
Equality, Identity, and a Modified Contract

Beate Ritterbach, Axel Schmolitzky
ritterbach@informatik.uni-hamburg.de
schmolitzky@informatik.uni-hamburg.de

Fachbereich Informatik
Universität Hamburg
Vogt-Kölln-Str. 30

22527 Hamburg

Abstract

This paper describes a software-engineering problem, proposes a solu-
tion and shows how that solution influences language design. In many
object-oriented programming languages, when implementing equality
the programmer has to make sure that it obeys a set of rules, called
equality contract. Not only is it difficult to adhere to these seemingly
simple rules, but the equality contract itself is a source of potential er-
rors. Even if equality complies with the contract, it can lead to faulty,
unintended, indeterministic program behavior. This paper proposes a
modified contract that avoids these problems. Additionally, the mod-
ified contract describes equality unambiguously, and it implies that
equality for values and identity for objects can be regarded as the very
same concept. Based on the modified contract the language design can
be enhanced in a way that supports value equality and object identity
more clearly and more safely.

1 Introduction

Equality seems to be a simple and basic concept. However, dealing with equality is not as easy as it looks.
As a guideline for the programmer, many languages stipulate a set of rules – called “equality contract” – that
the programmer should adhere to when programming equality. For example, in Java the API documentation of
java.lang.Object specifies that the equals method must be an equivalence relation (i. e. reflexive, symmetric
and transitive) for non-null references, it must be consistent (i. e. it must yield the same results unless one or
both of the objects involved are modified) and comparing something with null must always yield false. The
equality contract states formal rules for the behavior most people intuitively expect from equality. For example,
if a and b are equal, we also expect b and a to be equal. The equality contract is one of the basics of Java
programming; many books (e. g. [Blo08, Item 8, p. 33-44]) explain in detail how to adhere to it.

Section 2 argues that the contract itself is a source of problems. We list a number of errors that the contract can
cause. Section 3 proposes a modified contract. We show that complying with the modified contract eliminates the
errors stated before and that additionally the modified contract serves as a unique specification of value equality
and object identity. Section 4 points out that, depending on the programming language, some conditions of the
modified contract can be kept with adequate programming discipline, yet other conditions are hard to satisfy.
Section 5 describes a language support for equality and identity that adheres to the modified contract, its
prerequisites and its benefits.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

Submission to: 8. Arbeitstagung Programmiersprachen, Dresden, Germany, 18-Mar-2015, to appear at http://ceur-ws.org

133



2 Problems with the Equality Contract

Adhering to the contract is amazingly difficult. Even in professional code and in textbooks you find equals

methods that violate it; [LK02a] and [VTFD07] cite some examples. Many papers propose guidelines and
techniques for implementing equals in a contract-conforming way, mostly for Java, e. g. [BV02], [Coh02],
[LK02a], [LK02b], [SP03], [RH08].

This paper, however, addresses a different issue. It claims that the contract itself is a source of problems: it
is not sufficiently restrictive to prevent erroneous code and subtle bugs. Even though equality adheres to the
contract, several programming errors can occur:

1. According to the contract, equality may depend on mutable state, yet it leads to indeterministic, contra-
dictory behavior, e. g. when adding an element to a collection and trying to retrieve it after it has been
modified (see [OSV09]). For this reason, Vaziri et al. propose a “revised contract” that demands equality
not to depend on mutable state [VTFD07].

2. If a and b are equal, then the hashCodes of a and b must be equal, too. This “hashcode rule” is not a part
of the equality contract but a programming guideline on its own. Inadvertently or unknowingly violating
the hashcode rule also leads to unexpected, unintended behavior in collections (see [Blo08, Item 9, p. 46]).

3. What pertains to hashCode actually holds true for every read-only method q: If a and b are equal, then
a.q() and b.q() must be equal as well. As stated by Liskov and Guttag, “it should be impossible to
distinguish between two equal objects” [LG86, p. 93]. As for the hashcode rule, it can be shown that
violating indistinguishability can result in unexpected, indeterministic behavior.

4. In Java, the equals method is inherently asymmetric for null references. Because equals is an in-
stance method, null.equals(a) throws a NullPointerException, whereas, according to the contract,
a.equals(null) must yield false. This asymmetry results in unpredictable behavior (see, e. g. [Hor03]).
Moreover, it leads to intricate, verbose code, because it forces the clients to check for null.

5. Since equality is usually defined in a class at the top of the hierarchy (like Object in Java), it can compare
expressions of incomparable types (like String and Button). However, in such cases the result can never be
true, and mostly the comparison is a programming error (see [VTFD07]).

6. In many object-oriented languages, there is more than one comparison, for example == and equals in Java.
Inadvertently using the “wrong” comparison leads to subtle and hard-to-find errors. For example, comparing
two String expressions with == instead of equals is a well-known, yet widespread source of errors in Java.

In general, there may be more than one operation that adheres to the contract. E. g., identity is one of them,
see item no. 6. At first glance, this is not a problem. After all, the contract does not claim to be a unique
description, but its ambiguity gives rise to questions, such as: Can a type have more than one equality? Is
equality a universal concept, or does it mean something different for each type?

3 A Modified Equality Contract

To prevent problems 1 to 6, we propose a contract with more, and stronger conditions than the ones described
in section 2. We call it the modified equality contract :

A. Equality must always be an equivalence relation (i. e. reflexive, symmetric and transitive), this also applies
to null references.

B. Equality must be independent of mutable state. In this respect, we follow the revised contract of Vaziri et
al. [VTFD07] (see section 2, problem no. 1).

C. Equality must be indistinguishable: if a and b are equal, there must not exist a read-only operation q that
yields different results for a and b. (Condition C refers solely to read-only operations, because for mutating
operations in general it cannot be satisfied. If operation m modifies the instance it is called for, even two
calls to a.m() can yield different results.)

D. Equality must compare only expressions of comparable types.

134



By definition, equality that adheres to the modified contract suffers none of the problems described in the
previous section. Problem 1 is prevented by condition B. Problems 2 and 3 are prevented by condition C (actually,
problem 2 is a special case of problem 3), problem 4 by condition A, and problem 5 by condition D. It can be
proved that there exists at most one operation that adheres to the modified contract.1 This uniqueness solves
problem 6: If there is only one equality, then there is no danger of accidental confusion.

Because of its uniqueness, the modified contract serves as an implementation-independent specification. When
we define equality as the concept described by the modified contract, we receive the following answers to the
conceptual questions posed in section 2: There is one equality only. Equality means the same thing for every
type. Equality is the most fine-grained distinction possible (“the finest distinction” [Bak93, p. 3]). It determines
what we are referring to when we talk about “one” instance of a type.

Uniqueness has yet another implication: For objects, the concept described by the modified contract means
identity. For values, it means value equality.

We define objects as stateful abstractions like persons, cars, or bank accounts. Objects can basically be
created, destroyed and changed (even though they don’t have to). To put it more abstractly, their operations
can be referentially opaque and cause side effects. Values, by contrast, are stateless; they comprise abstractions
such as numbers and characters, strings, points and monetary amounts. Values cannot be changed, created or
destroyed, they exist per se. Operations on values are always referentially transparent and never cause side
effects. Distinguishing objects and values separates two fundamentally different programming paradigms, with
objects representing the imperative side and values representing the functional side. Table 1 lists the defining
characteristics of objects and values.

Table 1: Defining properties of objects and values

Distinguishing objects and values is a wide-spread modeling approach (see [Mac82], [BRS+98], [Fow09, p. 486-
495], [Eva04, p. 97-103]). Fowler even defines values as “abstractions whose equality is not based on identity”
in line with the modified contract. Liskov and Guttag hold the view that “in the case of mutable objects, all
distinct objects are distinguishable (i. e. equals has the same meaning as ==)” and “if two immutable objects
have the same state, they should be considered equal because there will not be any way to distinguish among
them by callig their methods.”[LG01, p. 94] Liskov and Guttag distinguish “mutable objects” and “immutable
objects” – which comes close to our distinction between objects and values, though it is not exactly the same.

The distinction of objects and values is not fully supported by current programming languages. Note that
so-called “value types” in C#, e. g. structs, are not necessarily stateless and thus are not the same concept
as the values mentioned above. struct does not support values, but “value semantics”, an implementation
technique also used for primitive types. This also applies to similar language mechanisms like expanded types
in Eiffel, structs in X10, “value objects” in Fortress etc.

Because the modified contract describes both object identity and value equality, calling this comparison
“equality” is not quite appropriate. However, neither is the term “identity” appropriate, because “identity” does
not include value equality. For want of a better name, we shall call that comparison “equality/identity”.

The modified contract excludes some comparisons that, in colloquial language, are also termed “equality”.
For example, two cars are often regarded as “equal” if they are the same model from the same manufacturer,
yet they are two distinct physical entities. In this case, the objects are distinguishable, at least by identity, and
mostly by other properties as well (owner, serial number etc). Thus this “object equality” violates the modified

1Proof: Assume that operations eq1 and eq2 both adhere to the modified contract. We show that eq1(a,b) yields true if and only
if eq2(a,b) yields true: If eq1(a,b) yields true, then eq2(a,b) is the same as eq2(a,a) because eq1 is indistinguishable, and eq2(a,a)
is true because eq2 is reflexive. It can be proved analogously that “eq2(a,b) yields true” implies “eq1(a,b) yields true”.

135



contract. Object equality and value equality are different concepts. Value equality does adhere to the modified
contract, and it results, e. g., in recognizing 3/4 and 6/8 as the very same value.

Figure 1 depicts object identity, value equality, object equality and their relationships. It illustrates that,
despite a different name, object identity and value equality can be regarded as the very same concept, whereas,
despite the same name, value equality and “object equality” denote two fundamentally different concepts.

Figure 1: Object identity/ value equality versus object equality

There is no such thing as a “right” or a “wrong” equality contract. Choosing the characteristics you expect
from equality is a mere matter of definition. However, rejecting the modified contract and starting out from
a less restrictive contract (e. g. the one for Java) means implicitly accepting the inconsistencies and potential
errors described in section 2.

In the next sections, we focus on (value) equality/ (object) identity more extensively; we do not consider
“object equality” any further.

4 Programming Equality According to the Modified Contract

A contract can be regarded as a set of criteria that guide the programmer how (and how not) to implement
equality. In general, the criteria are not assured or checked by the language. Programming equality that adheres
to the modified contract is easier to achieve in some respects and more difficult in others.

Some conditions of the modified contract can be met with adequate programming discipline: writing equality
as an equivalence relation for non-null references, avoiding dependence on mutable state, and implementing all
read-only operations (especially hashCode) so that equal instances are indistinguishable.

With the understanding that for object types equality is identity, these tasks get even easier: For object-like,
i. e. stateful types like Person or BankAccount, implement equality as a call to identity (or, if this is the standard
behavior anyway, as in Java, simply refrain from overriding equals).

For value-like, i. e. stateless classes like MonetaryAmount, in many cases canonical equality (see [Bak93,
p. 18]) – compare all matching data fields and link results by logical And – is appropriate and straightforward.
For example, comparing two MonetaryAmounts m1 and m2 can be implemented as

m1.amount == m2.amount && m1.currency == m2.currency

Canonical equality is already the most fine-grained value comparison. Thus making equality indistinguishable
does not require any further programming effort.

For some value-like classes, a more elaborate equality may be required. For example, comparing rational
numbers r1 and r2 may need an implementation like

r1.numerator * r2.denominator == r2.numerator * r1.denominator

Without canonical equality, special care must be taken to make equality indistinguishable. E. g., in the example
above an operation like getNumerator is not permitted because it would destroy indistinguishability: Equality
recognizes 3/4 and 6/8 as equal, but getNumerator would enable clients to distinguish between them.

At first glance, it may seem strange for a class RationalNumber not to provide a method like getNumerator.
However, it consequently conveys the notion of rational numbers as abstract entities, characterized by their
operations (addition, multiplication etc). If we say that the numerator of “3/4” is 3, then we refer to a specific
representation. But the rational number denoted by “3/4” can have more than one representation, therefore it
does not make sense to ascribe it a numerator. It is exactly the purpose of a class to present an abstract view

136



(“specification view”) of the type towards clients and to shield them from the representation and other details
that are needed for implementing the class’ behavior.

In the case of rational numbers, it is conceivable to provide an operation that computes the nu-
merator of the reduced representation. For reasons of clarity, it should be termed something like
“getNumeratorOfReducedRepresentation”. Programming it this way, the operation would satisfy indistin-
guishability, as demanded by the modified contract. For “3/4” and for “6/8”, this operation would yield the
same result, 3. Possibly, this operation may be required under certain conditions. However, the result of arith-
metical operations on rational numbers does not depend on their representation.

Many conditions of the modified contract are hard to adhere to. If equality is implemented as an instance
method (like equals in Java), it is difficult to make it symmetric for null references. One could do so by
throwing a NullPointerException if the parameter is null, violating the Java equality contract which states
that a.equals(null) must yield false. For this problem, Scala has a ready-made solution: The operator “==”
handles null references; it does so in a symmetrical way, and in the case of non-null references, “==” implicitly
calls equals. From the client’s perspective, in Scala “==” can be regarded as a “null-safe” version of equals.
As another consequence of this design, in Scala both object identity and value equality can be called via the
operator “==”, provided equals is implemented in a way matching the object nature or value nature of the
class. With respect to equality/identity, the language model of Scala is closer to the modified contract than the
language model of Java.

Yet, there are still open issues both in Java and in Scala. For value-like classes, equality is not indistin-
guishable. “Equal” instances can be distinguished by “==” in Java, and by eq in Scala. These comparisons are
not appropriate for value-like classes, and they violate the modified contract, but nonetheless they are always
available.

In general, equals permits the comparison of incomparable types. The programmer of the equals method
could implement additional type checks, which would result in runtime errors. Programming a type-safe compar-
ison, i. e. one that is checked at compile-time, requires a language feature like typeclasses (as in Haskell, where
instances of typeclass Eq are compared in a type-safe manner). In Scala, typeclasses can be emulated, using an
intricate combination of traits, implicit parameters and implicit conversions; and indeed the library scalaz does
provide a type-safe comparison (===). However, it adds yet one more comparison to the Scala ecosystem. This
contradicts the modified contract which implies that there can be one comparison only.

A programming language that provides two or more comparisons, like Java or Scala, undermines equal-
ity/identity as a unique concept and leaves loopholes for problem no. 6 (see section 2). Sather, for example, is
different in this respect; it provides one language-supported comparison only [SO96, p. 64] (the symbol “=” is
syntactic sugar for a call to is eq).

The bottom line is: depending on the programming language and its implicit assumptions, adhering to the
modified contract can be hard, even virtually impossible. The examples from Java, Scala and Sather described in
this section give an idea of many subtle differences in the ways programming languages handle equality/identity.

5 Language Support for the Modified Contract

As section 4 has shown, it is the programming language that prevents implementing equality so that it adheres
to all conditions of the modified contract. Therefore a dedicated language support for equality can solve the
problem. Section 4 has also shown that, to a certain extent, language support for equality already exists. Equality
is deeply interwoven with programming language design. It is a basic concept; as Odersky puts it, “equality is
at the basis of many things” [OSV09]. This section will show that language support for equality/identity, as
specified by modified contract, is possible and beneficial.

Supporting equality/identity by the language requires separating objects and values on the language level.
The language must provide two kinds of classes, object classes and value classes. Otherwise, the language cannot
“know” if a class is meant to model object-like or value-like abstractions and therefore, if object identity or
value equality is the appropriate comparison. For example, a class with two data fields might as well model
an object type (like Person with name and salary) or a value type (like MonetaryAmount with amount and
currency). Nevertheless, generating an appropriate comparison is not the primary motivation and by far not the
only reason for the separation. Objects and values denote two fundamentally different concepts. Distinguishing
between them enhances modeling power, clarity and safety of a language in many respects (see [Mac82], [BRS+98],
[Fow09, p. 486-487], [Eva04, p. 81]). For example, it can ensure the conceptual properties of objects and values
respectively.

137



In the following points, we shall describe a language support for equality/identity:

• For each class the languages provides exactly one comparison.

• The language ensures that the comparison matches the type, i. e. object classes are compared by object
identity, value classes by value equality.

• Whenever possible, the language generates an implementation for the comparison. For object classes, the
language provides object identity as a language primitive, e. g. based on comparing storage addresses – just
as many current object-oriented languages already do. That way, object identity cannot (and need not) be
implemented by the programmer. For value classes, the language provides canonical equality (comparing
all matching data fields, see section 4) as the standard implementation. As section 4 has argued, canonical
equality is just what many value classes need. As has been shown previously, there may be value classes
where canonical equality is not suitable. For these cases, the language provides a mechanism that enables
the programmer to implement value equality differently.

• The unified comparison is denoted by a single symbol (or a single keyword). Hence clients always call
equality/identity with the same symbol, no matter whether it refers to objects or values, and no matter
whether it was generated by the language or implemented by the programmer. Since equality/identity is
frequently used, a short notation is advisable. (The symbol “=” is an obvious candidate, because it has
been used in mathematics for a long time.)

• The language handles null cases. If the right side or the left side of a comparison yields null, then the
result of the comparison will be false.

• The language takes care of incomparable types. Comparing expressions with incomparable types results in
a compile time error.

Equality/identity as just described differs largely from the way current object-oriented languages treat equality
and identity. Language support for equality/identity, as sketched above, has numerous advantages:

• The comparison is completely – or at least largely – under the control of the language.
In the cases of object identity and canonical value equality – both generated by the language – all conditions
of the modified contract are taken care of by the language.
In case of a manually implemented value equality, the programmer has to make sure that equality is an
equivalence relation and that it is indistinguishable. Even then, the other conditions of the modified contract
can be taken care of by the language. This applies especially to conditions that, for a programmer, are hard
or even impossible to ensure: The language can handle null references, and it can preclude comparing
incomparable types. Because value classes do not possess mutable state, in all cases value equality is
necessarily independent of mutable state.
In summary, many problems that are frequently associated with programming and using equality (see
section 2) are no longer possible. This enhances language safety.

• The language support precludes two kinds of potential errors:
There is no way of confusing equality/identity with “object equality” (see section 3). However, this does
not mean that object equality cannot be implemented with such a language. With the approach described
above, object equality is just a user-defined operation like any other: it gets no special language support.
Just like any other similar operation, the programmer has to implement object equality manually and give
it a suitable name.
There is also no way of using an identity-like comparison for values, e. g. based on a technical address. For
value classes, such a comparison would have no meaning, it would allow implementation details to “leak
through” to the programmer (see [Bak93, p. 6]), and it would violate indistinguishability and thus break
the modified contract.

• The largest benefit of language support for the modified contract is a gain in conceptual clarity. When the
language provides two kinds of classes (value and object) and a single comparison – instead of one type of
class (object) and two or more comparisons – and when it uses the same comparison symbol for every class,
then it expresses clearly that it regards object identity and value equality as the very same concept, leaving
less room for ambiguity and erroneous behavior.

138



The language model described in this paper might preferably be taken into consideration when designing a new
programming language. Current object-oriented programming languages like Java, C# or Scala are implicitly
based on language models that differ substantially from the one presented here. The attempt to incorporate
equality/identity – and its prerequisite, the separation of object classes and value classes – into an existing
language would destroy upwards compatibility and is therefore less promising.

References

[Bak93] Henry G. Baker. Equal rights for functional objects or, the more things change, the more they are
the same. SIGPLAN OOPS Mess., 4(4):2–27, 1993.

[Blo08] Joshua Bloch. Effective Java. The Java series. Addison-Wesley, Upper Saddle River, NJ, 2nd edition,
2008.

[BRS+98] Dirk Bäumer, Dirk Riehle, Wolf Siberski, Carola Lilienthal, Daniel Megert, Karl-Heinz Sylla, and
Heinz Züllighoven. Values in Object Systems. Technical report, UBS AG, Zurich, Switzerland, 1998.

[BV02] Joshua Bloch and Bill Venners. Josh Bloch on Design, A Conversation with Effective Java Author.
http://www.artima.com/intv/blochP.html, 1 2002.

[Coh02] Tal Cohen. How Do I Correctly Implement the equals() Method? Dr. Dobb’s Journal, 5 2002.

[Eva04] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley,
Boston, MA, 2004.

[Fow09] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, Boston, MA, 2009.

[Hor03] Cay Horstmann. Some Objects are More Equal Than Others.
http://www.artima.com/weblogs/viewpost.jsp?thread=4744, 5 2003.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. MIT Press,
Cambridge, MA, 1986.

[LG01] Barbara Liskov and John Guttag. Program Development in Java : Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley, 2001.

[LK02a] Angelika Langer and Klaus Kreft. Secrets of equals() - Part 1, Not all implementations of equals()
are equal. JavaSolutions, 4 2002.

[LK02b] Angelika Langer and Klaus Kreft. Secrets of equals() - Part 2, How to implement a correct slice
comparison in Java. Java Solutions, 6 2002.

[Mac82] B. J. MacLennan. Values and objects in programming languages. SIGPLAN Not., 17(12):70–79,
1982.

[OSV09] Martin Odersky, Lex Spoon, and Bill Venners. How to Write an Equality Method in Java.
http://www.artima.com/lejava/articles/equality.html, 6 2009.

[RH08] Chandan R. Rupakheti and Daqing Hou. An empirical study of the design and implementation of
object equality in Java. In CASCON ’08, pages 111–125, NY, 2008. ACM.

[SO96] David Stoutamire and Stephen Omohundro. The Sather 1.1 Specification. Technical Report TR-96-
012, International Computer Science Institute, Berkeley, CA, 8 1996.

[SP03] Daniel E. Stevenson and Andrew T. Phillips. Implementing object equivalence in Java using the
template method design pattern. SIGCSE Bull., 35(1):278–282, 2003.

[VTFD07] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby. Declarative Object Identity Using
Relation Types. In Proc. ECOOP 2007, pages 54–78. Springer, 2007.

139


