top-k Case Matching algorithm is to seek
for the k time points in the historical data when the measured val-
ues at a set of reference stations were most similar to the measured
values at the current time point (i.e., the time point when a value is
missing). The missing value is then derived from the values at the k
past time points. While a naïve solution to identify the top-k most
similar historical situations would have to scan the entire data set,
we adopt Fagin’s Threshold Algorithm, which efficiently answers
top-k queries by scanning, on average, only a small portion of the
data. The runtime complexity of our solution is derived from the
Threshold Algorithm and is sub-linear with high probability and
linear in the worst case, when all data need to be scanned. We pro-
vide the results of a first experimental evaluation using real-world
meteorological data from the SBR. The results are promising both
in terms of efficiency and accuracy. Our algorithm achieves a high
accuracy and is more accurate than two state of the art solutions.

The rest of the paper is organized as follows. In Section 2, we
review the existing literature about imputation methods for missing
values. In Section 3, we introduce the basic notation and a running
example. In Section 4, we present our Top-k Case Matching algo-
rithm for the imputation of missing values, followed by the results
of an experimental evaluation in Section 5. Section 6 concludes the
paper and outlines ideas for future work.

2. RELATED WORK
Khayati et al. [4] present an algorithm, called REBOM, which

http://www.beratungsring.org/

recovers blocks of missing values in irregular (with non repeating
trends) time series data. The algorithm is based on an iterated trun-
cated matrix decomposition technique. It builds a matrix which
stores the time series containing the missing values and its k most
correlated time series according to the Pearson correlation coeffi-
cient [7]. The missing values are first initialized using a simple
interpolation technique, e.g., linear interpolation. Then, the ma-
trix is iteratively decomposed using the truncated Singular Value
Decomposition (SVD). By multiplying the three matrices obtained
from the decomposition, the algorithm is able to accurately approx-
imate the missing values. Due to its quadratic runtime complexity,
REBOM is not scalable for long time series data.

Khayati et al. [5] further investigate the use of matrix decompo-
sition techniques for the imputation of missing values. They pro-
pose an algorithm with linear space complexity based on the Cen-
troid Decomposition, which is an approximation of SVD. Due to
the memory-efficient implementation, the algorithm scales to long
time series. The imputation follows a similar strategy as the one
used in REBOM.

The above techniques are designed to handle missing values in
static time series. Therefore, they are not applicable in our sce-
nario, as we have to continuously impute missing values as soon
as they appear. A naïve approach to run the algorithms each time
a missing value occurs is not feasible due to their relatively high
runtime complexity.

There are numerous statistical approaches for the imputation of
missing values, including easy ones such as linear or spline interpo-
lation, all the way up to more complex models such as the ARIMA
model. The ARIMA model [1] is frequently used for forecasting
future values, but can be used for backcasting missing values as
well, although this is a less common use case. A recent comparison
of statistical imputation techniques for meteorological data is pre-
sented in [9]. The paper comprises several simple techniques, such
as the (weighted) average of concurrent measurements at nearby
reference stations, but also computationally more intensive algo-
rithms, such as neural networks.

3. BACKGROUND
Let S = {s1, . . . , sn} be a set of time series. Each time series,

s ∈ S, has associated a set of reference time series Rs, Rs ⊆
S \ {s}. The value of a time series s ∈ S at time t is denoted as
s(t). A sliding window of a time series s is denoted as s([t1, t2])
and represents all values between t1 and t2.

EXAMPLE 1. Table 1 shows four temperature time series in a
time window w = [1, 7], which in our application corresponds to
seven timestamps in a range of 30 minutes. s is the base time series
from the weather station in Schlanders, and Rs = {r1, r2, r3} is
the associated set of reference time series containing the stations
of Kortsch, Göflan, and Laas, respectively. The temperature value
s(7) is missing. Figure 1 visualizes this example graphically.

The Top-k Case Matching algorithm we propose assumes that
the time series data is aligned, which generally is not the case for
our data. Each weather station collects roughly every 5 minutes
new measurements and transmits them to a central server. Since
the stations are not perfectly synchronized, the timestamps of the
measurements typically differ, e.g., one station collects measure-
ments at 09:02, 09:07, . . . , while another station collects them at
09:04, 09:09, Therefore, in a pre-processing step we align the
time series data using linear interpolation, which yields measure-
ment values every 5 minutes (e.g., 00:00, 00:05, 00:10, . . .). If we
observe a gap of more than 10 minutes in the measurements, we
assume that the value is missing.

t ∈ w s(t) r1(t) r2(t) r3(t)
1 16.1° 15.0° 15.9° 14.1°
2 15.8° 15.2° 15.7° 13.9°
3 15.9° 15.2° 15.8° 14.1°
4 16.2° 15.0° 15.9° 14.2°
5 16.5° 15.3° 15.7° 14.5°
6 16.1° 15.2° 16.0° 14.1°
7 ? 15.0° 16.0° 14.3°

Table 1: Four time series in a window w = [1, 7].

1 2 3 4 5 6 7

14

15

16

Timestamps

Te
m

pe
ra

tu
re

in
D

eg
re

e
C

el
si

us

s (Schlanders) r1 (Kortsch)
r2 (Göflan) r3 (Laas)

Figure 1: Visualization of the time series data.

For the imputation of missing values we assign to each time se-
ries s a set Rs of reference time series, which are similar to s.
The notion of similarity between two time series is tricky, though.
Intuitively, we want time series to be similar when they have sim-
ilar values and behave similarly, i.e., values increase and decrease
roughly at the same time and by the same amount.

As a simple heuristic for time series similarity, we use the spa-
tial proximity between the stations that record the respective time
series. The underlying assumption is that, if the weather stations
are nearby (say within a radius of 5 kilometers), the measured val-
ues should be similar, too. Based on this assumption, we manually
compiled a list of 3–5 reference time series for each time series.
This heuristic turned out to work well in most cases, though there
are situations where the assumption simply does not hold. One rea-
son for the generally good results is most likely that in our data
set the over 100 weather stations cover a relatively small area, and
hence the stations are very close to each other.

4. TOP-K CASE MATCHING
Weather phenomena are often repeating, meaning that for exam-

ple during a hot summer day in 2014 the temperature measured at
the various weather stations are about the same as those measured
during an equally hot summer day in 2011. We use this observa-
tion for the imputation of missing values. Let s be a time series
where the current measurement at time θ, s(θ), is missing. Our
assumption on which we base the imputation is as follows: if we
find historical situations in the reference time series Rs such that
the past values are very close to the current values at time θ, then
also the past measurements in s should be very similar to the miss-
ing value s(θ). Based on this assumption, the algorithm searches
for similar climatic situations in historical measurements, thereby
leveraging the vast history of weather records collected by the SBR.

More formally, given a base time series s with reference time
series Rs, we are looking for the k timestamps (i.e., historical sit-

uations), D = {t1, . . . , tk}, ti < θ, which minimize the error
function

δ(t) =
∑
r∈Rs

|r(θ)− r(t)|.

That is, δ(t) ≤ δ(t′) for all t ∈ D and t′ 6∈ D ∪ {θ}. The er-
ror function δ(t) is the accumulated absolute difference between
the current temperature r(θ) and the temperature at time t, r(t),
over all reference time series r ∈ Rs. Once D is determined,
the missing value is recovered using some aggregation function
g ({s(t)|∀t ∈ D}) over the measured values of the time series s
at the timestamps in D. In our experiments we tested the average
and the median as aggregation function (cf. Section 5).

EXAMPLE 2. We show the imputation of the missing value s(7)
in Table 1 using as aggregation function g the average. For
the imputation, we seek the k = 2 most similar historical sit-
uations. The two timestamps D = {4, 1} minimize δ(t) with
δ(4) = |15.0°−15.0°|+ |16.0°−15.9°|+ |14.3°−14.2°| = 0.2°
and δ(1) = 0.3°. The imputation is then simply the average
of the base station measurements at time t = 4 and t = 1,
i.e.,s(7) = avg(16.2°, 16.1°) = 1

2
(16.2° + 16.1°) = 16.15°.

A naïve implementation of this algorithm would have to scan
the entire database of historical data to find the k timestamps that
minimize δ(t). This is, however, not scalable for huge time series
data, hence a more efficient technique is needed.

4.1 Fagin’s Threshold Algorithm
What we are actually trying to do is to answer a top-k query for

the k timestamps which minimize δ(t). There exist efficient algo-
rithms for top-k queries. For example, Fagin’s algorithm [2] solves
this problem by looking only at a small fraction of the data. Since
the first presentation of Fagin’s algorithm there were two notewor-
thy improvements, namely the Threshold Algorithm (TA) by Fagin
et al. [3] and a probabilistic extension by Theobald et al. [8]. The
latter approach speeds up TA by relaxing the requirement to find
the exact top-k answers and providing approximations with proba-
bilistic guarantees.

Our Top-k Case Matching algorithm is a variation of TA with
slightly different settings. Fagin et al. assume objects with m at-
tributes, a grade for each attribute and a monotone aggregation
function f : Rm 7→ R, which aggregates the m grades of an ob-
ject into an overall grade. The monotonicity property is defined as
follows.

DEFINITION 1. (Monotonicity) Let x1, . . . , xm and
x′1, . . . , x

′
m be the m grades for objects X and X ′, re-

spectively. The aggregation function f is monotone if
f(x1, . . . , xm) ≤ f(x′1, . . . , x

′
m) given that xi ≤ x′i for

each 1 ≤ i ≤ m.

The TA finds the k objects that maximize the function f . To do
so it requires two modes of accessing the data, one being sorted and
the other random access. The sorted access is ensured by maintain-
ing a sorted list Li for each attribute mi, ordered by the grade in
descending order. TA keeps a bounded buffer of size k and scans
each list Li in parallel until the buffer contains k objects and the
lowest ranked object in the buffer has an aggregated grade that is
greater than or equal to some threshold τ . The threshold τ is com-
puted using the aggregation function f over the grades last seen
under the sorted access for each list Li.

EXAMPLE 3. Table 2 shows four objects {A,B,C,D} and
their grade for the two attributes interestingness and

popularity. Let us assume that k = 2 and the aggregation
function f(x1, x2) = x1 + x2. Further, assume that the bounded
buffer currently contains {(C, 18), (A, 16)} and the algorithm has
read the data up to the boxes shown in gray. At this point the al-
gorithm computes the threshold using the interestingness
grade for objectB and the popularity grade of objectC, yield-
ing τ = f(5, 9) = 5 + 9 = 14. Since the lowest ranked object in
the buffer, objectA, has an aggregated grade that is greater than τ ,
we can conclude that C and A are the top-2 objects. Note that the
algorithm never read object D, yet it can conclude that D cannot
be part of the top-k list.

interestingness

Object grade
A 10
C 9
B 5
D 4

popularity

Object grade
B 10
C 9
D 8
A 6

Table 2: Threshold Algorithm example.

4.2 Adapting the Threshold Algorithm
In order to use the Threshold Algorithm for the imputation of

missing values in time series data, we have to adapt it. Instead of
looking for the top-k objects that maximize the aggregation func-
tion f , we want to find the top-k timestamps that minimize the
error function δ(t) over the reference time series Rs. Similar to
TA, we need sorted access to the data. Therefore, for each time
series r ∈ Rs we define Lr to be the time series r ordered first
by value and then by timestamp in ascending order. Table 3 shows
the sorted data for the three reference time series of our running ex-
ample (ignore the gray boxes and small subscript numbers for the
moment).

Lr1

t r1(t)
1 15.0° 4

4 15.0° 1

7 15.0°
2 15.2°
3 15.2°
6 15.2°
5 15.3°

Lr2

t r2(t)
2 15.7°
5 15.7°
3 15.8°
1 15.9°
4 15.9° 5

6 16.0° 2

7 16.0°

Lr3

t r3(t)
2 13.9°
1 14.1°
3 14.1°
6 14.1°
4 14.2° 3

7 14.3°
5 14.5° 6

Table 3: Time series sorted by temperature.

The general idea of our modified TA algorithm is the following.
The scan of each sorted lists starts at the current element, i.e., the
element with the timestamp t = θ. Instead of scanning the lists Lri
only in one direction as TA does, we scan each list sequentially
in two directions. Hence, as an initialization step, the algorithm
places two pointers, pos+r and pos−r , at the current value r(θ) of
time series r (the gray boxes in Table 3). During the execution of
the algorithm, pointer pos+r is only incremented (i.e., moved down
the list), whereas pos−r is only decremented (i.e., moved up the
list). To maintain the k highest ranking timestamps, the algorithm
uses a bounded buffer of size k. A new timestamp t′ is added only
if the buffer is either not yet full or δ(t′) < δ(

¯
t), where

¯
t is the last

(i.e., lowest ranking) timestamp in the buffer. In the latter case the
timestamp

¯
t is removed from the buffer.

After this initialization, the algorithm iterates over the lists Lr in
round robin fashion, i.e., once the last list is reached, the algorithm
wraps around and continues again with the first list. In each iter-
ation, exactly one list Lr is processed, and either pointer pos+r or
pos−r is advanced, depending on which value the two pointers point
to has a smaller absolute difference to the current value at time θ,
r(θ). This process grows a neighborhood around the element r(θ)
in each list. Whenever a pointer is advanced by one position, the
timestamp t at the new position is processed. At this point, the
algorithm needs random access to the values r(t) in each list to
compute the error function δ(t). Time t is added to the bounded
buffer using the semantics described above.

The algorithm terminates once the error at the lowest ranking
timestamp,

¯
t, among the k timestamps in the buffer is less or equal

to the threshold, i.e., δ(
¯
t) ≤ τ . The threshold τ is defined as

τ =
∑
r∈Rs

|r(θ)− r(posr)|, where posr is either pos+r or pos−r ,
depending on which pointer was advanced last. That is, τ is the
sum over all lists Lr of the absolute differences between r(θ) and
the value under pos+r or pos−r .

EXAMPLE 4. We illustrate the Top-k Case Matching algorithm
for k = 2 and θ = 7. Table 4 shows the state of the algorithm in
each iteration i. The first column shows an iteration counter i, the
second the buffer with the k current best timestamps, and the last
column the threshold τ . The buffer entries are tuples of the form
(t, δ(t)). In iteration i = 1, the algorithm moves the pointer to
t = 4 in list Lr1 and adds (t = 4, δ(4) = 0.2°) to the buffer. Since
δ(4) = 0.2° > 0.0° = τ , the algorithm continues. The pointer
in Lr2 is moved to t = 6, and (6, 0.4°) is added to the buffer. In
iteration i = 4, timestamp 6 is replaced by timestamp 1. Finally,
in iteration i = 6, the error at timestamp t = 1 is smaller or equal
to τ , i.e., δ(1) = 0.3° ≤ τ6 = 0.3°. The algorithm terminates and
returns the two timestamps D = {4, 1}.

Iteration i Buffer Threshold τi
1 (4, 0.2°) 0.0°
2 (4, 0.2°), (6, 0.4°) 0.0°
3 (4, 0.2°), (6, 0.4°) 0.1°
4 (4, 0.2°), (1, 0.3°) 0.1°
5 (4, 0.2°), (1, 0.3°) 0.2°
6 (4, 0.2°), (1, 0.3°) 0.3°

Table 4: Finding the k = 2 most similar historical situations.

4.3 Implementation
Algorithm 1 shows the pseudo code of the Top-k Case Matching

algorithm. The algorithm has three input parameters: a set of time
series Rs, the current timestamp θ, and the parameter k. It returns
the top-k most similar timestamps to the current timestamp θ. In
line 2 the algorithm initializes the bounded buffer of size k, and in
line 4 the pointers pos+r and pos−r are initialized for each reference
time series r ∈ Rs. In each iteration of the loop in line 7, the algo-
rithm advances either pos+r or pos−r (by calling Algorithm 2) and
reads a new timestamp t. The timestamp t is added to the bounded
buffer using the semantics described before. In line 15, the algo-
rithm computes the threshold τ . If the buffer contains k timestamps
and we have δ(

¯
t) ≤ τ , the top-k most similar timestamps were

found and the algorithm terminates.
Algorithm 2 is responsible for moving the pointers pos+r and

pos−r for each list Lr . The algorithm uses three utility functions.
The first is next(), which takes a pointer as input and returns the
next position by either incrementing or decrementing, depending

Algorithm 1: Top−k Case Matching
Data: Reference time series Rs, current time θ, and k
Result: k timestamps that minimize δ(t)

1 L← {Lr|r ∈ Rs}
2 buffer← boundendBuffer(k)
3 for r ∈ Rs do
4 pos−r , pos

+
r ← position of r(θ) in Lr

5 end
6 while L <> ∅ do
7 for Lr ∈ L do
8 t← AdvancePointer(Lr)
9 if t = NIL then

10 L← L \ {Lr}
11 else
12 if t 6∈ buffer then
13 buffer.addWithPriority(t, δ(t))
14 end
15 τ ← ComputeThreshold(L)
16 if buffer.size() = k

and buffer.largestError() ≤ τ then
17 return buffer
18 end
19 end
20 end
21 end
22 return buffer

on the direction of the pointer. If next() reaches the end of a list,
it returns NIL. The utility functions timestamp() and value()
return the timestamp and value of a list Lr at a given position, re-
spectively. There are four cases, which the algorithm has to distin-
guish:

1. None of the two pointers reached the beginning or end of the
list. In this case, the algorithm checks which pointer to ad-
vance (line 5). The pointer that is closer to r(θ) after advanc-
ing is moved by one position. In case of a tie, we arbitrarily
decided to advance pos+r .

2. Only pos−r reached the beginning of the list: the algorithm
increments pos+r (line 11).

3. Only pos+r reached the end of the list: the algorithm decre-
ments pos−r (line 13).

4. The two pointers reached the beginning respective end of the
list: no pointer is moved.

In the first three cases, the algorithm returns the timestamp that
was discovered after advancing the pointer. In the last case, NIL is
returned.

At the moment we use an in-memory implementation of the al-
gorithm, which loads the whole data set into main memory. More
specifically, we keep two copies of the data in memory: the data
sorted by timestamp for fast random access and the data sorted by
value and timestamp for fast sorted access.

Note that we did not normalize the raw data using some standard
technique like the z-score normalization, as we cannot compute
that efficiently for streams of data without increasing the complex-
ity of our algorithm.

4.4 Proof of Correctness
The correctness of the Top-k Case Matching algorithm follows

directly from the correctness of the Threshold Algorithm. What
remains to be shown, however, is that the aggregation function δ(t)
is monotone.

Algorithm 2: AdvancePointer
Data: List Lr where to advance a pointer
Result: Next timestamp to look at or NIL

1 pos← NIL

2 if next(pos+r) <> NIL and next(pos−r) <> NIL then
3 ∆+ ← |r(θ)− value(Lr[next(pos+r)])|
4 ∆− ← |r(θ)− value(Lr[next(pos−r)])|
5 if ∆+ ≤ ∆− then
6 pos, pos+r ← next(pos+r)
7 else
8 pos, pos−r ← next(pos−r)
9 end

10 else if next(pos+r) <> NIL and next(pos−r) = NIL then
11 pos, pos+r ← next(pos+r)

12 else if next(pos+r) = NIL and next(pos−r) <> NIL then
13 pos, pos−r ← next(pos−r)
14 end
15 if pos <> NIL then
16 return timestamp(Lr[pos])
17 else
18 return NIL
19 end

THEOREM 4.1. The aggregation function δ(t) is a monotoni-
cally increasing function.

PROOF. Let t1 and t2 be two timestamps such that |r(θ) −
r(t1)| ≤ |r(θ) − r(t2)| for each r ∈ Rs. Then it trivially fol-
lows that δ(t1) ≤ δ(t2) as the aggregation function δ is the sum of
|r(θ) − r(t1)| over each r ∈ Rs and, by definition, each compo-
nent of δ(t1) is less than or equal to the corresponding component
in δ(t2).

4.5 Theoretical Bounds
The space and runtime bounds of the algorithm follow directly

from the probabilistic guarantees of TA, which has sub-linear cost
with high probability and linear cost in the worst case. Note
that sorting the raw data to build the lists Lr is a one-time pre-
processing step with complexity O(n logn). After that the system
can insert new measurements efficiently into the sorted lists with
logarithmic cost.

5. EXPERIMENTAL EVALUATION
In this section, we present preliminary results of an experimental

evaluation of the proposed Top-k Case Matching algorithm. First,
we study the impact of parameter k on the Top-k Case Matching
and a baseline algorithm. The baseline algorithm, referred to as
“Simple Average”, imputes the missing value s(θ) with the average
of the values in the reference time series at time θ, i.e., s(θ) =

1
|Rs|

∑
r∈Rs

r(θ). Second, we compare our solution with two state
of the art competitors, REBOM [4] and CD [5].

5.1 Varying k

In this experiment, we study the impact of parameter k on the
accuracy and the runtime of our algorithm. We picked five base
stations distributed all over South Tyrol, each having two to five
reference stations. We simulated a failure of the base station dur-
ing a time interval, w, of 8 days in the month of April 2013. This
amounts to a total of 11452 missing values. We then used the Top-k
Case Matching (using both the average and median as aggregation
function g) and Simple Average algorithms to impute the missing
values. As a measure of accuracy we use the average absolute dif-

ference between the real value s(θ) and the imputed value s∗(θ),
i.e., ∆ = 1

|w|
∑
θ∈w |s(θ)− s

∗(θ)|
Figure 2 shows how the accuracy of the algorithms changes with

varying k. Interestingly and somewhat unexpectedly, ∆ decreases
as k increases. This is somehow contrary to what we expected,
since with an increasing k also the error function δ(t) grows, and
therefore less similar historical situations are used for the imputa-
tion. However, after a careful analysis of the results it turned out
that for low values of k the algorithm is more sensitive to outliers,
and due to the often low quality of the raw data the imputation is
flawed.

0 50 100

0.5

0.6

0.7

0.8

Parameter k

A
ve

ra
ge

D
iff

er
en

ce
∆

in
°C Top-k (Average)

Top-k (Median)
Simple Average

Figure 2: Impact of k on accuracy.

Table 5 shows an example of flawed raw data. The first row is
the current situation, and we assume that the value in the gray box
is missing and need to be recovered. The search for the k = 3
most similar situations using our algorithm yields the three rows
at the bottom. Notice that one base station value is 39.9° around
midnight of a day in August, which is obviously a very unlikely
thing to happen. By increasing k, the impact of such outliers is
reduced and hence ∆ decreases. Furthermore, using the median as
aggregation function reduces the impact of outliers and therefore
yields better results than the average.

Timestamp s r1 r2 r3

2013-04-16 19:35 18.399° 17.100° 19.293° 18.043°
2012-08-24 01:40 18.276° 17.111° 19.300° 18.017°
2004-09-29 15:50 19.644° 17.114° 19.259° 18.072°
2003-08-02 01:10 39.900° 17.100° 19.365° 18.065°

Table 5: Example of flawed raw data.

Figure 3 shows the runtime, which for the Top-k Case Match-
ing algorithm linearly increases with k. Notice that, although the
imputation of missing values for 8 days takes several minutes, the
algorithm is fast enough to continuously impute missing values in
our application at the SBR. The experiment essentially corresponds
to a scenario, where in 11452 base stations an error occurs at the
same time. With 120 weather stations operated by the SBR, the
number of missing values at each time is only a tiny fraction of the
missing values that we simulated in this experiment.

5.2 Comparison with CD and REBOM
In this experiment, we compare the Top-k Case Matching algo-

rithm with two state-of-the-art algorithms, REBOM [4] and CD [5].
We used four time series, each containing 50.000 measurements,
which corresponds roughly to half a year of temperature measure-
ments. We simulated a week of missing values (i.e., 2017 measure-
ments) in one time series and used the other three as reference time
series for the imputation.

0 50 100

0

200

400

600

800

Parameter k

R
un

tim
e

(s
ec

)
Top-k (Average)
Top-k (Median)
Simple Average

Figure 3: Impact of k on runtime.

The box plot in Figure 4 shows how the imputation error |s(θ)−
s∗(θ)| is distributed for each of the four algorithms. The left and
right line of the box are the first and third quartile, respectively.
The line inside the box denotes the median and the left and right
whiskers are the 2.5% and 97.5% percentile, which means that the
plot incorporates 95% of the values and omits statistical outliers.
The experiment clearly shows that the Top-k Case Matching algo-
rithm is able to impute the missing values more accurately than CD
and REBOM. Although not visualized, also the maximum observed
error for our algorithm is with 2.29° (Average) and 2.21° (Median)
considerably lower than 3.71° for CD and 3.6° for REBOM.

0 0.5 1 1.5 2

REBOM

CD

Top-k
(Average)

Top-k
(Median)

Absolute Difference in °C

Figure 4: Comparison with REBOM and CD.

In terms of runtime, the Top-k Case Matching algorithm needed
16 seconds for the imputation of the 2017 missing measurements,
whereas CD and REBOM needed roughly 10 minutes each. Note,
however, that this large difference in run time is also due to the
fact that CD and REBOM need to compute the Pearson correlation
coefficient which is a time intensive operation.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a simple yet efficient and accurate al-

gorithm, termed Top-k Case Matching, for the imputation of miss-
ing values in time series data, where the time series are similar to
each other. The basic idea of the algorithm is to look for the k sit-
uations in the historical data that are most similar to the current sit-
uation and to derive the missing values from the data at these time
points. Our Top-k Case Matching algorithm is based on Fagin’s
Threshold Algorithm. We presented the results of a first experi-
mental evaluation. The Top-k Case Matching algorithm achieves a
high accuracy and outperforms two state of the art solutions both
in terms of accuracy and runtime.

As next steps we will continue with the evaluation of the algo-
rithm, taking into account also model based techniques such as Dy-
naMMo [6] and other statistical approaches outlined in [9]. We will

further study the impact of complex weather phenomena that we
observed in our data, such as the foehn. The foehn induces shifting
effects in the time series data, as the warm wind causes the temper-
ature to increase rapidly by up to 15° as soon as the foehn reaches
another station.

There are several possibilities to further improve the algorithm.
First, we would like to explore whether the algorithm can dynam-
ically determine an optimal value for the parameter k, which is
currently given by the user. Second, we would like to make the
algorithm more robust against outliers. For example, the algorithm
could consider only historical situations that occur roughly at the
same time of the day. Moreover, we can bend the definition of “cur-
rent situation” to not only consider the current timestamp, but rather
a small window of consecutive timestamps. This should make the
ranking more robust against anomalies in the raw data and weather
phenomena such as the foehn. Third, right now the similarity be-
tween time series is based solely on temperature data. We would
like to include the other time series data collected by the weather
stations, such as humidity, precipitation, wind, etc. Finally, the al-
gorithm should be able to automatically choose the currently hand-
picked reference time series based on some similarity measures,
such as the Pearson correlation coefficient.

7. ACKNOWLEDGEMENTS
The work has been done as part of the DASA project, which is

funded by the Foundation of the Free University of Bozen-Bolzano.
We wish to thank our partners at the Südtiroler Beratungsring and
the Research Centre for Agriculture and Forestry Laimburg for the
good collaboration and helpful domain insights they provided, in
particular Armin Hofer, Martin Thalheimer, and Robert Wiedmer.

8. REFERENCES
[1] G. E. P. Box and G. Jenkins. Time Series Analysis, Forecasting

and Control. Holden-Day, Incorporated, 1990.
[2] R. Fagin. Combining fuzzy information from multiple systems

(extended abstract). In PODS’96, pages 216–226, New York,
NY, USA, 1996. ACM.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS ’01, pages 102–113,
New York, NY, USA, 2001. ACM.

[4] M. Khayati and M. H. Böhlen. REBOM: recovery of blocks of
missing values in time series. In COMAD’12, pages 44–55,
2012.

[5] M. Khayati, M. H. Böhlen, and J. Gamper. Memory-efficient
centroid decomposition for long time series. In ICDE’14,
pages 100–111, 2014.

[6] L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo:
Mining and summarization of coevolving sequences with
missing values. In KDD’09, pages 507–516, New York, NY,
USA, 2009. ACM.

[7] A. Mueen, S. Nath, and J. Liu. Fast approximate correlation
for massive time-series data. In SIGMOD’10, pages 171–182,
New York, NY, USA, 2010. ACM.

[8] M. Theobald, G. Weikum, and R. Schenkel. Top-k query
evaluation with probabilistic guarantees. In VLDB’04, pages
648–659. VLDB Endowment, 2004.

[9] C. Yozgatligil, S. Aslan, C. Iyigun, and I. Batmaz.
Comparison of missing value imputation methods in time
series: the case of turkish meteorological data. Theoretical
and Applied Climatology, 112(1-2):143–167, 2013.

	Introduction
	Related Work
	Background
	Top-k Case Matching
	Fagin's Threshold Algorithm
	Adapting the Threshold Algorithm
	Implementation
	Proof of Correctness
	Theoretical Bounds

	Experimental Evaluation
	Varying k
	Comparison with CD and REBOM

	Conclusion and Future Work
	Acknowledgements
	References

