
A Parallel Tree Pattern Query Processing Algorithm for
Graph Databases using a GPGPU

Lila Shnaiderman
Computer Science Department, Technion

lilas@cs.technion.ac.il

Oded Shmueli
Computer Science Department, Technion

oshmu@cs.technion.ac.il

ABSTRACT
Large amounts of data are modeled and stored as graphs in or-
der to express complex data relationships. Consequently, query
processing on graph structures is becoming an important compo-
nent in real-world applications. The most commonly used query
format is that of tree pattern queries. We present a new paral-
lel SIMD algorithm, GGQ (GPU Graph data base Query), for an-
swering tree pattern queries on graph databases, using a GPU. We
present the results of extensive experimentation of GGQ on large
graph databases using known benchmarks that show that GGQ is
an effective and competitive algorithm.

1. INTRODUCTION
Graph databases are widespread in many areas, including the se-

mantic web and social/biological networks, as a graph is a more
flexible and expressive structure than a tree. One of the most im-
portant and practically most interesting query formats for graph
databases is a tree pattern query (TPQs - Tree Pattern Queries). In
most known query languages for XML and RDF (such as XQUERY
and SPARQL [19]), many queries can be regarded as TPQs on
graphs. An example of a TPQ query is presented in Figure 2 (right
end side). Finding all occurrences of matching a TPQ query to
an isomorphic sub-graph of a given data graph is a fundamental
operation in graph query processing. Related basic problems are
(a) determining if a matching exists, and (b) providing part of the
matched data nodes, corresponding to query target nodes, as the
result.

Lately, there has been much research on using GPUs to speedup
database operations. The standard use of GPUs is to render graph-
ical information. GPUs are a cheap and ubiquitous source of pro-
cessing power, as at least one GPU can be found in almost any com-
puter. GPUs follow a SIMD (Single Instruction, Multiple Data)
architecture, while multi-core systems follow a MIMD (Multiple
Instructions, Multiple Data) architecture. In SIMD, multiple pro-
cessing elements perform the same operation on multiple data ele-
ments, simultaneously.

We focus on processing TPQ queries and not on general graph
structured queries as, in practice, TPQ queries seem to be the most

c⃝2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

frequently used type. Few research projects have addressed paral-
lelizing query processing over graph databases. The main idea has
been to use the data partitioning strategy, i.e., methods to partition
the data between many computing elements, for example see [9].
To the best of our knowledge, there have been no attempts to paral-
lelize the query processing of a single TPQ, or to design a parallel
algorithm that exploits GPUs (or any other SIMD-based device) to
accelerate the processing of a single TPQ.

In this paper we present the GGQ algorithm (GPU-Graph data
base Query). The problem we address is how to use GPUs to ac-
celerate the processing of a single TPQ query. The main idea un-
derlying GGQ is to copy the relevant parts of the graph document,
according to the input query, to the GPU global memory, to process
the query using all the threads of the GPU in parallel, and to copy
the query results back to the CPU memory. The key to paralleliz-
ing the query processing is in the ability to efficiently coordinate
the query processing tasks between thousands of working units. In
GGQ, each thread checks a different potential matching between
the TPQ pattern and the data graph. In case that the checked po-
tential matching actually exists, the thread reports this matching as
one of the answers to the query.

GGQ is novel in that thread identifiers (IDs) are used to deter-
mine the choices made in attempting to match the tree pattern to
actual database graph nodes and edges. As the space of possibilities
that can be represented by an ID is limited, methods are presented
to practically increase this space.

To minimize the amount of data that has to be copied to the GPU
for a particular query execution, we designed a new graph lists stor-
age scheme, GLS, that is based on a XML stream representation
scheme [11]. A section describing GLS is not included in the pa-
per due to lack of space.

For documents that can fully reside in the global memory, we
gain speedup of up to 1000 times in comparison to Gremlin [17]1

(counting the time of copying the results from the GPU to the CPU
but not counting copying from the CPU to the GPU). If a whole
document is loaded to the GPU, many queries on this document
can be processed one after the other, thus eliminating the need to
copy the document, for each query, from the CPU to the GPU. For
documents that can not fully reside in the GPU global memory,
according to our experiments, we still gain a significant improve-
ment of up to 100 times in comparison to Gremlin (counting the
time of copying the data from the CPU to the GPU and the time
of copying the results from the GPU to the CPU). In experiments
with an extra-large query, we obtained speedup of up to 50 times in
comparison to Gremlin (while counting just the copying time of the
results from the GPU to CPU), and up to 35 times in comparison

1There may by now be tools for public use that are more efficient
than Gremlin.

to Gremlin (while counting the time of copying the data from the
CPU to the GPU and the time of copying the results from the GPU
to the CPU).

2. BACKGROUND
In this section, we briefly introduce GPUs and CUDA (the un-

derlying platform upon which the GGQ algorithm is implemented),
and TPQ pattern matching.

2.1 Graphics Processors (GPUs)
GPUs were originally designed for dealing with graphics render-

ing. In recent years GPUs are also used as multi-threaded multi-
core co-processors for CPUs. GPUs have a SIMD (Single Instruc-
tion, Multiple Data) architecture. In the SIMD architecture, there
are multiple processing elements that perform the same operation
on multiple data, simultaneously. Any algorithm for GPUs has to
fit the SIMD scheme; hence an original CPU (or multi-core) algo-
rithm should not be run as is on a GPU. If run as is, it will most
probably be extremely inefficient. Programmers write their algo-
rithms so that the part of the algorithm that does not have to be
massively parallelized runs on the CPU and the other part, which
can be massively parallelized, runs on the GPU.

Figure 1: GPU architecture model

GPU Hardware Architecture. The GPU architecture is shown
in Figure 1. This architecture is common to both NVIDIA [16]
and AMD [13]. The NVIDIA GTX processor is a collection of
multiprocessors (in GTX480 there are 15 multiprocessors), each
with a group of processors (32 in GTX480). Each multiprocessor
has its own shared memory which is common to all the proces-
sors within it. It also has a set of registers, texture, and constant
memory caches. At any given cycle, each processor in the multi-
processor executes the same instruction on different data. A warp
is a collection of threads that run simultaneously on a multipro-
cessor. The warp size is fixed for a specific GPU. Communication
between multiprocessors (i.e., processors from different multipro-
cessors) is through the device memory (also called global memory),
which is available to all the processors of the multiprocessors. The
size of the global memory is limited. The GTX480, for example,
has 1.5GB memory. The global memory has both a high bandwidth
and high access latency. GPU threads have both low context-switch
and low creation time as compared to CPU threads. The global
memory is available to all the threads, so any thread can access any
memory location.

CUDA Programming Model. Programmers use two types of
code, the kernel code and the host code. The kernel code is exe-
cuted on the GPU. The host code runs on the CPU. The host part is
in charge of transferring data between the GPU and main memory,
and starting kernel-code instances (kernels) on the GPU. A compu-
tation task on the GPU is divided into three separate steps. First,
the host code allocates GPU memory for input and output data,

and copies input data from the main memory to the GPU mem-
ory. Second, the host code starts threads each executing the kernel
code, kernels, on the GPU. The kernels perform the required task
on the GPU. Third, when the kernels finish their work, the host
code copies results from the GPU memory to main memory. For
the programmer the CUDA model is a collection of threads run-
ning in parallel. A collection of threads (called a block) runs on a
multiprocessor at a given time. One can assign multiple blocks to
a single multiprocessor and then the blocks execution on the multi-
processor is time-shared.

Execution. All threads of all blocks executing on a single mul-
tiprocessor share its resources. Each thread and block has a unique
ID. In addition, each thread has a program counter, registers, per-
thread private memory, and inputs that can be used by the thread
during its execution. Each thread in a set of parallel threads exe-
cutes an instance of the kernel code, in parallel. Blocks are further
organized into grids of thread blocks by the programmer. Each grid
is a 2 or 3-dimensional arrangement of blocks. When a block is ex-
ecuted, it is further divided into warps. Using the thread and block
IDs each thread can perform the kernel code on different set of data.
In some cases, during some operations, for example an if else state-
ment, some of the threads in a multiprocessor are idle (during the if
block or the else block), as according to the if else statement, they
do not have to process the body of the if block or the else block of
the statement.

2.2 TPQ (Tree Pattern Query) pattern match-
ing

Tree Pattern Queries (TPQs) are represented as directed trees,
where (1) the nodes and edges of a TPQ Q are labelled by labels
from an alphabet

∑
. The label of a node u is denoted by τ(u), and

the root node of Q is denoted by root(Q). The size of Q, denoted
by |Q|, refers to the number of nodes in Q. (2) The nodes in Q are
connected by parent-child edges (pc-edges) labeled by a label from∑

. Consider an edge e = (u, v) with parent node u and child node
v, we say that v is a child of u and u is the parent of v.

Given a TPQ Q with nodes (q1,..., qn) and a directed graph doc-
ument D, a match of Q in D is a mapping from the nodes of Q to
nodes (d1,..., dn) in D s.t.: (1) di is matched with qi, 1 ≤ i ≤ n,
(2) di and qi have the same label except that nodes labeled with the
special label ’*’ may be matched with data nodes that can have any
label from alphabet

∑
. (3) the edges, i.e., structural (parent-child)

relationships between query nodes are satisfied by the correspond-
ing D nodes and the label of both of the edges (in Q and D) have to
be exactly the same (again, with the ’*’ exception). The ordering of
sibling nodes in a TPQ query imposes no constraints on the match-
ing. Also, pattern nodes need not be mapped to distinct D nodes
(the algorithm can be extended to enforce such distinct mappings).

The TPQ pattern matching problem is defined as finding all the
possible matches of a given TPQ Q in a given graph document
D.

3. THE GGQ (GPU GRAPH DATA BASE QUERY)
ALGORITHM

The GGQ algorithm is a SIMD algorithm. The main advantage
of the GGQ algorithm is the ability to divide the matching work to
hundreds or even thousands of threads that run in parallel, and that
the work of each thread is exactly of the same length. The idea of
the basic version of the algorithm is to use the ID of a thread to de-
termine the portion of the data to which a pattern matching attempt
will be executed by the particular thread. Then, as the number of
bits in a thread ID is bounded, we designed an extension that al-

lows the algorithm to be efficient also in cases when the query tree
or the data graph are more complex. GGQ processes mainly the
document parts that are relevant to the input query by processing
only edge streams that are relevant for the input query.

The inputs of the algorithm are a labeled directed graph G =
(V,E), a TPQ Q, and a set of nodes Vq , subset of V , containing all
data graph nodes which are part of legal possible matches for the
root node of Q. The algorithm finds all possible matches between
Q and G subject to the Vq constraint.

Next, we explain the main idea of the algorithm. For ease of ex-
planation, assume that set Vq has just one node, v1. Each GPU
thread has a unique ID. For example, the ID of thread th is
thNum, and in binary thNumb =< bm, bm−1, ..., b0 >. Each
node vi in V has at most outgNum(lbl) outgoing edges with label
lbl for each lbl label where outgNum(lbl) is the maximum num-
ber of edges labeled lbl connected to a node in the database. I.e., we
need log2(outgNum(lbl)) bits to represent outgNum(lbl). For
ease of exposition, we assume that outgNum(lbl) for any label is
a power of 2. The bits of thNumb define which edge has to be
chosen at each step of checking for a match against the data graph.

For example, assume that we have just two types of labels, lblA
and lblB, in the graph. outgNum(lblA) = 4, outgNum(lblB) =
16. Assume that we have a query pattern Q with 3 edges, the first
and third edges are with label lblA, and the second edge is with la-
bel lblB. Assume that the maximal thread ID is 255, thus we have
8 bits < b7, b6, ..., b0 > to represent any possible thread ID. Bits
b0 and b1 represent the index of all possible data edges with label
lblA, for the first edge in the query pattern. Bits b2, b3, b4, and b5
represent the index of all possible data edges with label lblB, for
the second edge in the query pattern. And finally, bits b6 and b7
represent the index of all possible data edges with label lblA, for
the third edge in the query pattern.

We have also tried to reverse the ordering of enumerating the
thread ID bits (i.e., to extract the bits from left to right - from
MSB to LSB), so that the MSB bit will correspond to the top of
the tree. However, the effectiveness of this will fully depend on the
nature of the data tree. For the data we used which induces a flat
structure on the data tree, this scheme turned out to have inferior
performance.

To gain intuition about the algorithm, we start off with an exam-
ple.

3.1 An Intuitive Example

Figure 2: Example of a query tree qTree and a data graph
dGraph

Consider2 qTree and dGraph presented in Figure 2. Based on
2In the experiments we used simpler documents in which a single

dGraph, we see that each node vi ∈ V has no more than
outgNum(created) = 2 outgoing edges labelled created and
no more than outgNum(knows) = 3 outgoing edges labelled
knows, thus we need 1 bit to represent outgNum(created) and 2
bits to represent outgNum(knows), here bit=0 means edge num-
ber 1 and bit=1 means edge number 2.

In total, we need 4 bits to represent all the possible potential
matchings with graph gData (shown in Figure 2). During the run,
we have 16 different running threads. For ID with bits
< b3, b2, b1, b0 >, bits b0 and b1 apply to the first edge (between
query nodes 0 and 1), bit b2 applies to the second edge (between
query nodes 1 and 2) and bit b3 applies to the last edge (between
query nodes 1 and 3). Vq contains the data node with ID = 0.
Now, we go over all the threads and explain what happens at run
time with each of them.

The thread with ID 0000, finds that the data node with ID 0
has 3 outgoing edges labelled knows, according to the first 2 bits
"00" of the thread’s ID, we choose the first edge which leads us to
the data node with ID 1. While checking the data of this node, we
find that it does not have label and data "Age: 32". So, this partial
matching is not part of an answer, thus the thread terminates with
no match. The same behavior happens for threads with ID: 0100,
1000, and 1100.

The thread with ID 0010, chooses the 3-rd outgoing edge (cor-
responding to the "10" bits) of the data node with ID 0. Thus, it
matches the query node with ID 1 to the data node with ID 2.
While checking the data of this node, we find that it does not have
label and data "Age: 32". Thus, the thread 0010 terminates with no
match. The same behavior happens for the threads with ID: 0110,
1010, and 1110.

The thread with ID 0011, chooses the 4-th outgoing edge (cor-
responding to the "11" bits) of data node with ID 0, but such an
edge does not exist. Thus, the thread terminates with no match.
The same behavior happens for the threads with ID: 0111, 1011,
and 1111.

The thread with ID 0001, chooses the 2-nd outgoing edge of
the data node with ID 0. Thus, it matches the query node with
ID 1 to the data node with ID 3. The data node with ID 3 has
label and data "Age: 32"İ. Next, the thread chooses the 1-st outgo-
ing edge, with label "created", of the data node with ID 3. Thus,
it matches the query node with ID2 with the data node with ID
4. The data node with ID 4 has no label and data "Language:
computer"İ. Thus the thread terminates with no match. The same
behavior happens for the thread with ID 1001.

The thread with ID 0101, chooses the 2-nd outgoing edge of
the data node with ID 0. Thus, it matches the query node with
ID 1 to the data node with ID 3. The data node with ID 3 has
label and data "Age: 32"İ. So, the thread now chooses the 2-nd
outgoing edge of the data node with ID 3. Thus, it matches the
query node with ID 2 with the data node with ID 2. The data
node with ID 2 has label and data "Language: computer"İ. Now,
the thread chooses the 1-st outgoing edge of the data node with
ID 3 (corresponding to the leftmost "bit" with value 0). Thus, it
matches the query node with ID 4 with the data node with ID 4.
The data node with ID 4 has label and data "Name: Baby"İ. At
this point the tread has finished to match all the nodes and edges.
Thus the thread reports that the currently identified assignment of
query nodes to data nodes is an answer to qTree in dGraph, and
terminates with a match. The last thread does not find a match.

3.2 Base algorithm
We specify how the algorithm operates for query Q, graph G, set

label may be associated with a graph node.

Vq , and a thread with ID thNum. For ease of explanation, assume
that set Vq has just one node, v1.

Let maxthNum be the maximal possible thread ID. Let p be
log2(maxThNum), without loss of generality, assume that
maxThNum is power of 2. Sort the edges of Q: e0, ..., ew so that
if edge ex is on the path from Q’s root to the left vertex of edge ey ,
then ex precedes ey in the order (i.e., "higher" in the tree).

Input: 1) Data graph G. 2) TPQ query Q. 3) Vq set.
Output: ansSet, the set of all thread IDs that encode patterns that are an
answer to query Q in data graph G.
Method (runs on the CPU):
1. ansSet = {}
2. Invoke CUDA kernel call for function:

GpuGraphQuery(G,Q, Vq , ansSet)
3. RETURN ansSet

// GpuGraphQuery kernel function (runs on the GPU):
Input: 1) Data graph G. 2) TPQ query Q.

3) Vq set of nodes in G that match to the root of Q.
4) ansSet set of all answers (thread IDs).
5) idConst. Has default value of 0. Used for algorithm extensions

Goal: In case that current thread’s ID encodes an answer to query Q in
data graph G, add it into ansSet.

Method:
1. Set thID to a system assigned index of the current thread.
2. Set maxID to a system value of the maximal thread index.
3. thNum = (idConst ∗ (maxID + 1) + thID)
4. Set cqIdx to 0. /* current query edge index */
5. Express thNum in binary notation as < bp, bp−1, ..., b0 >.
6. Set bitIdx to 0. /*represents the currently processed bit in the binary

notation of thNum*/
7. Create dataNodeArray of size |Q| and initialize all its entries

to nil. /* the element with index ai will be data graph node dn,
that corresponds to query node with index ai */

8. dataNodeArray[1] = vr /* w.l.o.g. the root index of Q is 1 and
vr is some matching data node
(according to Vq).*/

9. FOREACH edge ecqIdx = (qa, qb) in Q’s edges in order
10. lbl = ecqIdx.getLabel()
11. k = Q.getNumBits(lbl) /* According to the graph definition,

there are no more than 2k outgoing edges
labeled lbl from any node in G*/

12. Set num to the integer represented by bits
< bbitIdx+k−1, bbitIdx+k−2, ..., bbitIdx > of thNum.

/* These bits corresponds to edge number cqIdx in Q */
13. currV = dataNodeArray[qa.idx]. /*the data graph node to

which qa is mapped*/
14. currE = currV.getEdge(lbl, num) /*gets edge number num

out of outgoing edges labeled lbl of node currV */
15. IF (currE == nil) THEN RETURN
16. currV = currE.getTargetNode() /*find qb*/
17. IF (NOT isMatching(currV, qb)) THEN RETURN
18. dataNodeArray[qb.idx] = currV /*update the mapping array*/
19. bitIdx = bitIdx+ k /*prepare bitIdx to read next edge data*/
20. END FOREACH
21. ansSet.add(thNum) /*current thread encodes an answer*/

Figure 3: The base GGQ algorithm

Figure 3 presents the base version of the GGQ algorithm. The
input to the algorithm are the data graph G, the TPQ Q and the
set Vq that contains the matching data node of the TPQ query root
node. Line 2 contains the invocation of the CUDA kernel function
gpuGraphQuery which is processed on the GPU. I.e., the query
processing algorithm itself is executed on the GPU.

The gpuGraphQuery kernel call finds all the matchings be-
tween the TPQ Q and the data graph G. The code of gpuGraphQuery
is run in all the threads. They process exactly the same code (i.e.,
the code of the gpuGraphQuery function itself) at the same time
("Single Instruction") over different data ("Multiple Data") in G.

As the possible number of pattern matchings between Q and G is
very large, there is a potential for an enormous number of parallel
threads. According to the GPU GTX 480 architecture, the maxi-
mum number of resident threads per MP (multiprocessor) is 1536
(i.e., 1536*15 for all the MPs), while the number of threads that
are processed at any moment of time in the MP is 32 (other threads
may be waiting for data from the global memory, or just waiting for
their turn to be run). The threads in the GPU are arranged in blocks
where each block can have a maximum of 1536 threads. If the
requested (by the algorithm) number of threads exceeds 1536*15,
then the GPU first handles the 15 first blocks, and then continues
to process the next 15 blocks, and so on until all the blocks are pro-
cessed. Note that maximum number of threads that can actually run
in parallel at any point of time is 480 (32 on each of the 15 MPs).
The potential number of pattern matchings between Q and G is
very large, and is usually much larger than the number of compute
units in the GPU. Thus the utilization of the GPU is usually very
high, i.e., the throughput of processing the work is high in compar-
ison to multi-threaded CPU systems. By running a profiling tool
on GGQ, we found that the execution uses the coalesced memory
access feature of the GPU3. This is due to an apparent matching
between the structure of the storage and the way the algorithm tra-
verses the data.

Next, we explain the gpuGraphQuery kernel function. Line 1
computes the thread’s ID, namely thNum, according to CUDA’s
semantics. In line 3 we compute the index for which the current
thread is responsible. In the base algorithm, idConst is always 0.
Thus, thNum == thID. cqIdx that is defined in line 4, indi-
cates the index of the currently processed edge. Line 6 defines the
bitIdx variable. bitIdx points to the bit that is currently processed
in the binary presentation of thNum. The dataNodeArray array
which is defined in line 7 holds the data nodes that are matched
against query Q by the current thread. I.e., the element with in-
dex ai of the dataNodeArray is the data graph node di that is
matched to the query node with index ai. The size of dataNodeArray
is the number of nodes in Q, i.e., |Q|. In line 8, dataNodeArray[1]
is initialized. This is the data node that is matched to the root node
of Q. This data node named vr is taken from set Vq which is one
of the parameters of the gpuGraphQuery function.

In line 9 the algorithm starts a FOREACH, that tries to perform
a matching between the pattern that is encoded by thNum (the
index of the current thread) and G according to TPQ Q. Note that
before starting the algorithm, the edges of Q are sorted in a way
that if edge ex is on the path from Q’s root to the source vertex of
edge ey , then ex precedes ey in the order. And this is the order in
which they are processed during the FOREACH. In lines 10-12, the
algorithm finds the edge number num that has to be chosen out of
the outgoing edges labeled lbl of node currV (a value is assigned
to currV in line 13). currV is the node that is matched to the
qa node, which is the source node of the ecqIdx edge. currV is
taken out of the dataNodeArray according to the index of the qa
node. The ordering of Q edges (described above) guarantees that
currV exists. To find num, the algorithm first extracts the bits of
the binary representation of thNum that correspond to the ecqIdx
edge. The decimal value that is encoded by these bits is inserted
to num. In line 14 the algorithm gets the outgoing lbl labeled
edge number num of node currV and assigns it to edge currE.
If the value of currE is nil, it means that such an edge does not
exist, thus according to line 15 the algorithm terminates the run, as
this thread does not encode a matching pattern in graph G. In line

3This means that when many threads in a warp access consecutive
global memory addresses, these memory accesses are grouped into
one access.

16-17, using edge currE, the algorithm finds the data node that
matches to the query node qb (the target node of edge ecqIdx) and
inserts it to currV , then it checks the matching between the data of
the new currV and the data of qb. In case it finds that there is no
matching between the data of currV and qb, it terminates the run,
as this thread encodes a pattern that does not exist in graph G. In
lines 18-19 the data of dataNodeArray and bitIdx is updated, as
preparation to the next iteration of the FOREACH. If the algorithm
finishes successfully the FOREACH loop for all the edges, without
returning in lines 15 or 17, it means that the current thread encodes
a pattern that exists in the graph and that fully matches Q. That is
why in line 21, the algorithm inserts thNum to ansSet.

There are possible optimizations of the basic scheme. As pointed
out by a reader, one can base thread addressing on a simple algo-
rithm that takes into account the maximum number of edges with a
particular label emanating from a node and, based on the query and
the thread ID, deduce the thread’s search pattern. This will often
result in fewer threads.

3.3 First algorithm extension (Brute Force Loop-
ing)

Input: 1) Data graph G. 2) TPQ query Q. 3) Vq set.
Output: ansSet, the set of all thread IDs that encode patterns that are an
answer to query Q in data graph G.
Method (runs on the CPU):
1. ansSet = {}
2. maxIDbitNum = getBinBitsNum(getMaxID())

/*getMaxIDbits is a system function*/
3. maxQBinNum = getBinBitsNum(Q)

4. FOR (i = 0; i < 2(⌊
(maxBin+maxIDbits)

maxIDbits
⌋); i++)

5. Invoke CUDA kernel call for function:
6. GpuGraphQuery(G,Q, Vq , ansSet, i)
7. END FOR
8. RETURN ansSet

Figure 4: The first extension of the GGQ algorithm

There can be situations in which the maximal number of bits
that may be required to represent query patterns is larger than the
number of bits of maximal thread ID. Thus, we extend the algo-
rithm as presented in Figure 4. Assume that the maximal thread
ID is maxID and that we need maxIDbits to represent it, that
maxBin bits are required to represent the query pattern, and that
maxBin > maxIDbits. In line 4 we start a FOR loop. The

number of iterations is: 2(⌊
(maxBin+maxIDbits)

maxIDbits
⌋). At each loop it-

eration (line 5), we run the base algorithm, where each thread in the
current iteration will take care of the pattern represented by the fol-
lowing number: (i ∗ (maxID+1)+ threadID), where maxID
is the ID of the maximal thread ID, and treadID is the system
ID of the current thread. This computation can be seen in line 3
of the base algorithm (Figure 3). Note that this way, conceptually,
we extend the thread’s ID bit representation to the left by placing
there the bits corresponding to i in the current loop iteration.

Often, when a query is posed, the desired answer is whether there
exist any matching between the query tree and the data graph. In
such cases, it is sufficient to find one matching in order to provide
a positive answer. In a slightly modified version of the algorithm,
the run is stopped the moment a first match is found. This feature
decreases the running time of the algorithm in such cases. Some-
times, the desired answer to a query corresponds to only one spe-
cific query node and not to all nodes corresponding to the whole
set of query nodes. This does not affect the GGQ algorithm as an
answer provided by GGQ to a query is an ID of the thread.

3.4 Second algorithm extension (Multi Phase)
A substantial possible improvement, in case that the number of

possible patterns is larger than the maximal thread ID, is a two
phase exploration (and, in general, a multi phase exploration using
the same principle). Here, we first limit the pattern by removing
subtrees (actually edges leading to the roots of subtrees) so as to be
left with the original rooted pattern with portions removed so that
the remaining new pattern Q′ is a "prefix" of the original pattern
Q. The idea is that we have sufficiently many bits in maxIDbits
to explore the smaller Q′ (with no need to use the first extension).
A Q′ node is called a contact node if it is a node in Q from which
an edge leading to a subtree was removed along with the whole
subtree. When evaluating Q′ we record for each solution the im-
ages in the data graph of the contact nodes of Q′ which we call a
recorded solution vector. Then, we run the second phase in which,
for each recorded solution vector, we explore the rest of Q using
all the threads we can utilize. In case two phases are not sufficient,
we grow Q′ to Q in more than 2 phases. Each such phase will pro-
duce a collection of recorded solution vectors in which additional
Q nodes are assigned values. The advantage of this two phase (and
in general multi phase) scheme is that (a) We employ many threads
in the first phase working on a smaller query derived from the orig-
inal query and obtain all the relevant prefixes, encoded in recorded
solution vectors, out of the data graph. (b) In the second phase, for
each recorded solution vector, we employ all threads on a relevant
portion of the data graph that can potentially lead to a solution to
Q.

Figure 5: Example of limited Query
For example, consider the query Q as presented on the left side

of Figure 5. Suppose that an edge representation requires 4 bits for
any label, namely the whole pattern requires 32 bits. Suppose that
maxID requires 16 bits. So, we are "missing"İ 16 bits. We can
transform Q to the limited query Q′ with 4 less edges, as presented
on the right side of Figure 5. This way we can handle Q′ with
all threads (whose maxID requires 16 bits). Once we evaluate Q′

we obtain recorded solution vectors. Each recorded solution vector
encodes a partial matching of the full matching, and determines the
data contact nodes va and vb that are matching to the query con-
tact nodes v2 and v7. When phase 2 is carried out for each recorded
solution vector, each thread will operate on the subtrees rooted at
v2 and v7 where the dataNodeArray will be initialized with va
in the location corresponding to v2 and vb in the location corre-
sponding to v7. As the subtrees rooted at the contact nodes have a
total of 4 edges, 16 bits will suffice to represent all possible navi-
gations. This means that in phase 2, when considering a particular
recorded solution vector, all threads will be employed in checking
possible continuations for this recorded solution vector. Thus, the
computing power is fully utilized in (the short) phase 1 and later
on throughout phase 2. Note that there is an advantage here over
the loop scheme (that is presented in the first extension) in that for
a loop index that corresponds to a non-prefix of the data graph, all

GPU threads are activated in vain. Here, the first phase guarantees
that the sequence of GPU activations is done for recorded solution
vectors that correspond to potentially extendable matchings. The
disadvantage is that the recorded solution vectors need be stored so
that they are available for the second phase.

Input: 1) Data graph G. 2) TPQ query Q. 3) Vq set.
Output: ansSet, the set of all thread IDs that encode patterns that are an
answer to query Q in data graph G.
Method (runs on the CPU):
1. prelimAnsSet = {}
2. prefixQ = getPrefixQ(Q) /*getPrefixQ returns the "prefix"

of the query Q*/
3. Invoke CUDA kernel call for function:
4. GpuGraphQuery(G, prefixQ, Vq , prelimAnsSet, 0)
5. ansSet = {}
6. remainQ = getRemainQ(Q, prefixQ) /*getRemainQ returns

Q \ prefixQ*/
7. FOREACH ans in prelimAnsSet
8. currAnsSet = {}
9. Invoke CUDA kernel call for function:
10. GpuGraphQueryExt(G, remainQ, currAnsSet, ans)
11. ansSet = ansSet ∪ currAnsSet
12. END FOREACH
13. RETURN ansSet

// GpuGraphQueryExt kernel function (runs on the GPU,
just the differences from GpuGraphQuery presented):
Input: 1) Data graph G. 2) forest remainQ.

3) ansSet set of all answers (thread IDs).
4) baseAns is the ID that encodes the matching between

prefixQ and G
Goal: In case that current thread’s ID encodes an answer to query

remainQ based on the matching presented by baseAns in
data graph G, add it into ansSet.

Method:
...
3. thNum = thID
...
8. initNodesArray(dataNodeArray, baseAns)

/* initNodesArray extracts baseAns, and fill all the nodes
that already matched in dataNodeArray by answering prefixQ
in the first phase */

...

Figure 6: The second extension of the GGQ algorithm
Figure 6 presents the second extension to the algorithm. The

function getPrefixQ (line 2), decides which part of Q is going to
be the "prefix" query. It makes the decision based on the number
of bits bLimit required to present the maximal thread ID, and on
the structure of Q. Basically, it chooses the "upper" part of the tree
(the part with the smallest depth), up to the limit of bLimit. I.e, it
sums the number of bits that are required to present all the edges
of the chosen part, and enlarges the chosen part up to the limit
of bLimit. Lines 3,4 run the base algorithm on prefixQ, and
insert the answer into prelimAnsSet. Line 5 initialize ansSet,
the set of the final answers. remainQ that is computed in line
6, is the remainder part of Q after removing prefixQ out of it.
Line 7 starts a FOREACH that computes the final answers for Q
based on the preliminary answers from prelimAnsSet. The set
of answers of the current iteration, carrAnsSet is defined in line
8. Lines 9-10, contain the invocation of the CUDA kernel func-
tion gpuGraphQueryExt which is processed on the GPU, and
is slightly different from gpuGraphQuery (as defined in Figure
3). In line 11 we add the answers that were found in the current
iteration to the final answers set, namely ansSet.

Next we describe gpuGraphQueryExt. This function has slight
differences from the base algorithm GPU function, gpuGraphQuery.
Thus, we describe just these differences. The first difference is in

line 8, in which the thNum is defined. thNum is equal to the
system value of the ID of the current thread. The second differ-
ence is in line 8, in which the initNodesArray function initial-
izes dataNodeArray. The function extracts from baseAns the
matchings between nodes in Q and nodes in G that were found
during the first phase, and assigns the found data nodes into the ap-
propriate places in dataNodeArray. Except for the described two
changes, the function operates exactly as the base gpuGraphQuery
function.

The number of edges that can be represented by one phase is n
such that

∑n
edge=1 outgNum(lbl(e)) ≤ 2bitsNum(maxThreadID)

where bitsNum(maxThreadID) is the number of bits that are
used by the GPU to represent the maximal thread ID. For example,
assume that a GPU thread ID is represented with 32 bits. Assume
that for each edge e, on average, there are 16 potential outgNum(lbl(e))
from each node. Thus, on average, we need 4 bits to represent each
edge of the query. Based on the above, each phase allows us to
represent 32/4 = 8 edges on average. Having 2 phases in the
multi-phase extension described above allows us to represent fairly
large TPQs with about 16 edges. The multi-phase extension can be
easily extended to more than 2 phases. Based on this analysis, if
we extend the multi-phase extension to 3 phases, we can represent
a TPQ with 24 edges, which is a very large query. It is important
to note that without the multi phase extension, experiments involv-
ing very large queries give very poor results that are worse than
Gremlin’s performance on these queries.

Input: 1) query edges (qEdges). 2) maxQdepth, the max depth of Q
3) maxBitsNum, the number of bits required to represent

maximal thread ID
Goal: to set the field phaseNum of each query edge
Method (runs on the CPU):
1. currPhase = 1
2. currBitsSum = 0
3. FOR depth FROM 1 TO maxQdepth
4. FOREACH edge IN qEdges
5. IF edge.depth == depth
6. IF currBitsSum+ edge.bitsNum > maxBitsNum
7. currPhase++
8. currBitsSum = 0
9. END IF
10. currBitsSum+ = edge.bitsNum
11. edge.phaseNum = currPhase
12. END IF
13. END FOREACH
14. END FOR

Figure 7: Query phase ordering algorithm
Figure 7 presents the algorithm for breaking the query into phases.

4. EXPERIMENTAL EVALUATION
We compared GGQ to Gremlin [17] in terms of run time (to

completion). Gremlin is the only query processor that we found
that uses the native graph approach and that supports XPath-style
queries over graph documents. Using Gremlin’s query language,
one can easily express TPQs. We are not aware of any parallel
graph query processor to which we can currently compare our re-
sults. We used the GLS storage scheme to store the data. We imple-
mented the GGQ algorithm from scratch on CUDA [7]. We exper-
imented with GRR [10], a benchmark tool for generating random
RDF documents. We also experimented with the Geospecies data
document [2], and a representative data document example of the
Census database [8]. We checked different TPQ query patterns. 4

4Queries and data are available upon request.

Path Q1 Path Q2 Speedup
Q1 Q2

Gremlin 114 84
GPU − full 0.8 7.4 148 11
GPU − ans 0.09 0.08 1267 1050
GPU − alg 0.085 0.075 1425 1200

Figure 8: Results of GGQ on a document with size 125MB, for
path queries with 5 nodes. The right two columns contain the
speedup of GGQ run in comparison to a Gremlin run.

Path Q1 Tree Q2 Speedup
Q1 Q2

Gremlin 76 72
GPU − full 3.2 3.17 24 23
GPU − ans 0.08 0.09 950 800
GPU − alg 0.075 0.095 1085 900

Figure 9: Results of GGQ on a document with size 600MB, for a
path query with 5 nodes and a tree query with 6 nodes. The right
two columns contain the speedup of GGQ run in comparison to a
Gremlin run.

Path Q1 Tree Q2 Speedup
Q1 Q2

Gremlin 81 75
GPU − full 0.86 0.67 94 112
GPU − ans 0.09 0.12 900 625
GPU − alg 0.08 0.11 1012 682

Figure 10: Results of GGQ on a document with size 180MB, for a
path query with 4 nodes and a tree query with 6 nodes. The right
two columns contain the speedup of GGQ run in comparison to a
Gremlin run.

Tree Q1 Tree Q2 Speedup
Q1 Q2

Gremlin 187 165
GPU − full 49 5.4 3.8 30.6
GPU − ans 48 2.6 3.9 63.5

Figure 11: Results of GGQ on a document with size 180MB, for
two different tree queries with 11 nodes. The right two columns
contain the speedup of GGQ run in comparison to a Gremlin run.

All experiments were run on an 3 GHz Intel S5520SC ShadyCove
5520 12DDR3 6SATA/R 2LAN1000 EATX workstation having an
NVIDIA GTX 480 GPU (with 1.5GB global memory), and having
two Intel Xeon 6C X5650 processors (with 24GB of RAM in total).
Each Xeon processor has 6 cores so altogether the workstation has
12 cores. We used the actual run time in various scenarios as the
main metric of performance.

4.1 Experiments Description
Setting Up. An experiment run has two input files: an RDF doc-

ument, and a text file with query (TPQ) patterns to run against the
given document. An experiment begins with loading the input doc-
ument into the GLS storage system by the parser. Then, we parse
the queries, and process them against the input document. We used
different TPQ patterns. The patterns we used have different length
and of different tree structures.

Experiment Description. The document is first loaded to the
GLS storage system (the time of loading is not measured, as it is a
one time procedure). Every experiment has the following runs:

1. Gremlin Run - We process the queries in the queries text file
using Gremlin [17]. Information regarding the run time of the
query is collected in the result log file.

2. GPU Run - This run is performed using the GPU. We process
the queries in the queries text file. The queries are processed by the
GGQ algorithm as described in Section 3. Information regarding
start and end times of processing the queries is collected in the
result log file.

We compare the performance of GGQ to Gremlin by comparing
the run time of these algorithms in three different ways. In the first
way we start the time measurement for the GGQ algorithm before
copying the data from the CPU to the global memory of the GPU,
and stop after copying the result data from the GPU to the CPU
(namely, GPU-full). In the second way we start the time measure-
ment for the GGQ algorithm right after copying the data from the
CPU to the global memory of the GPU, and before the query exe-
cution begins, and stop the time measurement right after finishing
the query processing, but before copying the results data from the
global memory of the GPU to the CPU (namely, GPU-alg). In the
third way we start the time measurement for the GGQ algorithm
right after copying the data from the CPU to the global memory
of the GPU, and before the query execution begins, and stop the

time measurement after copying the result data from the GPU to the
CPU (namely, GPU-ans). GPU-full reflects the potential time im-
provement of the GPU for large documents that cannot fully reside
in the global memory of the GPU. GPU-ans reflects the potential
time improvement for documents that can fully reside in the global
memory of the GPU. This is an important measurement as in a case
that the document can fully reside in the GPU, we have to copy it
to the GPU only once and then we can run many queries over this
document in a row, by this eliminating the need for copying the
document to the GPU per each query. GPU-alg is appropriate for
GPUs in which the global memory and RAM are merged, i.e., in
more recent processors such as NVIDIA’s planned PASCAL GPU
family. Time is measured is milliseconds. Each experiment is char-
acterized by the size of the input RDF document. We experimented
with documents sized as follows: 40MB, 125MB,180MB, 600MB.
We did not use larger files, as the GRR benchmark tool was not able
to create larger files. Also, the main factor that influences the com-
plexity of GGQ is the size of the query and not the size of the RDF
database document. Note that only the relevant edge streams have
to be copied to the global GPU memory, so ordinarily the amount
of data that is copied to the global GPU memory is usually much
smaller than the document size.

4.2 Experiments
Figures 8 and 9 show the results of GGQ on GRR documents

with sizes 125MB and 600MB respectively for different TPQ queries.
The GGQ run with full memory transferring time (both directions)
has speedup with respect to Gremlin of about 147 and 11 for a
document with size 125MB and of 24 and 23 for a document with
size 600MB, for Q1 and Q2 respectively. The GGQ run with result
transferring time (from the global memory to the CPU) has speedup
with respect to Gremlin of 1267 and 1050 for a document with size
125MB and of 950 and 800 for a document with size 600MB, for
Q1 and Q2 respectively. The GGQ pure run (without transferring
times) has speedup with respect to Gremlin of 1425 and 1200 for
a document with size 125MB and of 1086 and 900 for a document
with size 600MB, for Q1 and Q2 respectively. Due to lack of space,
we shall not elaborate on all the experimentation Figures.

5. RELATED WORK
There are a growing number of initiatives to implement and com-

mercialize Graph databases, such as Neo4j [6], HyperGraphDB
[4] and DEX [3] and many RDF solutions such as Jena [5] and
AllegroGraph [1]. There are other initiatives to create graph query-
ing languages that enable a simplified user view of querying such
as SPARQL [19] and Gremlin [17]. Another initiative for a graph
query language is GraphQL that is presented in [12] in which the
base node is a graph, so it deals with a graph of graphs. Thus, the
answer to this query is a set of graphs; further, this work is not deal-
ing with parallel query processing. Works in the area of paralleliza-
tion of graph databases have started to appear. For example, par-
allelGDB [9] and papers that address parallelization that is based
on graph partitioning. GPU-based work is [14] which proposes an
efficient subgraph matching algorithm. It presents an implementa-
tion of the STwig algorithm [18] in which the third (join) step of
the algorithm is performed in parallel on a GPU.

Lately, there are efforts to use GPUs to improve the performance
of DBMSs. There are also new framework proposals, such as Medusa,
a programming framework for parallel graph processing on GPUs.
Medusa enables developers to leverage the massive parallelism and
other hardware features of GPUs by writing sequential C/C++ code
for a small set of APIs. Recent works, [15], propose efficient XML
path processing algorithms using GPUs, which deal with path pat-
terns. The current paper, on the other hand, deals with TPQs, which
are more complex query patterns, looked for on more complex
database structures.

6. CONCLUSIONS
We present the GGQ algorithm, a novel efficient algorithm for

processing TPQ queries on graph documents. We use a new stor-
age scheme, GLS, in a parallel multi-threaded computing platform,
using a GPU as a CPU co-processor. GGQ employs techniques that
allow it to run hundreds of threads in parallel.

We conducted extensive experimentation with GGQ. We com-
pared, in terms of run time, GGQ to Gremlin [17], currently the
only available tool for comparison, that supports XPath-style queries
over graph documents. We checked performance for varying doc-
ument sizes and for different queries. Experimental results indi-
cate that using GGQ significantly reduces the run time of queries
in comparison to Gremlin.

As part of future work, we plan to adapt the multi-phase scheme
to oddly shaped graphs, e.g., ones with a few nodes, each having a
multitude of edges. We also plan to extend GGQ to handle queries
that are in the form of a directed graph. The idea is to first build

a spanning forest out of the query graph. Then, to run the above
algorithm on each tree in the forest. As the last step, to check all
the answers for compatibility (namely, that the same query node is
not mapped to different data graph nodes) and retain the answers
that conform to the graph query structure.

7. REFERENCES
[1] Allegrograph: Modern, high-performance, persistent graph

database. http://franz.com/agraph/allegrograph/.
[2] The apache xalan project. http://stats.lod2.eu/rdfdocs/769.
[3] Dex: High-performance and scalable graph database

management system.
http://www.sparsity-technologies.com/dex.

[4] Hypergraphdb. http://www.hypergraphdb.org/index.
[5] Jena: Java framework for building semantic web and linked

data applications. http://jena.apache.org/.
[6] Neo4j: WorldŠs leading graph database.

http://www.neotechnology.com/neo4j-graph-database/.
[7] Nvidia cuda c programming guide.
[8] Rdf data sets repository links.

http://www.w3.org/wiki/DataSetRDFDumps.
[9] L. Barguñó, V. Muntés-Mulero, D. Dominguez-Sal, and

P. Valduriez. Parallelgdb: a parallel graph database based on
cache specialization. IDEAS ’11.

[10] D. Blum and S. Cohen. Grr: Generating random rdf. In
ESWC (2), 2011.

[11] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal xml pattern matching. In SIGMOD’02.

[12] H. He and A. K. Singh. Graphs-at-a-time: Query language
and access methods for graph databases. SIGMOD ’08.

[13] J. Hensley. Amd ctm overview. In SIGGRAPH’07.
[14] X. Lin, R. Zhang, Z. Wen, H. Wang, and J. Qi. Efficient

subgraph matching using gpus. In Databases Theory and
Applications, Lecture Notes in Computer Science. 2014.

[15] R. Mousalli, R. Halstead, M. Salloum, W. Najjar, and V. J.
Tsotras. Efficient xml path filtering using gpus. In ADMS -
VLDB Workshops, 2011.

[16] NVIDIA. What is gpu-computing?
http://www.nvidia.com/object/what-is-gpu-computing.html.

[17] M. A. Rodriguez. Gremlin, 2010.
[18] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient

subgraph matching on billion node graphs. VLDB’12.
[19] W3C. Sparql. http://www.w3.org/TR/rdf-sparql-query/.

