
Computing NFA Intersections in Map-Reduce

Gösta Grahne
Concordia University

Montreal, Canada, H3G 1M8
grahne@cs.concordia.ca

Shahab Harrafi
Concordia University

Montreal, Canada, H3G 1M8
s harraf@encs.concordia.ca

Ali Moallemi
Concordia University

Montreal, Canada, H3G 1M8
moa ali@encs.concordia.ca

Adrian Onet
Concordia University

Montreal, Canada, H3G 1M8
adrian onet@yahoo.com

1. INTRODUCTION
Nondeterministic Finite-state Automata (NFA) are

simple, yet powerful devices that model a plethora of
computationally oriented phenomena. One of the ad-
vantages of NFA’s is that they are closed under several
operations, such as concatenation, intersection, differ-
ence, and homomorphic images. This makes NFA’s ide-
ally suited for a modular approach, for instance in the
context of protocol design and web service composition.
A simple, but illustrative example of an e-commerce
application designed from components can be found in
Chapter 2 in [5]. The salient operation here is the in-
tersection of several finite state automata.

Problems relating to NFA’s have been widely stud-
ied in the literature. One of the main issues for the
NFA intersection problem is that the size of the out-
put NFA is the product of the size of all input NFA’s.
There is not much hope for improvement, since testing
for emptiness of the intersection of a set languages rep-
resented by NFA’s is known to be PSPACE-complete
[8]. The most commonly used algorithm for computing
the intersection NFA is to use the Cartesian construct
for product automata. If there are m input NFA’s each
having n states, the product NFA will have nm states.
It therefore would be important to come up with good
distributed algorithms for the problem.

Google introduced map-reduce as a parallel program-
ming model [4] that can work over large clusters of com-
modity computers. Map-reduce provides a high-level
framework for designing and implementing such paral-
lelism. A growing number of papers deal with map-
reduce algorithms for various problems, for instance re-
lated to graphs [12, 9, 3, 11], and related to relational
joins [2, 6, 7].

In this paper we investigate the problem of imple-
menting the Cartesian construct in map-reduce. We
follow the optimization approach of Afrati et al. [1] and
analyze the replication rate required for computing the

©2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

product NFA. The replication rate corresponds intu-
itively to the total amount of communication between
the processes in the cluster. We first derive a lower
bound for the replication rate in the product computa-
tion. We then propose three algorithms for the prod-
uct computation and analyze their behaviors, thereby
obtaining upper bounds for the replication rate. Our
study shows that in the case where the size of the alpha-
bet for the NFA’s is large and we have a large number
of reducers available, an algorithm that distributes the
transitions of the input NFA’s based on their alphabet
symbol achieves an optimal replication rate. For the
cases where the alphabet size is smaller than the num-
ber of available reducers, a distribution based on both
the alphabet symbol and states of the transitions works
best. These conclusions are also supported by our ex-
perimental results.

The rest of this paper is organized as follows: Sec-
tion 2 gives the necessary technical definitions, and in
Section 3 we derive the lower bound for the replication
rate. Section 4 presents and analyzes three concrete al-
gorithms for the problem, and Section 5 describes the
experimental results. Conclusions are drawn in the last
section.

2. PRELIMINARIES
In this section we introduce the basic technical pre-

liminaries and definitions. We assume familiarity with
the map-reduce model (see e.g. [10]).

A Nondeterministic Finite-state Automaton (NFA) is
a 5-tuple A = (Q,Σ, δ, s, F ), where Q is a finite set of
states, Σ is a finite set of alphabet symbols, δ ⊆ Q×Σ×Q
is the transition relation, s ∈ Q is the start state, and
F ⊆ Q is a set of final states. By Σ∗ we denote the set of
all finite strings over Σ. Let w = c1c2 . . . cn where ci ∈ Σ
be a string in Σ∗. An accepting computation path of
w in A is a sequence (s, c1, q1)(q1, c2, q2) . . . (qn−1, cn, f)
of elements of δ, where s is the start state and f ∈ F .
The language accepted by A, denoted L(A), is the set
of all strings in Σ∗ for which there exists an accepting
computation path in A. A language L is regular if and
only if there exists an NFA A such that L(A) = L.

1



It is well known that regular languages are closed
under intersection. In particular, given NFA’s A1 =
(Q1,Σ, δ1, s1, F1) andA2 = (Q2,Σ, δ2, s2, F2), an NFAA,
such that L(A) = L(A1) ∩ L(A2) can be computed by
the Cartesian construct A = A1 ⊗A2, where

A1 ⊗A2 = (Q1 ×Q2,Σ, δ, (s1, s2), F1 × F2),
and

δ = {((p1, p2), c, (q1, q2)) ∶ (p1, c, q1) ∈ δ1, (p2, c, q2) ∈ δ2}.
The ⊗ operation clearly is associative, and can be gen-
eralized to a polyadic operator A1 ⊗ ⋯ ⊗ Am. The
Cartesian construct amends itself easily to the map-
reduce framework by having the mappers emit transi-
tions (pi, ci, qi) from each NFA Ai, and the reducers
output a transition ((p1, . . . , pm), c, (q1, . . . , qm)) upon
receiving inputs (pi, ci, qi), where c = c1 = ⋯ = cm.
The crucial question is how to distribute the transi-
tions (pi, ci, qi) over the reducers. This is discussed in
Section 4.

3. LOWER BOUND ON THE REPLICATION
RATE

Recall that each mapper emits key-value pairs (K,V ),
where K determines the reducer that the pair is sent
to. Each reducer receives and aggregates key-value lists
of the form (K,V1, . . . Vq), where the (K,Vi) pairs are
emitted by the mappers. The largest list associated
with one key is called the reducer size, and we will de-
note it by q. A small q-value ensures that the reducer
can perform the aggregation in main memory, and also
enables more parallelism. On the other hand, more par-
allelism usually increases the replication rate, which is
the average number of key-value pairs that mappers cre-
ate from one input. The replication rate is intended to
model the communication cost, that is the total amount
of information sent from the mappers to the reducers.
The trade-off between reducer size q and replication rate
r, is usually expressed through a function f , such that
r = f(q). The first task in designing a good map-reduce
algorithm for a problem is to determine the function f ,
which gives us a lower bound of the replication rate r.

To start, we derive a tight upper bound, denoted
g(q), on the number of outputs that can be produced
by a reducer of size q. We suppose that NFA Ai has
∣δi∣/k transitions for each of the k alphabet symbols. To
generate a transition for A, the reducer needs m tran-
sitions, one from each NFA Ai. The intersection NFA

A has ∣δ1∣×⋯×∣δm∣
km

transitions, for each alphabet symbol
c ∈ Σ. As there are k alphabet symbols, the total num-

ber of transitions will be k × ∣δ1∣×⋯×∣δm∣
km

= ∣δ1∣×⋯×∣δm∣
km−1 .

It is known that the product of the elements in a par-
tition with a fixed summation is maximum when the
blocks of the partition have equal size. We therefore as-
sume that input data is evenly distributed, so each re-

ducer receives q/m transitions from each NFA Ai. The
proceeding gives us the following upper bound on the
output of one reducer.

Lemma 1. In computing A = A1 ⊗⋯⊗Am a reducer
of size q can cover no more than g(q) = (q/m)m outputs.

Using Lemma 1, and the total number of transitions
in A, we can get a lower bound on the replication rate
as a function of q. As shown in [1] the lower bound is
given by the expression

q × ∣O∣
g(q) × ∣I ∣ ,

where ∣I ∣ is the size of input, and ∣O∣ is the size of the
output. The input size will be the sum of the size of the
transition relation of all input NFA’s, that is ∣I ∣ = ∣δ1∣ +
⋯+∣δm∣. As we saw above, the size of the output in terms

of the number of transitions will be ∣O∣ = ∣δ1∣×⋯×∣δm∣
km−1 .

This gives us the lower bound on replication rate for
our problem as follows

Proposition 1. The replication rate r for the Carte-
sian construct A = A1 ⊗⋯⊗Am is

r ≥
q × ∣δ1∣×⋯×∣δm∣

km−1

(q/m)m × (∣δ1∣ + ⋯ + ∣δm∣)
.

4. ALGORITHMS FOR THE CARTESIAN
CONSTRUCT

In this section we propose and analyze three different
algorithms for computing A = A1⊗⋯ ⊗Am. Our algo-
rithms compute A in one map-reduce round, as opposed
to an m − 1 round cascade (. . . (A1 ⊗ A2) ⊗ . . .) ⊗ Am.
Since the Cartesian construct shares features with the
multiway join problem, and the latter has been shown
to work more efficiently when done in one round, as op-
posed to a cascade [2, 6], we only consider the one-round
version in this paper.

We note that the main difference between the NFA
intersection and the multiway join problem is that in
the latter the only possibility for distributing the tu-
ples is based on the value(s) of the join attribute(s)
(corresponding to the alphabet symbols in Σ), whereas
the NFA intersection problem we can also distribute the
tuples of the transition relation based on the states they
involve.

4.1 Mapping based on states
Suppose we have nm reducers, where n is the maxi-

mum number of transitions in any of the input NFA’s.
In our first algorithm the mappers produce keys of the
form (i1, i2, . . . , im). Let h be a hash-function with
range {1, . . . , n}. A transition (pi, ci, qi) from NFA Ai
is mapped as key-value pairs (K, (pi, ci, qi)), where

2



K = (i1, . . . , ii−1, h(pi), ii+1, . . . , im).
for each ij ∈ {1, . . . , n}. In other words, each transition
is sent to nm−1 reducers.

In this method, the input and output sizes remain
unchanged. However, the function g(q) will be affected
by presence of transitions with different alphabet sym-
bols inside a single reducer. This gives us a new upper
bound on the number of outputs each reducer can pro-
duce, namely g(q) = k (q/mk)m. We thus have

Proposition 2. The replication rate r in the state-
based mapping scheme is

r ≤ q × ∣δ1∣ × ⋯ × ∣δm∣
(q/m)m × (∣δ1∣ + ⋯ + ∣δm∣)

.

If n is the maximum number of transitions in any of
the input NFA’s, the upper bound on the replication rate
becomes r ≤ (nm

q
)m−1.

By comparing propositions 1 and 2, we observe that
the upper bound for the replication rate obtained by
mapping based on states exceeds the theoretical lower
bound by a factor of km−1. We conclude that the state-
based mapping approach is best suited for situations
where the alphabet size is small, e.g., when the alphabet
is binary.

4.2 Mapping based on alphabet symbols
In our second algorithm, we have one reducer for each

of the alphabet symbols. Thus, the number of reduc-
ers is equal to the alphabet size k. The mappers will
send each transition (p, c, q) to the reducer correspond-
ing the alphabet symbol c. More precisely, from tran-
sition (pi, c, qi) of NFA Ai the mapper will generate
the key-value pair (h(c), (pi, c, qi)). Here h is a hash
function with range {1, . . . , k}. Thus each reducer will
output transition ((p1, . . . , pm), c, (q1, . . . , qm)), having
received inputs (pi, c, qi) for i = 1, . . . ,m.

The total number of transitions sent to all reducers
is ∑mi=1 ∣δi∣ which we approximate by mn, assuming that
each Ai has at most n transitions. The replication rate
is 1, since every transition is mapped to exactly one
reducer. This algorithm works well when the alphabet
size k is large and the number of reducers is equal to
the number of alphabet symbols. In summary:

Proposition 3. The replication rate in the alphabet-
symbol based mapping scheme is 1, assuming that the
number of reducers and alphabet symbols are the same.

Obviously a replication rate of 1 is optimal. This
matches the lower bound of Proposition 1, when ob-
serving that each reducer has to process (nm)/k inputs,
assuming that the alphabet symbols are uniformly dis-
tributed. Substituting q = (nm)/k in the lower bound
(nm
kq
)m−1 of Proposition 1, gives r ≥ 1.

4.3 Mapping based on both states and alpha-
bet symbols

On one hand, if we map the transitions only based
on the alphabet symbols, the algorithm does not allow
for much parallelism if the alphabet Σ is small. On the
other hand, as we have observed, if the transitions are
mapped based on states only, the replication rate, and
consequently the communication cost, will be sharply
increased km−1 times. We therefore consider a hybrid
algorithm that maps transitions based on a combination
of alphabet symbols and states. In the hybrid method
we have a function hs that hashes states into bs buckets,
and a function ha that hashes the alphabet symbols into
ba buckets. A transition (pi, ci, qi) from Ai is mapped
to reducers (i1, . . . , ii−1, hs(pi), ii+1, . . . , im, ha(ci)), for
each ij ∈ {1, . . . , bs}, and the total number of reducers
will be bm−1

s ⋅ ba.
To compute the replication rate in this method, we

note the input and output sizes ∣I ∣ and ∣O∣ remain un-
changed. However, the function g(q) will be affected
by presence of transitions with different alphabet sym-
bols inside a single reducer. We will now have g(q) =
`(q/m`)m, where ` is the average number of alphabet
symbols received by a reducer, or equivalently, ` = k/ba.
From this we can derive the replication rate.

Proposition 4. The replication rate r in the hybrid
mapping scheme is

r ≤
q × ∣δ1∣×⋯×∣δm∣

km−1

(q/m)m × (∣δ1∣ + ⋯ + ∣δm∣)
× `m−1.

Assuming that the maximum number of transitions in

any of the input NFA’s is n, we get r ≤ (nm`
qk
)
m−1

.

Note that if ba = 1 then ` = k and there is no hashing on
alphabet symbols, and as it can be seen, the replication
rate will be equal to the replication rate of the first
mapping schema. On the other hand, if ba = k, that is
if we hash fully on alphabet symbols, then ` = 1 and as
it can be seen, the replication rate will be equal to the
replication rate of the second mapping schema.

5. EXPERIMENTS
We conducted some experiments to validate the anal-

ysis of the previous section. We computed A1⊗A2⊗A3,
and varied the size of the NFA’s and number of alpha-
bet symbols. Our experiments were run on Hadoop on
a 2-node, personal computer, cluster (8 cores per node
running at 3.0 GHz and 24GB memory in total). The
number of reducers in the experiments was set to 128.
The desktops were running Scientific Linux operating
system with kernel version 6.0. The NFA’s were gener-
ated as labelled random graphs, along the lines of [13].
The total number of transitions were determined by the

3



transition density, that is, the ratio between the num-
ber of transitions and the number of states. In the data
shown we used a transition density of 2.0.

In the experiments we compared the execution time
obtained by hashing the input data based on states
(Method I) and on both states and alphabet symbols
(Method II).

3.5 7 10.5 14 17.5 21 28

0

500

1,000

1,500

Total Number of Transitions in δ1 ∪ δ2 ∪ δ3 (in thousands)

T
o
t
a
l
E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

States

Both

Figure 1: Processing times of two methods for
the alphabet size k = 16

7 14 21 28 35 42 56

0

1,000

2,000

3,000

4,000

Total Number of Transitions in δ1 ∪ δ2 ∪ δ3 (in thousands)

T
o
t
a
l
E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

States

Both

Figure 2: Processing times of two methods for
the alphabet size k = 64

16 32 64 128 256 512 1024 2048

0

500

1,000

1,500

Alphabet Size

T
o
t
a
l
E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

States

Both

Figure 3: Processing times of two methods
where total number of transitions are 28,000

In Figure 1, we see the execution time for differ-
ent data sizes with the alphabet size k = 16. Figure
2 shows the comparison of Method I and Method II,
while the alphabet size k = 64. As expected, Method II
is clearly more efficient. Figure 3 represents execution
time of the two methods for various alphabet sizes when
∣δ1∣ + ∣δ2∣ + ∣δ3∣ = 28,000, The figure shows that as the
size of alphabet increases, the execution time of both
algorithms get closer to each other. This is due to the
fact that once the the size of the alphabet exceeds the
number of reducers (128), in Method II each reducer
has to deal with several alphabet symbols, thus slowing
down the computation inside the reducers.

6. CONCLUSIONS
In this paper we proposed and studied methods for

computing a product automaton using Map-reduce. Our
analysis and experimental results show that carefully
optimizing the amount of inter-processor communica-
tion indeed pays off in improved processing time.

In future work we will investigate reducing the num-
ber of states in the product automaton, either by elim-
inating all or part of the useless states or by and deter-
minizing and minimizing the automaton.

7. REFERENCES
[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D.

Ullman. Upper and lower bounds on the cost of a
map-reduce computation. PVLDB, 6(4):277–288,
2013.

[2] F. N. Afrati and J. D. Ullman. Optimizing
multiway joins in a map-reduce environment.
IEEE Trans. Knowl. Data Eng., 23(9):1282–1298,
2011.

[3] F. Chierichetti, R. Kumar, and A. Tomkins.
Max-cover in map-reduce. In 19th WWW 2010,
pages 231–240. ACM, 2010.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[5] J. Hopcroft, R. Motwani, and J. Ullman.
Introduction to Automata Theory, Languages, and
Computation. Pearson/Addison Wesley, 2007.

[6] B. Kimmett, A. Thomo, and S. Venkatesh.
Three-way joins on mapreduce: An experimental
study. In IISA 2014, pages 227–232, 2014.

[7] I. K. Koumarelas, A. Naskos, and A. Gounaris.
Binary theta-joins using mapreduce: Efficiency
analysis and improvements. In BeyondMR 2014,
pages 6–9, 2014.

[8] D. Kozen. Lower bounds for natural proof
systems. In FOCS, pages 254–266, 1977.

[9] S. Lattanzi, B. Moseley, S. Suri, and
S. Vassilvitskii. Filtering: a method for solving
graph problems in mapreduce. In SPAA 2011,
pages 85–94. ACM, 2011.

[10] J. Leskovec, A. Rajaraman, and J. Ullman.
Mining of Massive Datasets. Cambridge
University Press, 2014.

[11] G. D. F. Morales, A. Gionis, and M. Sozio. Social
content matching in mapreduce. PVLDB,
4(7):460–469, 2011.

[12] S. Suri and S. Vassilvitskii. Counting triangles
and the curse of the last reducer. In 20th WWW
2011, pages 607–614. ACM, 2011.

[13] D. Tabakov and M. Y. Vardi. Experimental
evaluation of classical automata constructions. In
LPAR 2005, pages 396–411, 2005.

4


	Introduction
	Preliminaries
	Lower bound on the replication rate
	Algorithms for the Cartesian construct
	Mapping based on states
	Mapping based on alphabet symbols
	Mapping based on both states and alphabet symbols

	Experiments
	conclusions
	References

