
Entailment-based Axiom Pinpointing
in Debugging Incoherent Terminologies

Yuxin Ye1,2, Dantong Ouyang1,2? , Jing Su2

1 College of Computer Science and Technology, Jilin University,
Changchun 130012, China

2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry
of Education, Changchun 130012, China

{yeyx,ouyd}@jlu.edu.cn

sujing11@mails.jlu.edu.cn

Abstract. One of the major problems of axiom pinpointing for incoher-
ent terminologies is the precise positioning within the conflict axioms. In
this paper we present a formal notion for the entailment-based axiom
pinpointing of incoherent terminologies, where the parts of an axiom is
defined by atomic entailment. Based on these concepts, we prove the
one-to-many relationship between existing axiom pinpointing with the
entailment-based axiom pinpointing. For its core task, calculating min-
imal unsatisfiable entailment, we provide algorithms for OWL DL ter-
minologies using incremental strategy and Hitting Set Tree algorithm.
The feasibility of our method is shown by case study and experiment
evaluations.

Keywords: ontology debugging, description logics, pinpointing, MUPS

1 Introduction

Ontology debugging becomes a challenging task for ontology modelers since the
improvement of expressivity of ontology language and ontology scale[1]. Axiom
pinpointing [2] is an important mean for ontology debugging. Any approach
which can detect a set of axioms in the terminology that lead to logic conflict is
belong to axiom pinpointing. It can be categorized into MSSs (maximally satisfi-
able sub-TBox), MUPS (minimal unsatisfiable sub-TBox) and justification. For
finding maximally concept-satisfiable terminologies, Meyer[3] proposes a tableau
like procedure for terminologies represented in ALC. The approach of Meyer is
extended by Lam[4] to get a fine-grained axiom pinpointing for ALC terminolo-
gies. In addition, several methods have been proposed to calculate the MUPS.
Schlobach and Cornet[5] provide complete algorithms for unfoldable ALC-TBox
based on minimization of axioms for MUPS, then Schlobach[6, 7] presents a
framework for the debugging of logically contradicting terminologies. Parsia[8]

? Corresponding author: Dantong Ouyang, Email: ouyd@jlu.edu.cn

extends Schlobach[5] to more expressive DLs. Baader[2] presents automata-based
algorithms for reasoning in DLs with the pinpointing formula whose minimal val-
uations correspond to the MUPS. From the perspective of unsatisfiability, jus-
tification is the MUPS of an unsatisfiable concept. Kalyanpur has explored the
dependencies between unsatisfiable classes[9], and proposed several approaches
for computing all justifications of an entailment in an OWL-DL ontology[10]. De-
bugging tasks in OWL ontologies are in general computationally hard, so some
optimization techniques are introduced for ontology debugging such as heuristic
method[11] of identifying common errors and inferences, and modularization[12]
for large ontologies. On the whole, various approaches achieve the result sets
of axioms responsible for an unsatisfiable concept or a incoherent terminology.
Hasse[13] provides a set of criteria for comparing between different approaches
related to ontology debugging directly or indirectly, and that none of the sur-
veyed approaches is universally applicable for any application scenario. Axiom
pinpointing identifies conflict axioms, but practical problems remain. It is not
clear which parts of axioms lead to the conflicts. and some contradictions would
be lost[14]. In this paper, we try to give other notion of axiom pinpointing for
incoherent terminologies, and define algorithms for this task.

The rest of this paper is organized as follows. In section 2 we briefly introduce
the drawback of MUPS. Then the formal definitions about fine-grained axiom
pinpointing, and the link with axiom pinpointing are presented in section 3.
Section 4 presents algorithm for calculating the minimal unsatisfiable entailment.
Section 5 analyzes the fine-grained axiom pinpointing with a case study and
evaluates the algorithm by experimenting with common ontologies. Finally, we
conclude the paper in section 6.

2 Drawback of MUPS

Axiom pinpointing[2] has been introduced in description logics to help the us-
er to understand the reasons why consequences hold and to remove unwanted
consequences by computing minimal subsets of the terminology that have the
consequence. The axiom pinpointing we discuss in this paper is MUPS[5]. It’s
useful for relating sets of axioms to the unsatisfiability of specific concept.

Definition 1 (MUPS[5]). A TBox T ′ ⊆ T is a minimal unsatisfiability p-
reserving sub-TBox (MUPS) for C in T if C is unsatisfiable in T ′, and C is
satisfiable in every sub-TBox T ′′ ⊂ T ′. The set of all MUPS of C in T is de-
noted as mups(T , C).

Most existing approaches can obtain the different fine-grained problematic
axioms on the basis of axiom pinpointing as none of these approaches define
exactly what they mean by parts of axioms. Further, some logic contradictions
would be lost with axiom pinpointing since it does not point out the specific
location within the axioms of the logic contradiction. Let us use an example to
illustrate these limitations.

106

Example 1. A TBox T1 consists of the following axioms (α1−α6), where A and
B are base concepts, A1, ..., A6 are named concepts, and r and s are roles:

α1 : A1 v A2 u ∃r.A2 uA3 α4 : A4 v ∀r.A u ∀s.B uA5

α2 : A2 v A uB α5 : A5 v ∃r.¬A uA6

α3 : A3 v ∀r.(¬B u ¬A) α6 : A6 v ∃s.¬B
Consider the above example, by using standard DL TBox reasoning, it can

be shown that the concept A1 and A4 are unsatisfiable. Analyzing concept A1,
the existing approaches identify {α1, α2, α3} the only MUPS for A1 in T1, but it
is not clear whether A2 or ∃r.A2 of α1 contradicts with α3. In addition, it hides
crucial information, e.g., that unsatisfiability of A1 depends on all parts of α2

or α3. For A4, {α4, α5} is the only MUPS for A4 in T1, which on behalf of the
error caused by ∀r.A of α4 and ∃r.¬A of α5. Actually, ∀s.B of α4, A6 of α5 and
∀s.¬B of α6 also lead to the unsatisfiability of A4, which would not be involved
in the reason of unsatisfiability of A4 since MUPS can not pinpoint the location
of conflict, i.e., some unsatisfiable (or incoherent) reasons would be ignored by
axiom pinpointing. We will use this example to explain our debugging methods.

3 Entailment and MUE

This section presents the main technical contribution of the paper. We would
like to provide a framework for entailment-based axiom pinpointing. We will
present the formal definitions which involve MUE, then show the relationship
between MUPS and MUE. The second subsection is concerned with how to get
all components w.r.t. axiom and terminology.

3.1 Formal Definitions

To compensate the limitations of axiom pinpointing, we introduce the notion
of fine-grained axiom pinpointing and link it to description logic-based systems.
Whereas the definitions of fine-grained axiom pinpointing are independent of the
choice of a particular Description Logic.

Definition 2 (Entailment[17]). Given a logical language L, an entailment �
states a relation between an terminology T and an axiom α ∈ L. We use T � α
to denote that the ontology T entails the axiom α. Alternatively, we say that α is
a consequence of the terminology T under entailment relation �. The entailment
relation is said to be a standard one if and only if α is always holds in any model
in which the terminology T holds, i.e., for any model I, I � T ⇒ I � α.

Definition 3 (Atomic Entailment). Let T be a terminology and β be an
axiom such that T � β. We call � is an atomic entailment between T and β if
{β} has no consequence but β. Alternatively, β is an atomic consequence of T .

We denote by E(T) and E(α) the set of all atomic consequences of terminology
T and {α}, respectively. If a terminology T is incoherent, then for any axiom

107

β, T � β, i.e., a standard entailment is explosive. Thus, we require E(T) =⋃
α∈T E(α) if T is incoherent, and E(α) = {α} if the axiom α has no model.

Intuitively, an atomic consequence of an axiom is a part of the axiom, and set
of all atomic consequences of an axiom contains all parts of the axiom.

Definition 4 (MUE). Let C be an unsatisfiable concept in terminology T . A
sub-TBox Tc ⊆ E(T) is a minimal unsatisfiable entailment for C in T if C is
unsatisfiable in Tc, and C is satisfiable in every sub-TBox T ′

c ⊂ Tc.
The entailment-based axiom pinpointing inferential service is the problem of

computing MUE. We denote by mue(T , C) the set of MUE of C in terminology
T . In the terminology of Reiter’s diagnosis each mue(T , C) is a collection of
conflict sets. The following are the MUE for our example TBox T1:

mue(T1, A1) = {{A1 v ∃r.A2, A1 v A3, A2 v A,A3 v ∀r.¬A},
{A1 v ∃r.A2, A1 v A3, A2 v B,A3 v ∀r.¬B}}

mue(T1, A4) = {{A4 v ∀r.A,A4 v A5, A5 v ∃r.¬A},
{A4 v ∀s.B,A4 v A5, A5 v A6, A6 v ∃s.¬B}}

MUE can be regarded as the fine-grained axiom pinpointing for MUPS. The
relationship between axiom pinpointing and our pinpointing is established by
Theorem 1, i.e., the one-to-many relationship between MUPS and MUE.

Theorem 1 (MUPS-to-MUEs relationship). Let C be an unsatisfiable con-
cept in terminology T . Then:
(1) If C is unsatisfiable in T , then C is unsatisfiable in E(T).
(2) for every M∈ mups(T , C), there is a K ∈ mue(T , C) s.t. K ⊆ E(M).
(3) for any M1,M2 ∈ mups(T , C) and K1,K2 ∈ mue(T , C) where M1 6=M2,
K1 ⊆ E(M1) and K2 ⊆ E(M2), we have K1 6= K2.

Proof. We prove (1), (2) and (3) in order.
(1) According to the definition of atomic entailment, If an axiom α ∈ T has no
model, E(α)={α}. Otherwise, we can prove {α} and E(α) are equivalent with
the axiom decomposition which is described in next subsection. In general, T
and E(T) are equivalent.
(2) SinceM⊆ mups(T , C), we have C is unsatisfiable in E(M). Thus,mue(M, C) =
mups(E(M), C), and for every K ∈ mue(M, C), we get K ⊆ E(M).
(3) Suppose K ∈ mue(T , C),M1,M2 ∈ mups(T , C) (M1 6= M2) s.t. K ⊆
E(M1) and K ⊆ E(M2). Thus, there exists a sub-TBox T ′ ⊆ T s.t. K ⊆ E(T ′)
and K * E(T ′′) for every T ′′ ⊂ T ′. Then C is unsatisfiable in T ′, T ′ ⊆ M1

and T ′ ⊆ M2. Since M1,M2 ∈ mups(T , C), we get T ′ = M1 = M2 which
contradicts with the assumption.

It is characteristic of our axiom pinpointing, in the sense to be made more
precise, to uniquely identify each logical contradiction. For example, TBox T =
{A1 v AuBuA2, A2 v ¬Au¬B}, T is the only MUPS of A1 whilemue(T , A1) =
{{A1 v A,A1 v A2, A2 v ¬A}, {A1 v B,A1 v A2, A2 v ¬B}}, which a
MUPS has two MUE corresponding to. In this regard, entaiment-based axiom
pinpointing is an extension of axiom pinpointing that MUE covers also the same
unsatisfiable reasons of MUPS.

108

3.2 Syntactic Decomposition for Atomic Entailment

As previously mentioned, the theory of entailment-based axiom pinpointing is
built on atomic entailment. For an incoherent terminology, we need to know the
atomic entailments of each axiom instead. We give a syntactic decomposition
notion to achieve this goal.

We give an overview of different kind of transformations that calculate the
set of atomic entailment for an axiom in a terminology. Given a terminology
T and an axiom α : C v D where C is a atomic concept, apply the following
transformation rules to α in each step (all rules of each step are correct3):

Step 1: (GCIs) Considering all such axioms C1 v D1, ..., Cn v Dn in T where
Ci(1 ≤ i ≤ n) is a complex description, let D′ = (¬C1tD1)u...u(¬CntDn),
do C ′ v D uD′, then transform D and D′, respectively.

Step 2: (Negation normal form, NNF) Push all negation signs as far as possible
into the description, using de Morgan’s rules and usual rules for quantifiers4.

Step 3: Repeated use of distributive law : C1t(C2uC3) = (C1tC2)u(C1tC3),
∀R.(C1 t (C2 u C3)) = ∀R.((C1 t C2) u (C1 t C3)), ∃R.(C1 u (C2 t C3)) =
∃R.((C1 u C2) t (C1 u C3)).

Step 4: Repeated use of following rules: ∀R.(C1uC2) = ∀R.C1u∀R.C2, ∃R.(C1t
C2) = ∃R.C1 t ∃R.C2.

The transformation process always terminates and we end up with D =
D1 u ... uDm and D′ = D′

1 u ... uD′
n where constructor u can only appear in

λR.Y of Di(1 ≤ i ≤ m) and D′
j(1 ≤ j ≤ n) while λ is constructor ∃, ≥ n, or

≤ n. Therefor, for any model I, I � {α : C v D} ⇒ I � C v Di(1 ≤ i ≤ m),
and C v Di has no entailment but itself. Consequently, {C v D1, ..., C v Dm}
is the set of atomic entailment of α. Similarly, {C v D1, ..., C v Dm, C v
D′

1, ..., C v D′
n} is the set of atomic entailment of α in terminology T . Both the

result of syntactic decomposition and the axiom have the same name and base
symbols. Moreover, Since the result is obtained by a sequence of replacement
steps, i.e., by replacing equals by equals. Therefore, E(α) and α are syntactically
and semantically equivalent, i.e., the result is the set of all atomic entailments
of α. The atomic entailments of a terminology can be calculated by merging all
axioms’s. In example TBox T1, E(α1) = {A1 v A2, A1 v ∃r.A2, A1 v A3}.

On the other hand, using a rule L = R above, it means R is obtained from
L. We can mark R’s label is L. Thus, keeping track of the transformations that
occur during the processing step i.e. we can pinpoint the position of atomic
entailment in original axiom.

3 All these rules are correct and have been proved in the Description Logic Hand-
book[15].

4 ¬(¬A) = A,¬(∃R.A) = ∀R.¬A,¬(∀R.A) = ∃R.¬A,¬(≥ nR.A) =≤ (n−1)R.A,¬(≤
nR.A) =≥ (n+ 1)R.A,¬(C1 t C2) = ¬C1 u ¬C2,¬(C1 u C2) = ¬C1 t ¬C2.

109

4 Algorithms for Entailment-based Axiom Pinpointing

In this section, we discuss the algorithm for finding all MUE of an unsatisfiable
concept. The algorithm we provide is reasoner-independent, in the sense that
the DL reasoner is solely used as an oracle to determine concept satisfiability
w.r.t a terminology. we provide the formal specification of the algorithm.

The ALL MUE(T , C,M,E) algorithm receives a local terminology T , a con-
cept C, a local conflict M and a set of axioms E related to M directly5, and
outputs the set of all minimal subsets T ′ ⊆ E(T ∪E) such that C is unsat-
isfiable in T ′ ∪ M . The algorithm works in three main steps: first, it utilizes
CONFLICT HST to computes all related minimal contradiction of M from E
for C; Then recursive call to the algorithm with the new parameters T , M , and
E for each related conflict we have obtained in previous step; Finally, combining
the consequences of all recursive calls and obtain the final result. The loop in
the second step is a main component of algorithm, which calculates the input
parameters for next recursive call, it is mainly to do the following tasks: first
of all, adding the obtained related conflict m to the original conflict M to get
the new local conflict M ′; Then, selecting axioms from T which is only related
to the named symbols in m (because m has included all axioms related to M)
dented by the new related axioms set A for the new local conflict M ′; Last, get
a new terminology T ′′ by removing A from T .

We can get all MUE of C in terminology T by calling ALL MUE(T , C,∅,∅).
Thus, the algorithm process guarantees three points as follows:

(a) Both axioms and named symbols of the input terminologies T , M and E
are mutually disjoint.

(b) M ⊆M for everyM∈ mue(T ∪M∪E,C) if C is unsatisfiable in T ∪M∪E.
(c) C is satisfiable in T ∪M if M is not a MUE for C in T ∪M ∪ E.

Theorem 2. Given an unsatisfiable concept C in a terminology T , R returned
by ALL MUE(T , C,∅,∅) is the set of all MUE for C.

Theorem 3. The CONFLICT HST(T , C,M,E) algorithm output all minimal
subset E′ ⊆ E such that C is unsatisfiable in T ∪M ∪ E′, and C is satisfiable
in T ∪M ∪ E′′ for every E′′ ⊂ E′.

The CONFLICT HST(N,F,HS,C, T ,M,E) algorithm generates a Hitting
Set Tree [16] with root node N , where a set F of conflict sets and a set HS
of Hitting Sets are global, and outputs F . Initially, N,F and HS are empty,
calling SINGLE CONFLICT algorithm to get a value r for root node N if r is
not empty. Then, generates the HST with root nodeN . In the loop, the algorithm
generates a new node N ′ and a new edge e links N and N ′ in each iteration.
Calling SINGLE CONFLICT algorithm to obtain a value for the new node, and
we mark the new node with ′√′

if the value is empty.

5 We say a TBox T ′ is directly related to the TBox T if all named symbols of T ′ is a
subset of the signatures of T .

110

Algorithm: ALL MUE(T , C,M,E)
Input: a terminology T , a concept C, a terminology M , a terminology E
Output: all minimal subsets of E(T ∪E) conflict with M w.r.t. C R

R ← ∅;
T ′ ← T ;
E′ ← E;
if M = ∅ then /* The algorithm start with M = ∅ */

A← {α ∈ T |α has the form C v D};
T ′ ← T −A;
E′ ← E(A);

if C is unsatisfiable in M then /* M is a MUE of C */
R← {M};
return R;

H ← ∅;
CONFLICT HST(∅, H,∅, C, T ′,M,E′);
if H = ∅ then /* H = ∅ means M is a MUE of C */

R← {M};
return R;

for m ∈ H do
M ′ ←M ∪m; /* update the current MUE M of C */
S ← Sig(m)−D(M ′)− B(T ′ ∪M ′);/*Select the related symbols of M ′*/
A← {α ∈ T ′ |α has the form C′ v D′ where C′ ∈ S};
T ′′ ← T ′ −A;
R′ ← ALL MUE(T ′′, C,M ′, E(A));
R← R ∪R′;

return R;

Two pruning strategy to the algorithm in order to reduce the size of HST and
eliminate extraneous satisfiability tests. One is closing, if there exists a Hitting
Set h in HS such that the path of N ′ is a superset of h, close node N ′ and the
value is not computed for N ′ nor are any succor nodes generated, as indicted by
a ′×′. The other one is reusing nodes: if there exists a node value k in F such
that k and the path of N ′ are disjoint, set k as the value of N ′ directly without
recalculation.

The SINGLE CONFLICT(T , C,M,E) algorithm outputs a subset of E. In
the loop, the algorithm removes an axiom from E in each iteration and check
whether the concept C is satisfiable w.r.t. T ∪M ∪ E, in which case the axiom
is added to R and reinserted into E. The process continues until all axioms in
E have been tested. Finally, R is returned as output.

Theorem 4. The SINGLE CONFLICT(T , C,M,E) algorithm output a mini-
mal subset R ⊆ E such that C is unsatisfiable in T ∪M ∪R, and C is satisfiable
in T ∪M ∪R′ for every R′ ⊂ R.

Proof. Let R be the output of algorithm SINGLE CONFLICT(T , C,M,E). If
C is satisfiable in T ∪M ∪ E, we get R = ∅. Otherwise, C is unsatisfiable in
T ∪M ∪ R upon termination. Suppose there exists a subset R′ ⊂ R such that
C is unsatisfiable in T ∪M ∪R′. Then, removing the axiom in R−R′ after the

111

Algorithm: CONFLICT HST(N,F,HS, T , C,M,E)
Input: a node N , a set of conflict sets F , a set of hitting sets HS,

a terminology T , a concept C, a terminology M , a terminology E
Output: input F

if N = ∅ then
r ←SINGLE CONFLICT(T , C,M,E);
if r = ∅ then

return;
L(N)← r;
F ← {r};

for α ∈ L(N) do
create a new node N ′ and set L(N ′)← ∅;
create a new edge e =< N,N ′ > with L(e)← α;
if there exists a set h ∈ HS s.t. h ⊆ P(N) ∪ {α} then
L(N ′)←′ × ′;
continue;

else if there exists a set k ∈ F s.t. k ∩ P(N) = ∅ then
L(N ′)← k;
CONFLICT HST(N ′, F,HS, T , C,M,E − {α});

else
m← SINGLE CONFLICT(T , C,M,E − {α});
if m = ∅ then
L(N ′)←′ √ ′;
HS ← HS ∪ {P(N) ∪ {α}};

else
L(N ′)← m;
F ← F ∪ {m};
CONFLICT HST(N ′, F,HS, T , C,M,E − {α});

removal of R′, we get C is satisfiable in T ∪M ∪R′, which contradicts with the
assumption.

Algorithm: SINGLE CONFLICT(T , C,M,E)
Input: a terminology T , a concept C, a terminology M , a terminologyE
Output: a set of axioms (a subset of E) R

R ← ∅;
T ′ ← T ∪M ∪ E;
if (C is satisfiable in T ′) then

return R;
for α ∈ E do
T ′ ← T ′ − {α};
if C is satisfiable in T ′ then
T ′ ← T ′ ∪ {α};
R← R ∪ {α};

return R;

112

The problem of finding minimal Hitting Sets is known to be NP-COMPLETE,
our algorithm is associated with the size of the element in mue(T , C). In this
case, Let n be the cardinality of mue(T , C) and S = {k1, ..., kn} be the value
set of the size of its elements, the number of calls to SINGLE CONFLICT and
satisfiability tests involved is at most k1 · ... · kn.

5 Evaluation

Our algorithms for fine-grained axiom pinpointing have been realized in JAVA
(JDK 1.6)using Pellet as the black-box reasoner. Tests are performed on a stan-
dard Windows operating system (Intel(R) Core(TM)i5-3470 CPU @ 3. 20GHz,
8. 00GB).

Before providing an evaluation of our algorithm, we briefly want to discuss
a case study from Pizza. Then, we give the experimental results of common
ontologies.

Example 2. IceCream is an unsatisfiable concept in ontology Pizza.

IceCream v Food u ∃hasTopping.FruitTopping disjoint(IceCream,P izza)
FruitTopping v PizzaTopping disjoint(IceCream,P izzaTopping)
PizzaTopping v Food role hasTopping : domain Pizza

IceCream in Pizza ontology has only one MUE M:
M = {IceCream v ∃hasTopping.FruitTopping, disjoint(IceCream,P izza),
role hasTopping : domain Pizza}

For unsatisfiable concept IceCream, taking away any single axiom from
M makes IceCream satisfiable, while M is not a MUPS since IceCream v
∃hasTopping.FruitTopping is only a part of original axiom of IceCream, which
pinpoint the accurate component of contradiction within the axioms. As a con-
sequence, the MUE indeed helped in some cases.

We have performed some preliminary experiments. We evaluated the method
on five real-life OWL-DL ontologies vary in size, complexity and expressivity:
Koala, MadCow, Pizza, MGED, DICE. The basic information of our exper-
imental ontologies are depicted in Table 1, the results of test ontologies are
summarized in Table 2.

According to Table 1 and Table 2, the results show that the scale of ontol-
ogy and number of unsatisfiable concepts introduce an increase in the running
time w.r.t. the fine-grained axiom pinpointing procedure. In the case of Koala
and MadCow ontology, where the number of axioms related to an unsatisfiable
concept are small (less than 10), the program ends in a very short period of
time. However, for DICE ontology, where axioms responsible for an unsatisfi-
able concept are large in number (nearly 100), the running time of procedure is
longer.

113

Table 1. The characteristics of test ontologies.

T L(T) |D(T)| |B(T)| |R| |T | |UT |
Koala ALCHON(D) 17 3 4 18 3

MadCow ALCH(D) 40 13 16 41 1
Pizza SHOIN 99 0 6 103 2

MGED ALCH 231 2 110 231 32
DICE ALCH 505 22 5 505 76

Note. Columns are: the terminology T , the expressivity of termminology
(L(T)), number of named symbols (|D(T)|), number of base symbols (|B(T)|),
number of roles (|R|), number of axioms (|T |), number of unsatisfiable con-
cepts (|UT |).

Table 2. The results of test ontologies.

T Koala MadCow Pizza MGED DICE

|MUE(T)| 3 1 2 57 79

Time(ms) 16 16 9 594 287177

Note. Rows are: the test terminology (T), the sum of MUE of all unsatisfiable
concepts in terminology (|MUE(T)|), the execution time of ALL MUE algo-
rithm for all unsatisfiable concepts in terminology where the unit is millisecond
(Time).

6 Conclusion

In order to pinpoint debugging more accurately, we use the entailments to re-
place the corresponding axioms, then identify a minimal unsatisfiable subset of
entailments for the new terminology. A new formal definition of MUE have be
provided in this paper. At the same time, we presented a black-box pinpointing
algorithm to solve it. Experimental results on common ontologies show that our
axiom pinpointing provides incoherent terminology with more accurate incoher-
ent reasons without losing contradictions masked by MUPS, and the performance
of our algorithm is influenced by the size of related axioms directly. For future
work, we plan to adopt the dependency between concepts, investigate different
kinds of selection function, that hopefully improve the efficiency of entailment-
based axiom pinpointing.

Acknowledgments. This work was supported in part by NSFC under Grant
Nos. 61272208, 61133011, 41172294, 61170092; Jilin Province Science and Tech-
nology Development Plan under Grant Nos.201201011.

114

References

1. Lambrix, P., Qi, G.L., Horridge. M., (eds): Proceedings of the First International
Workshop on Debugging Ontologies and Ontology Mappings, (Galway, Ireland),
LECP 79, Linköping University Electronic Press (2012)

2. Baader, F., Rafael Peñaloza, R.: Automata-Based Axiom Pinpointing. In: 4th in-
ternational joint conference on Automated Reasoning, pp. 226-241. Springer-Verlag
Berlin, Heidelberg (2008)

3. Meyer,T., Lee, K., Booth,R., Pan, J.Z.: Finding Maximally Satisfiable Terminolo-
gies for the Description Logic ALC. In: 21st National Conference on Artificial
Intelligence, pp. 269-274. AAAI press (2006)

4. Lam, S.C., Pan, J.Z., Sleeman, D., Vasconcelos, W.: A Fine-Grained Approach
to Resolving Unsatisfiable Ontologies. In: 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, pp. 428-434. IEEE Computer Society Washington
(2006)

5. Schlobach, S., Cornet, R.: Non-Standard Reasoning Services for the Debugging of
Description Logic Terminologies. In: 18th international joint conference on Artifi-
cial intelligence, pp. 355-360. Morgan Kaufmann Publishers Inc (2003)

6. Schlobach, S.: Diagnosing Terminologies. In: 20th national conference on Artificial
intelligence, pp. 670-675. AAAI Press (2005)

7. Schlobach, S., Huang, Z.S., Cornet, R., Harmelen, F.V.: Debugging Incoherent
Terminologies. J. Automated Reasoning. 39(3), 317-349 (2007)

8. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL Ontologies. In: 14th Inter-
national Conference on World Wide Web, pp. 633-640. ACM Press, New York
(2005)

9. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging Unsatisfiable Concepts
in OWL Ontologies. J. Web Semantics. 3(4), 268-293 (2005)

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding All Justifications of
OWL DL Entailments. In: 6th international The semantic web and 2nd Asian
conference on Asian semantic web conference, pp. 267-280. Springer-Verlag Berlin,
Heidelberg (2007)

11. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg. J.: Debugging
OWL-DL Ontologies: A Heuristic Approach. In: 4th International Semantic Web
Conference, pp. 745-757. Springer-Verlag (2005)

12. Du, J.F., Qi, G.L., Ji, Q.: Goal-Directed Module Extraction for Explaining OWL
DL Entailments. In: 8th International Semantic Web Conference, pp. 163-179.
Springer-Verlag (2009)

13. Haase, P., Qi, G.L.: An Analysis of Approaches to Resolving Inconsistencies in DL-
based Ontologies. In: International Workshop on Ontology Dynamics, pp. 97-109
(2007)

14. Horridge, M., Parsia, B., Sattler, U.: Justification Masking in Ontologies. In: 13th
International Conference on the Principles of Knowledge Representation and Rea-
soning (2012)

15. Baader, F., Calvanese, D., McGuinness, D., et al.: The Description Logic Hand-
book: Theory, Implementation and Application. Second Edition. Cambridge Uni-
versity Press (2007)

16. Reiter, R.: A Theory of Diagnosis from First Principles. J. Artificial Intelligence,
32(1), 57-95 (1987)

17. Haase, P., Harmelen, F.V., Huang, Z.S., Stuckenschmidt, H., Sure, Y.: A Frame-
work for Handling Inconsistency in Changing Ontologies. In: 4th International
Semantic Web Conference, pp. 353-367. Springer-Verlag Berlin, Heidelberg (2005)

115

