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ABSTRACT
There is a growing interest in the validation of RDF based solutions
where one can express the topology of an RDF graph using some
schema language that can check if RDF documents comply with it.

Shape Expressions have been proposed as a simple, intuitive lan-
guage that can be used to describe expected graph patterns and to
validate RDF graphs against those patterns. The syntax and seman-
tics of Shape Expressions are designed to be familiar to users of
regular expressions.

In this paper, we propose an implementation of Shape Expres-
sions inspired by the regular expression derivatives but adapted to
RDF graphs.

1. INTRODUCTION
The industry need to describe and validate conformance of RDF

instance data with some schema has motivated a W3C Workshop [24]
and the chartering of W3C RDF Data Shapes Working Group.1

Here, a schema defines an RDF graph structure where a node has
expected properties with defined cardinalities, connecting to literal
values or other described nodes.

As currently defined, RDF Schema [2] and OWL [22] are widely
recognized as being insufficient to fulfil this task, leading to pro-
posals like the RDF vocabulary Resource Shapes2 and the Shape
Expressions3 language.

The operational semantics of Shape Expressions has been pre-
sented at [23] and the complexity and expressiveness of the lan-
guage has been studied at [1]. A Shape Expression is a labelled
pattern that describes RDF nodes using a syntax inspired by regu-
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lar expressions.

Example 1. The following shape expression describes Person
shapes as nodes that have one property foaf:age with values of
type xsd:int, one or more properties foaf:name with values
of type xsd:string and zero or more properties foaf:knows
with values of shape Person.

<Person> {
foaf:age xsd:integer

, foaf:name xsd:string+
, foaf:knows @<Person>*
}

It is possible to automatically check which nodes comply with
the declared shapes in an RDF Graph.

Example 2. The nodes :john and :bob in the following graph
have shape Person while the node :mary does not have that
shape.

:john foaf:age 23;
foaf:name "John";
foaf:knows :bob .

:bob foaf:age 34;
foaf:name "Bob", "Robert" .

:mary foaf:age 50, 65 .

Shape expressions can be used to describe and validate the con-
tents of linked data portals [16] and there are several implementa-
tions and online validation tools like ShEx Workbench4 and RDF-
Shape5.

Regular expressions are a well-known formalism to describe the
shape of sequences of characters. They have also been employed to
describe the shape of XML trees and form the theoretical basis of
RelaxNG. In 1964, Janusz Brzozowski proposed a method for di-
rectly implementing a regular expression recognizer based on reg-
ular expression derivatives [3]. In this paper, we adapt the deriva-
tives approach to RDF Graph based recognizers. We define regular
4http://www.w3.org/2013/ShEx/FancyShExDemo
5http://rdfshape.weso.es
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shape expressions, which form the basis of the Shape Expressions
language, and present the algorithm that can be used to check if
an RDF node has a given Shape. The algorithm has been imple-
mented and the performance results are better than a backtracking
implementation.

2. PRELIMINARIES
Given a set S, we denote S∗ as the powerset of S, {} denotes the

empty set and {a1, . . . , an} denotes a set with elements a1, . . . , an.
The singleton set {a} will be simplified as a.

Let Vs = vocabulary of subjects, Vp = vocabulary of predicates
and Vo = vocabulary of objects. In RDF, if we define I as the set
of IRIs, B as the set of blank nodes and L as the set of literals, we
have Vs = I ∪ B, Vp = I and Vo = I ∪ B ∪ L.

A graph Σ is defined as a set of triples 〈s, p, o〉 such that s ∈ Vs,
p ∈ Vp and o ∈ Vo. Σ* denotes all possible graphs. The expression
t o ts represents the addition of triple t to a graph ts. Given two
graphs g1 and g2, g1 ⊕ g2 denotes the union of g1 and g2. Notice
that we are using union of RDF graphs instead of merging. Union
of two RDF graphs preserves the identity of blank nodes shared
between graphs while merging does not [11].

The decomposition of a graph g is defined as the set {(g1, g2)|g1⊕
g2 = g}. The decomposition of a graph with n triples is an expo-
nential operation that generates a graph with 2n pairs of graphs that
can be obtained by calculating the powerset of g and pairing each
element with its complement.

Example 3. Let g = {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}, the decom-
position of g is:

{ ({},{〈n, a, 1〉,〈n, b, 1〉,〈n, b, 2〉}),
({〈n, a, 1〉},{〈n, b, 1〉,〈n, b, 2〉}),
({〈n, b, 1〉},{〈n, a, 1〉,〈n, b, 2〉}),
({〈n, b, 2〉},{〈n, a, 1〉,〈n, b, 1〉}),
({〈n, a, 1〉,〈n, b, 1〉},{〈n, b, 2〉}),
({〈n, a, 1〉,〈n, b, 2〉},{〈n, b, 1〉}),
({〈n, b, 1〉,〈n, b, 2〉},{〈n, a, 1〉}),
({〈n, a, 1〉,〈n, b, 1〉,〈n, b, 2〉},{}),

}

We define the shape of a node n in a graph g, Σg
n as the set of

triples related to n in graph g. It is formed by all the triples of the
form 〈n, p, o〉 ∈ g . We define Σ∗ as all possible shapes that a node
n can have.

3. WHY NOT SPARQL?
Shape Expressions have been proposed as a high level, intuitive

language to validate RDF. This problem can also be partially solved
using SPARQL queries [14] which leverage on the whole expres-
siveness of the SPARQL query language.

The main issue of SPARQL queries is that they can become un-
wieldy and difficult to generate, manage and debug by hand.

Example 4. A SPARQL query that can express part of exam-
ple 1 is:

ASK {
{ SELECT ?Person {
?Person foaf:age ?o .

} GROUP BY ?Person HAVING (COUNT(*)=1)}
{ SELECT ?Person {
?Person foaf:age ?o .

FILTER ( isLiteral(?o) &&
datatype(?o) = xsd:integer )

} GROUP BY ?Person HAVING (COUNT(*)=1)}
{ SELECT ?Person (COUNT(*) AS ?Person_c0) {
?Person foaf:name ?o .

} GROUP BY ?Person HAVING (COUNT(*)>=1)}
{ SELECT ?Person (COUNT(*) AS ?Person_c1) {
?Person foaf:name ?o .
FILTER (isLiteral(?o) &&
datatype(?o) = xsd:string)

} GROUP BY ?Person HAVING (COUNT(*)>=1)}
FILTER (?Person_c0 = ?Person_c1)

{ {
{ SELECT ?Person (COUNT(*) AS ?Person_c2){
?Person foaf:knows ?o .

} GROUP BY ?Person}
{ SELECT ?Person (COUNT(*) AS ?Person_c3){
?Person foaf:knows ?o .
FILTER ((isIRI(?o) || isBlank(?o)))
}

GROUP BY ?Person HAVING (COUNT(*) >= 1)}
FILTER (?Person_c2 = ?Person_c3)

} UNION { SELECT ?Person {
OPTIONAL { ?Person foaf:knows ?o }
FILTER (!bound(?o))

}}}}

Representing RDF validation constraints as SPARQL queries is
not practical for large data portals and there is a need for a higher
level, declarative language with a more intuitive semantics.

Apart from that, the previous example is not completely right as
it has omitted the recursive definition where it should validate that
the values of foaf:knows all have the shape of Person. Try-
ing to represent recursive definitions in SPARQL is not possible in
general.6 From our point of view SPARQL can be used as a lower
level language for constraint validation in the sense that Shape Ex-
pressions can be mapped to SPARQL queries. In fact, one of our
implementation of Shape Expressions is already able to generate
those SPARQL queries from Shape Expressions.

4. INTRODUCING REGULAR SHAPE EX-
PRESSIONS

In this section we define Regular Shape Expressions as a sim-
plified language based on the whole Shape Expressions language.
This language will be used as the basis for our implementations. A
regular shape expression E defines the triples related with a given
node in a graph. Although the concept presented in this paper is
focused on RDF graphs, we consider that these definitions can be
applied to describe the topology of other graph structures.

Given three non-empty sets Vs, Vp, Vo and vs ⊆ Vs, vp ⊆ Vp

and vo ⊆ Vo, the abstract syntax of regular shape expressions (E)
over Vs, Vp, Vo is:

E,F ::= ∅ empty, no shape
| ε empty set of triples
|

vp−→ vo arc with predicate
p ∈ vp and object o ∈ vo

| E∗ Kleene closure (0 or more E)
| E ‖ F And (unordered concatenation)
| E | F Alternative

We do not provide the concatenation operator from string based
regular expressions because the arcs in a graph are not ordered. The
6This particular query could be represented using zero-length paths
as proposed by Joshua Taylor in StackOverflow http://goo.
gl/uMoXBQ
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And operator (‖) for unordered concatenation appears in [1] and is
similar to interleave or shuffle [6, 10] although in the case of graphs
and regular shape expressions there is no ordered concatenation
operator.

The operators E+ (one or more) and E? (optional) can be de-
fined as:

E+ = E ‖ E ∗
E? = E | ε

The Shape Expressions language also contains a range operator
E{m,n} which represents between m and n repetitions of E. It
can be defined as:

E{m,n} =


E{m,n− 1}|E if m < n

E{m− 1, n− 1} ‖ E if m = n > 0

ε if m = n = 0

Example 5. The regular shape expression

a−→ 1 ‖ b−→ {1, 2}∗

declares a shape that contains one arc with predicate a and value 1,
and one or more arcs with predicate b and values 1 or 2.

Example 6. We can consider xsd:int and xsd:string as
subsets ofL (the set of Literals) in RDF, so we can define the shape:

foaf:age−−−−−→ xsd:integer ‖ (
foaf:name−−−−−−→ xsd:string)+

that declares nodes that must have an arc with predicate foaf:
age and value in xsd:int and one or more arcs with predicate
foaf:name and value in xsd:string. In ShEx notation it can
be represented as:

<Example> {
foaf:age xsd:integer

, foaf:name xsd:string+
}

Given a node n, the shape of a regular shape expression e with
respect to n, denoted as Sn[[e]] is the set of graphs Sn[[e]] ⊆ Σ∗

generated by the following rules:

Sn[[∅]] = ∅
Sn[[ε]] = {}

Sn[[
vp−→ vo]] = {〈n, p, o〉|p ∈ vp and o ∈ vo}
Sn[[e∗]] = {} ∪ Sn[[e ‖ e∗]]

Sn[[e1 ‖ e2]] = {t1 ∪ t2| t1 ∈ Sn[[e1]] and t2 ∈ Sn[[e2]]}
Sn[[e1 | e2]] = Sn[[e1]] ∪ Sn[[e2]]

Example 7. Let e =
a−→ 1 ‖ b−→ {1, 2}∗, then

Sn[[e]] = {{〈n, a, 1〉},
{〈n, a, 1〉, 〈n, b, 1〉},
{〈n, a, 1〉, 〈n, b, 2〉},
{〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}}

For any expression x, the operators ‖, |, ε and ∅ obey the follow-
ing simplification rules:

∅ | x = x

x | ∅ = x

∅ ‖ x = ∅
x ‖ ∅ = ∅
ε ‖ x = x

x ‖ ε = x

5. MATCHING REGULAR SHAPE EXPRES-
SIONS

Given a regular shape expression e and a node n in a graph g, we
want to determine if Σg

n (the subgraph formed by the triples related
with n) matches the regular shape expression Sn[[e]], i.e. we want
to determine if Σg

n ∈ Sn[[e]].
The semantics of Regular Shape Expressions is defined by a rela-

tion e ' Σg
n (e matches Σg

n) which can be expressed using axioms
and inference rules [23]. Figure 1 presents the operational seman-
tics of Regular Shape Expressions. Those rules can be directly im-
plemented using backtracking.

Example 8. Let e =
a−→ 1 ‖ b−→ {1, 2}∗ and a graph g

where Σg
n = {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}, a trace of the match-

ing algorithm is represented in figure 2. Notice that we have to
decompose the matching graph g in all the pairs of graphs g1 and
g2 whose union give g. In this case, the decomposition returns all
the pairs depicted in example 3.

As can be seen, a naïve implementation of Regular Shape ex-
pression matching using backtracking leads to exponential growth
and has poor performance.

6. REGULAR SHAPE EXPRESSION DERIVA-
TIVES

The derivative of a shape Sn(E) ⊆ Σ∗ with respect to a triple
t ∈ Σ is a shape that includes only the remaining triples that when
appended to t will become Sn(E).

Definition 1. The derivative of a Shape Sn(E) ⊆ Σ∗ with re-
spect to a triple t ∈ Σ is defined as ∂t(Sn(E)) = {ts|t o ts ∈
Sn(E)}

We need a helper function ν : E → Bool (also called nul-
lable) that checks if a regular shape expression can match the empty
graph.

ν(E) =

{
true if E matches the empty graph
false otherwise

ν(∅) = false

ν(ε) = true

ν(
vp−→ vo) = false

ν(e∗) = true

ν(e1 ‖ e2) = ν(e1) ∧ ν(e2)

ν(e1 | e2) = ν(e1) ∨ ν(e2)

The following rules, inspired from Brzozowski [3], compute the
derivative of a regular shape expression with respect to a triple t.



Or1
r1 ' g
r1|r2 ' g

Or2
r2 ' g
r1|r2 ' g

And
r1 ' g1 r2 ' g2

r1 ‖ r2 ' g1 ⊕ g2

Empty
ε ' {}

Star1
r∗ ' {}

Star2
r ' g1 r∗ ' g2

r∗ ' g1 ⊕ g2

Arc
p ∈ vp o ∈ vo
vp−→ vo ' 〈s, p, o〉

Figure 1: Inference rules for Shape expression rules

a−→ 1 ‖ b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

a−→ 1 ' {}
b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

g1 = {}
g2 = {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

a−→ 1 ' {〈n, a, 1〉}
b−→ {1, 2}∗ ' {〈n, b, 1〉, 〈n, b, 2〉}

b−→ {1, 2}'{}
b−→ {1, 2}∗ ' {〈n, b, 1〉, 〈n, b, 2〉}

g1 = {}
g2 = {〈n, b, 1〉, 〈n, b, 2〉}

b−→ {1, 2} ' {〈n, b, 1〉}
b−→ {1, 2}∗ ' {〈n, b, 2〉}

b−→ {1, 2}'{}
b−→ {1, 2}∗ ' {〈n, b, 2〉}

g1 = {}
g2 = {〈n, b, 2〉}

b−→ {1, 2} ' 〈n, b, 2〉
b−→ {1, 2}∗ ' {}

g1 = {〈n, b, 2〉}
g2 = {}

g1 = {〈n, b, 1〉}
g2 = {〈n, b, 2〉}

g1 = {〈n, a, 1〉}
g2 = {〈n, b, 1〉, 〈n, b, 2〉}

Figure 2: Regular Shape Expression matching using backtracking



∂t(∅) = ∅
∂t(ε) = ∅

∂〈s,p,o〉(
vp−→ vo) =

{
ε if p ∈ vp and o ∈ vo
∅ otherwise

∂t(e∗) = ∂t(e) ‖ e∗
∂t(e1 ‖ e2) = ∂t(e1) ‖ e2 | ∂t(e2) ‖ e1

∂t(e1 | e2) = ∂t(e1) | ∂t(e2)

Example 9. Let e =
a−→ 1 ‖ b−→ {1, 2}∗, the derivative of e

with respect to 〈n, a, 1〉 is b−→ {1, 2}∗. A trace of the derivatives
calculation can be:

∂〈n,a,1〉(
a−→ 1 ‖ b−→ {1, 2}∗)

= ∂〈n,a,1〉(
a−→ 1) ‖ b−→ {1, 2} ∗

| ∂〈n,a,1〉(
b−→ {1, 2}∗) ‖ a−→ 1

= ε ‖ b−→ {1, 2} ∗

| ∂〈n,a,1〉(
b−→ {1, 2}) ‖ b−→ {1, 2}∗ ‖ a−→ 1

=
b−→ {1, 2} ∗

| ∅ ‖ b−→ {1, 2}∗ ‖ a−→ 1

=
b−→ {1, 2} ∗

| ∅ ‖ a−→ 1

=
b−→ {1, 2} ∗ | ∅

=
b−→ {1, 2}∗

Notice that the derivative of a Regular Shape Expression can
grow in its size.

Example 10. The regular shape expression e = (
a−→ {1, 2}| b−→

{1, 2})∗,checks that there are the number of arcs with predicate
a and values in {1, 2} and arcs with predicate b and values in
{1, 2} is the same. The derivative of e with respect to 〈n, a, 1〉
is b−→ {1, 2} ‖ (

a−→ {1, 2}| b−→ {1, 2})∗. Notice that it grows
because once it finds an arc with predicate a, it needs to find another
arc with predicate b and continue with the rest of the graph.

The rules can be extended to graphs (sets of triples) as follows:

∂{}(e) = e

∂tots(e) = ∂ts(∂t(e))

7. MATCHING USING DERIVATIVES
For any graph g, we have that Σg

n ∈ Sn[[e]] if, and only if, ε ∈
Sn[[∂Σ

g
n

(e)]] which is true when ν(∂Σ
g
n

(e)) = true. We can
express the algorithm in terms of the relation e ' Σg

n defined as
the smallest relation satisfying:

e ' {} ⇔ ν(e)

e ' to ts ⇔ ∂t(e) ' ts

It is straightforward to show that e ' Σg
n if, and only if, Σg

n ∈
Sn[[e]].

Notice that when a regular shape expression matches a set of
triples, we compute the derivative for each of the triples in the set.

Example 11. Let e =
a−→ 1 ‖ b−→ {1, 2}∗ and Σg

n =
{〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}, the matching algorithm proceeds as:

a−→ 1 ‖ b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

⇔ ∂〈n,a,1〉(
a−→ 1 ‖ b−→ {1, 2}∗) ' {〈n, b, 1〉, 〈n, b, 2〉}

⇔ b−→ {1, 2}∗ ' {〈n, b, 1〉, 〈n, b, 2〉}

⇔ ∂〈n,b,1〉(
b−→ {1, 2}∗) ' {〈n, b, 2〉}

⇔ b−→ {1, 2}∗ ' {〈n, b, 2〉}

⇔ ∂〈n,b,2〉(
b−→ {1, 2}∗) ' {}

⇔ b−→ {1, 2}∗ ' {}

⇔ ν(
b−→ {1, 2}∗)

⇔ true

As can be seen the derivatives algorithm takes a linear approach
where it is consuming a triple in each step and calculating the corre-
sponding derivative of the regular shape expression. The algorithm
does not need to decompose the graph or to do backtracking. The
main complexity of the algorithm comes from the process of calcu-
lating and representing derivatives of shape expressions.

Example 12. Let e =
a−→ 1 ‖ b−→ {1, 2}∗ and Σg

n =
{〈n, a, 1〉, 〈n, a, 2〉, 〈n, b, 1〉}, the matching algorithm proceeds as:

a−→ 1 ‖ b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, a, 2〉, 〈n, b, 1〉}

⇔ ∂〈n,a,1〉(
a−→ 1 ‖ b−→ {1, 2}∗) ' {〈n, a, 2〉, 〈n, b, 1〉}

⇔ b−→ {1, 2}∗ ' {〈n, a, 2〉, 〈n, b, 1〉}

⇔ ∂〈n,a,2〉(
b−→ {1, 2}∗) ' {〈n, b, 1〉}

⇔ ∅ ' {〈n, b, 1〉}
⇔ false

8. SHAPE EXPRESSION SCHEMAS
In this section, we extend the regular shape expressions language

to include labels for shape expressions. We assume a finite set of
labels Λ.

A Shape Expression Schema is a tuple (Λ, δ) where δ is a shape
definition function that maps labels to regular shape expressions
over Vs ∪ Λ, Vp ∪ Λ, Vo ∪ Λ. Typically, we present a schema as a
collection of rules of the form λ 7−→ e where λ ∈ Λ and e ∈ E

Example 13. Let Λ={p}, we can define the following Shape Ex-
pression Schema: The regular shape expression

p 7−→ a−→ 1

‖ b−→ {1, 2}+

‖ c−→ p∗

declares a schema where nodes of shape p contain an arc with
predicate a and value 1, one or more arcs with predicate b and val-
ues 1 or 2, and zero or more arcs with predicate c and values of
shape p. Notice that shape expression schemas can contain recur-
sive references.

Example 14. Let Λ={person}, we can define the following



Shape Expression Schema which corresponds to example 1

person 7−→ foaf:age−−−−−→ xsd:int

‖ foaf:name−−−−−−→ xsd:string+

‖ foaf:knows−−−−−−−→ person∗

A shape typing is a mapping from nodes in a graph to labels.
Given a graph and a regular shape schema, we define a type infer-
ence algorithm which assigns a shape typing to the nodes in the
graph. The expression Γ ` n 's s represents the shape typings
generated when matching a node n with a shape s in the context Γ.

The context contains the current typing which can be accessed
through Γ.typing. The expression Γ{n → t} means the addition
of type t to n in context Γ. The semantic definition of 's is de-
picted in Figure 3.

We define the following definitions on shape typings:
� = Empty typing
n→ s : τ = Add shape type s to node n in typing t
τ1 ] τ2 = Combine typings τ1 and τ2

The operational semantics presented in figure 1 can be extended
to handle shape typings. The definitions are presented in figure 4.
As can be seen the definitions are straightforward. The main nov-
elty is the semantics of arcs which have been divided in two cases.
Arctype handles the case where the shape expression contains a
value set, while Arcref handles the case where the shape expres-
sion contains a reference to a label. In that case, the object is
matched against the shape expression associated with that label.

In order to adapt the inference rules to employ the derivatives
algorithm, we modify the derivative function ∂t(e,Γ) to take a new
parameter Γ that represents the typing context and to return a pair
(e′, τ) where e ∈ E represents the derivative and τ represents the
resulting typing. The new definition is:

∂t(∅,Γ) = (∅,�)

∂t(ε,Γ) = (∅,�)

∂〈s,p,o〉(
vp−→ vo,Γ) =

{
(ε,Γ.τ) if p ∈ vp and o ∈ vo
(∅,�) otherwise

∂〈s,p,o〉(
vp−→ l,Γ) =

{
(ε, τ) if Γ{o→ l} ` δ(l) 's Σg

o  τ

(∅,�) otherwise

∂t(e∗) = let (e′, τ) = ∂t(e,Γ)

in e′ ‖ e∗
∂t(e1 ‖ e2) = let (e′1, τ1) = ∂t(e1,Γ)

let (e′2, τ2) = ∂t(e2,Γ)

in (e′1 ‖ e2 | e′2 ‖ e1, τ1 ] τ2)

∂t(e1 | e2) = let (e′1, τ1) = ∂t(e1,Γ)

let (e′2, τ2) = ∂t(e2,Γ)

in (e′1 | e′2, τ1 ] τ2)

The algorithm presented in this paper has been implemented in
Scala7 and Haskell8. The Scala implementation contains several
extensions like reverse arcs, relations, negations, etc. that have been
omitted in this paper for brevity while the Haskell prototype fol-
lows the simplified definitions presented here. Comparing the per-
formance between the backtracking and the derivatives approach,
we noticed that the latter obtains better results than the former.
7http://labra.github.io/ShExcala/
8http://labra.github.io/Haws/

Although the theoretical complexity of Shape Expression vali-
dation, which has been characterized in [1], remains the same, the
derivatives algorithm behaves much better than the backtracking
one. Further work needs to be done to check if we can identify
a subset of the language with better complexity results while be-
ing expressive enough. In particular, the Single Occurrence Regu-
lar Bag Expressions subset defined in that paper offers a tractable
language which could be expressive enough. In the future we are
planning to adapt our implementation to that subset and study its
performance behaviour in practice.

9. RELATED WORK
Regular expression derivatives where introduced by Brzozowski

in 1964[3] and were used for string based recognizers of regular
expressions. In 1999, Joe English proposed the use of derivatives
for XML validation [9]. That idea was taken by James Clark to im-
plement RelaxNG [4]. An updated presentation of regular expres-
sion derivatives is presented in [21] where the authors describe how
to handle large character sets (Unicode). Our presentation follows
the notations used in that paper adapted to regular shape expres-
sions. With regards to the implementation, we took some inspira-
tion by the Haskell implementation of a W3C XML Schema regular
expression matcher maintained by Uwe Schmidt [26] which con-
tains a definition for the interleave operator. There has also been
some recent work applying regular expression derivatives to sub-
matching [28] and parsing [17] and comparing it with the more tra-
ditional approach to regular expression matching based on NFA [7].

The main inspiration for Shape Expressions has been RelaxNG [30],
a Schema language for XML that offers a good trade-off between
expressiveness and validation efficiency. The semantics of Re-
laxNG has also been expressed using inference rules in the spec-
ification document [20] and is based on tree grammars [19]. In-
spired by that specification, we presented the semantics of Shape
Expressions using type inference rules in [23]. Our first prototype
implementation of Shape Expressions in Haskell9 employed a di-
rect translation of the inference rules using a backtracking monad
transformer. We consider that the equational reasoning presenta-
tion of the algorithm can be used to proof its correctness using an
inductive representation of RDF graphs [15].

Besides Shape Expressions, there are several approaches that
have been proposed to validate RDF Graphs which can be roughly
classified as: inference based, SPARQL-based and grammar-based
approaches.

OWL based approaches try to adapt RDF Schema or OWL to ex-
press validation semantics. However, using Open World and Non-
unique name assumption limits validation possibilities. [5, 29, 18]
propose the use of OWL expressions with a Closed World Assump-
tion to express integrity constraints.

SPARQL-based approaches use the SPARQL Query Langugage
to express the validation constraints. SPARQL has much more
expressiveness than Shape Expressions and can even be used to
validate numerical and statistical computations [14]. SPARQL In-
ferencing Notation (SPIN)[12] constraints associate RDF types or
nodes with validation rules. These rules are expressed as SPARQL
queries. There have been other proposals using SPARQL com-
bined with other technologies, Simister and Brickley[27] propose
a combination between SPARQL queries and property paths which
is used in Google and Kontokostas et al [13] proposed RDFUnit
a Test-driven framework which employs SPARQL query templates
that are instantiated into concrete quality test queries.

Grammar based approaches define a domain specific language to

9Available at https://github.com/labra/haws

http://labra.github.io/ShExcala/
http://labra.github.io/Haws/
https://github.com/labra/haws


MatchShape
Γ{n→ l} ` δ(l) ' Σg

n  τ

Γ ` l 's n τ

Figure 3: Inference rule to match shapes

Or1
Γ ` r1 ' g  τ

Γ ` r1|r2 ' g  τ
Or2

Γ ` r2 ' g  τ

Γ ` r1|r2 ' g  τ

And
Γ ` r1 ' g1  τ1 Γ ` r2 ' g2  τ2

Γ ` r1 ‖ r2 ' g1 ⊕ g2  τ1 ] τ2

Empty
Γ ` ε ' {} �

Star1
Γ ` r∗ ' {} �

Star2
Γ ` r ' g1  τ1 Γ ` r∗ ' g2  τ2

Γ ` r∗ ' g1 ⊕ g2  τ1 ] τ2

Arctype
p ∈ vp o ∈ vo

Γ `
vp−→ vo ' 〈s, p, o〉 �

Arcref
Γ ` l 's o τ

Γ `
vp−→ l ' 〈s, p, o〉 τ

Figure 4: Inference rules for Shape expression schemas

declare the validation rules. OSLC Resource Shapes [25] have been
proposed as a high level and declarative description of the expected
contents of an RDF graph expressing constraints on RDF terms.
Shape Expressions have been inspired by OSLC although they offer
more expressive power. Dublin Core Application Profiles [8] also
define a set of validation constraints using Description Templates
with less expressiveness than Shape Expressions.

10. CONCLUSIONS AND FUTURE WORK
The industrial adoption of an RDF schema language will depend

on rigorous analysis of efficiency of Shape Expressions and other
approaches to schema.

In this paper, we propose an implementation of Shape Expres-
sions inspired by derivatives of regular expressions.

There are two main lines of future work: On one hand, we are
planning to develop a set of benchmarks that will enable us to as-
sess the performance of the different shape expression implemen-
tations. On the other hand, we are currently working on the im-
plementation of new features for the Shape Expression language.
The evolution of the recently chartered W3c Data Shapes Work-
ing group will affect the adoption of those features. In this paper
we offered a minimal set of language features which we consider
representative. However, there are several extension proposals like
inverse arcs, negations, predicates, etc. that could also be imple-
mented using the proposed approach.
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