
Enabling Components Management and
Dynamic Execution Semantic in WSMX

Thomas Haselwanter, Maciej Zaremba and Michal Zaremba

Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway, Ireland

University of Innsbruck, Austria
{firstname.lastname}@deri.org

Abstract. The Web Service Modelling Execution Environment is a plat-
form for dynamic discovery, mediation and invocation of Semantic Web
Services. We believe that Semantic Web Services systems should sup-
port a dynamic execution semantics, i.e., a system run-time deployable
formal definition of the system behavior, which can be executed against
components that are available for this system. In this paper we present
the work we have completed to date on dynamic execution semantics
in the context of Semantic Web Services architecture implementation of
WSMX. We also document the design rationale of a microkernel and a
distribution architecture for this system.

1 Introduction

Web Services Execution Environment (WSMX) is a run-time environment and
a test bed for WSMO[7]. Our research aims to assess the viability of WSMO
and to provide a reference implementation of the system. WSMX is composed
of loosely-coupled components that carry out various tasks related to WSMO.
Some of the main components of WSMX are Service Discovery, Data Mediation,
Process Mediation, Service Selection, and Communication Manager. Implemen-
tation of these components is not prescriptive; however the implementation has
to conform to the well-defined public interfaces of these WSMX components.
This approach facilitates creation of new component implementations by third
parties and fosters WSMX proliferation.

In this paper we present WSMX as the a system composed of distributed
components. In our research on WSMX we enable dynamic execution semantics:
a deployable formal definition of the operational behavior of the system which
can be used against components that are part of this system. Through our re-
search on WSMX we allow administrators of the system to formally specify and
deploy new execution semantics, delivering a completely new functionality that
was not planned during system development. This paper also discusses com-
munication paradigms among components and presents a system management
approach.

This document is structured as follows: In Section 2 a short description of
the WSMO and WSMX is given. Section 3 presents underlying concepts and ap-
proach to WSMX Distributed Architecture composed of set of loosely-coupled



2 Thomas Haselwanter, Maciej Zaremba and Michal Zaremba

and distributed components. Section 4 describes Components Management is-
sues. Section 5 provides a description of communication among components via
intermediary layer of Wrappers. Finally, related work is presented and conclusive
comments are given.

2 WSMO and WSMX

Research on Semantic Web Services aims to improve systems integration based
on semantically enhanced Web Services. The Web Services Modeling Ontology
(WSMO) 1 working group is one of the few research efforts developing a con-
ceptual model, language and execution environment for Semantic Web Services
(SWSs). Enhancing existing Web Service standards with semantic markup is
standardized through the WSMO working group and promotes already exist-
ing Web Services standards for semantic-enabled integration. Semantic markup
is exploited to automate the tasks of service discovery, composition, invocation
and interoperation enabling seamless interoperation between them [4] and keep-
ing human interaction to minimum.

The Web Services Execution Environment (WSMX) 2 working group aims to
provide guidelines and justification for an architecture for the SWS systems and
to design and implement an execution environment which enables discovery,
selection, mediation, invocation and interoperation of Semantic Web Services
(SWS). The development process for WSMX includes establishing a conceptual
model, defining its execution semantics, developing the architecture of the sys-
tem, designing the software and building a working implementation of the sys-
tem. The research on dynamic execution semantics is carried out in the WSMX
working group working in the wider context of research on the architecture for
the Semantic Web Services.

3 WSMX Distributed Architecture.

WSMX is a Service Oriented Architecture (SOA), what means that it is a sys-
tem composed of a set of distributed, loosely coupled components. There are
no hard-wired bindings between these components; communication is based on
events. That is, if some functionality is required then an event that represents
the request is created and published. One of the other components subscribed
to this event type can fetch and process this event. The events approach allows
asynchronous communication mean, i.e. components do not block in awaiting
for response. Events exchange is conducted via a Tuple Space, that provides
persistent shared space enabling seamless interaction between parties without
direct events exchange between them. Interaction is carried out by exploiting a
publish-subscribe mechanism.

1 Web Services Modeling Ontology (WSMO) - http://www.wsmo.org
2 Web Services Execution Environment (WSMX) - http://www.wsmx.org



WSMX Core 3

Each component provides a logical unit of functionality like discovery, data
mediation, process mediation, invocation, persistence layer and so on. Compo-
nent interfaces are publicly specified, therefore it is known prior to the run-time
execution how to interact with each component, i.e. what operations are pro-
vided by the component. Public interfaces of a component are implementation
independent. Since only interfaces are prescriptive, new implementations of com-
ponents can be provided by third parties by adhering to these public interfaces
and these can be plugged-in to the system. Components can be perceived as a
black-boxes, i.e. their internal logic is not visible; only their external interfaces
are exposed.

Components might carry out their tasks better in distributed environments
(e.g. by having access to more reliable data or to more powerful machines).
Generally, in a case of acquisitive tasks distribution greatly improves system
scalability. Component distribution increases involvement from third parties in
system development, since it facilitates add-ons to the system and allows the
processing of additional tasks. Therefore, it is worthwhile to enable distributed
computing for the system as a whole. Data related to a particular system context
can be conveyed between remotely deployed components. Moreover, system logic
can be portable as well in order to avoid centralizing parts of system, thus
increasing system reliability and fault tolerance.

To enable distributed computing, an intermediary layer of Wrappers is in-
troduced. Figure 1 illustrates this distribution strategy. Wrappers separate com-
ponent implementation from communication issues and enable invocations of
functionality provided by other components. This approach takes off the burden
of communicating with other components via a Tuple Space from component de-
velopers. The components themselves are not aware of their distribution. From
their point of view it is assumed that communication with other components
is already provided and is transparent. Such an approach is more capable of
adapting flexibility to changes. For example, if the the underlying communi-
cation paradigm were changed, only the Wrappers would be affected by the
change, whilst component implementation would not require any changes at all.
Since Wrappers are generic, there is no need to create dedicated wrappers for
each type of component. Instead, each Wrapper representing a particular com-
ponent implementation is instantiated with an event type appropriate for given
component.

System behaviour is described by its execution semantic. Since WSMX con-
sists of loosely-coupled components, various execution semantics can be built
by combining existing components and by specifying interactions between them.
There are four mandatory execution semantics for each instance of the WSMX
system[9], but new execution semantics can be created and fed into WSMX.
Moreover, thanks to its architecture WSMX can be easily enhanced with new
components. Components can be dynamically plugged in or plugged out. New
versions of components can replace outdated ones in this manner. This gives the
designer a flexible way to create new execution semantics.



4 Thomas Haselwanter, Maciej Zaremba and Michal Zaremba

Fig. 1. Distribution in WSMX

4 WSMX Core - Components Management

As in all systems of a certain complexity, management becomes a critical issue.
In WSMX we make a clear separation between business logic and management
logic, treating them as orthogonal concepts. If we did not separate these two logic
elements, it would be increasingly difficult to maintain the system and keep it
flexible. From a certain perspective it could be argued that the very process of
making management explicit, captures another invariant that helps to leverage
the support for dynamic, informed change of the rest of the system. Figure 2
provides an overview of the WSMX management framework.

4.1 Microkernel

The WSMX microkernel is a management agent that offers several dedicated ser-
vices, the most essential of which is perhaps the bootstrap service, responsible
for loading and configuring the application components. The necessary infor-
mation is obtained by a combination of reflection and supplied information in
the form of a distributed configuration. It is possible to achieve hot-deployment
of a component which is done by copying a ”wsmx” archive (a jar-like archive
with the standardized structure) to the system codebase. The kernel will detect
the archive, load the contained resources as bytecode, define the classes, inject



WSMX Core 5

Fig. 2. WSMX Management Framework

a wrapped component instance into the running WSMX and connect it to the
space. A precondition to the decision to develop microkernel was the opportu-
nity to design the system from scratch. Once the infrastructure is in place this
decision will contribute to the reliability of the whole system since. The agent
plays the role of a driver. It is built into the application, as opposed to a daemon
approach, where the agent would operate in its own JVM, alongside components
that execute in a different JVM.

The kernel may employ self-management techniques such as scheduled op-
erations, and additionally allows administration through management consoles
by operators. Management consoles may be anything from command prompts
or web interfaces to dedicated standalone management applications. While the
former are better embedded in WSMX the later connect through Connectors or
Adapters that operate on a specific protocol such as RMI. Of particular inter-
est is a Web Services Distributed Management (WSDM)[5] compliant exposure,
since it operates in a platform independent way that can be accessed by the
most different types of clients.



6 Thomas Haselwanter, Maciej Zaremba and Michal Zaremba

4.2 Management Aspects of Wrappers and Components

As mentioned above, Wrappers are host to a number of subsystems that provide
services to components and enable communication with other components. Be-
sides Revivers and Proxies, which are responsible for communication matters, a
Pool Manager takes care of handling several components instances, along with
a number of the above subsystems. The wrapper is in the unique position of
offering services to the component, which includes logging services and possi-
bly others. Naturally, presenting a coherent view of all management aspects of
components and not getting lost in complexity are conflicting goals and sub-
ject to compromise. Ideally a component’s manageability would be presented in
a unified view that covers the wrappers subsystem as well as the component’s
instrumentation. For part of this view it’s possible to exploit the JVMs instru-
mentation to monitor performance metrics. Even though some manageability
like the aforementioned performance metrics may be captured generically for all
components, there will always remain aspects of a component that are specific
to it and require custom instrumentation. Given the recent inclusion of JMX[8]
in the JDK it is not unreasonable to assume that an instrumented component
exposes its manageability through JMX. If this is not the case it should be en-
hanced with metadata, which for instance could be a ModelMBeanInfo object
or code annotations, from which an appropriate instrumentation can be created.
Both approaches should be supported to serve JMX-unaware components as well
as ones that already expose management operations and attributes.

4.3 Remoting

Although MBeans may act as facades to distributed components, it will become
necessary to think about federations of agents at some point. With a single-
agent-view approach it is possible to hide the complexity of the federation from
the management application, in other words there is a single point of access that
standalone managers communicate with or where a web client is available. This
is achieved by propagating requests within the federation via proxies, broadcasts,
directories or some other mechanism. Suns JDMK contains a cascading service
that provides such functionality and JSR255 currently attempts to standardize
agent federations and provide a reference implementation in time for the release
of JDK6.0, codenamed Mustang. From a management point of view a WSMX
instance will consist of a set of WSMX kernels, organized in federations, one
kernel per machine, each of which may host a set of components. This strategy
allows taking advantage of locality while keeping remoteness transparent.

5 Components Collaboration

In order to enable data exchange among components a Tuple Space is utilized. It
enables communication between distributed units running on remote machines.
We must emphasise that components themselves are completely unaware of this
distribution. That is, an additional layer of wrappers provides them with a mech-
anism of communication with other components.



WSMX Core 7

5.1 Space-based communication

Tuple Space is shared distributed space where applications can publish and sub-
scribe to tuples. Subscription is specified by utilizing templates and matching
them against tuples available in a space. Current WSMX implementation is
based on a variant of a Tuple Space, namely JavaSpaces[2]. Issues like data
transfer, synchronization, persistence, etc., are handled by JavaSpaces itself, thus
programmers can focus on their application objectives.

Additional requirements born out of latency need to be considered whist uti-
lizing a Tuple Space communication. Tuple Space is composed of many distrib-
uted Tuple Space repositories that need to be synchronized. In order to maximize
usage of WSMX components available within a local machine a caching mech-
anism should be used. Preferably, instances of distributed Tuple Space should
be running on each WSMX machine and newly produced entries should be pub-
lished in there. Before synchronization with other distributed Tuple Spaces takes
place, a set of local template rules needs to be executed in order to check if there
are any local components subscribed to the newly published event type. That
is, if not otherwise specified, local components should have priority in receiving
locally published entries.

5.2 Wrappers

Wrappers are generic units that separate components implementation from com-
munication issues. Wrappers provide services to a component and enable com-
munication with other components. Wrappers are automatically attached to each
component implementation during instantiation carried out by a WSMX Kernel.
There are two major parts of each Wrapper :

– Reviver Its responsibility is to interact with the transport layer (i.e. a Tuple
Space). Through the transport layer, Reviver subscribes to a proper event-
type template. Similarly, Reviver publishes result events in a a Tuple Space.
Again, this level of abstraction reduces the changes required in code if the
transport layer changes.

– Proxy To enable a component to request another component functionality
Proxy is utilized. The component currently being executed might need to
invoke other component functionality via Proxy by specifying a component
name, a method to be invoked and parameters. Proxy creates proper event
for this data and publishes it in a Tuple Space. A unique identifier is assigned
to the outgoing event and is preserved in the response event. Proxy subscribes
to the response event by specifying a unique identifier in the event template.
It guaranties that only the Proxy that published this event will receive the
result event. Proxy is not necessarily part of Wrapper, it can be also part of
Dynamic Execution Semantic. This approach means that proxy calls can be
redirected according to the requirements of a particular execution semantic.



8 Thomas Haselwanter, Maciej Zaremba and Michal Zaremba

5.3 Dynamic Execution Semantics

Dynamic Execution Semantic enables composition of loosely-coupled WSMX
components and provides a necessary execution logic (e.g. conditional branch-
ing, fault handling, etc.). As depicted on Figure 3 an instance of Dynamic Exe-
cution Semantic is part of each event published in a Tuple Space. A Reviver is
the thread implementation that enforces the general computation strategy of a
component and operates on the transport as well as the component interfaces.
It takes appropriate events from the a Tuple Space and allows execution of the
attached instance of Dynamic Execution Semantic. Local component function-
ality can be invoked by the attached instance of Dynamic Execution Semantic,
which has a state that changes over time whilst travelling and executing across
distributed component locations. Additional data obtained during execution can
be preserved in Dynamic Execution Semantic instance.

Fig. 3. Internal WSMX communication



WSMX Core 9

We consider two major approaches to Execution Semantic representation in
WSMX, namely as a Java code and as a workflow model. In the current version
of WSMX the first approach is already fully implemented and any Dynamic
Execution Semantic specified in Java can be carried out by WSMX. The latter
approach represents our future vision of WSMX Dynamic Execution Semantic
embedded in a distributed workflow model.

Java Dynamic Execution Semantic is represented by a state-aware piece of
code that is executed whilst being fetched by a Reviver. The execution path
is represented similarly as in Abstract State Machines and the current state
is encoded in an execution instance. When Execution Semantic is executed,
component implementation represented by Wrapper is exploited and additional
steps can be conducted. According to the result returned from the component,
the next step can be taken. The next event type is passed on to the Reviver
and the state of Execution Semantic instance is changed. Additionally, some
data can be stored for further processing in an instance of Dynamic Execution
Semantic. Finally the updated event is published in a Tuple Space. Although the
different parts of the execution semantics are executed on different distributed
components, the Execution Semantics can be specified centrally.

We envisage workflow Dynamic Execution Semantic as a next step in WSMX
component composition and coordination. General rules are similar to a case of
Java code representation. The workflow approach possesses certain advantages
over Java representation, but there also are some challenges. Among the ad-
vantages of the workflow approach is its graphic representation, capability to
perform prior model correctness checking, flexible response to changes and on-
the-fly execution of the created model. Models created for WSMX components
composition should not be affected by WSMX Tuple Space communication par-
adigm and capability to use all available expressions (patterns) for the chosen
workflow language should be preserved. A crucial aspect is to provide an instance
synchronisation mechanism for executed models. It is especially relevant in cases
of parallel execution where race condition might occur, thus it is necessary to
ensure validity of context when executing tasks in a component. Before a task is
finalized one needs to check whether context relevant for the task has changed.
If the context has changed (i.e. input data and variables required for task ex-
ecution) tasks must be executed again. It needs to be stressed that all aspects
related to distributed workflow execution have to be considered in this case.

6 Related Work

We can distinguish two major areas in which similar works has been carried out.
Distributed Dynamic Execution Semantic is related to Agent Systems, since it
allows execution of state-aware code on various locations across the Internet and
interaction between components is not hard-wired. On the other hand, WSMX
as a Semantic Web Services system can be related to other efforts in this area.
In this section these two fields of related work will be presented.



10 Thomas Haselwanter, Maciej Zaremba and Michal Zaremba

6.1 Multiagent System - JADE

JADE[1] (Java Agent DEvelopment Framework) is a Java implementation of
multiagent system (MAS). It facilitates the implementation of multiagent sys-
tems through a middle-ware that provides all necessary services to enable com-
munication compliant with FIPA specifications and set of graphical tools sup-
porting agents debugging and deployment. FIPA3 protocols specify communi-
cation patterns for heterogeneous and interoperable agents. JADE agents can
be running within containers on various platforms on distributed machines and
overall configuration can be controlled via administration framework.

Agents can move and clone themselves across distributed JADE containers.
That is, agent presence within specific locations can entail additional privileges
like access to local resources represented by local agents. This similarity to the
WSMX Dynamic Execution Semantic approach has to be highlighted. In WSMX
events include an executable part that is executed on machines that took an
event from a Tuple Space. Like an agent, this executable part of an event takes
advantage of local resources accessible via Wrappers.

6.2 Semantic Web Services - IRS III, OWL-S, METEOR-S

There are several other software tools providing support for execution of Seman-
tic Web Services having their roots in OWL-S, Meteor-S and WSMO initiatives.
Commercial integration platforms capable of overcoming integration problems
between heterogeneous systems are also available. While none of them offers
dynamic execution semantics, their functionality just on a syntactical level re-
mains similar to functionality provided by WSMX. This section provides a short
overview of these platforms.

IRS III is a platform developed by the Knowledge Media Institute at the
Open University, capable of handling WSMO and OWL-S based Semantic Web
Services [4]. In the IRS III design environment a provider of a service creates a
WSMO based service description and publishes it against its service on the IRS
III server. Having the service available, a goal can be described and bound with
existing Web Service using a mediator. There is already ongoing work to achieve
interoperability between WSMX and IRS III - two major WSMO compliant
Semantic Web Services platforms.

Meteor-S builds on existing Web Services technologies providing a frame-
work for Web Services composition and discovery [6]. There is no comprehensive
strategy for development of a Meteor-S server, as there is for WSMX or IRS III.
Rather there are multiple efforts to address different aspects of Semantic Web
Services. While Meteor-S tools are equal to WSMX components, it is hard to
talk about any execution semantics of Meteor-S as no system comparable to that
of WSMX really exists. The WSMX team plans to investigate in collaboration
with Meteor-S how tools of one system could be exploited in the other.

OWL-S [3] is a comparable effort to WSMO initiative, attempting to define
an ontology for Semantic Web Services. As for Meteor-S there are multiple tools
3 http://www.fipa.org



WSMX Core 11

available, but there is no integrated strategy regarding the development of a
complete infrastructure for execution of OWL-S Web Services. There are some
related efforts to WSMX to build an OWL-S virtual machine and Mindswap’s
OWL-S API which can be used to develop and execute OWL-S services, but
particular OWL-S tools are not yet ”coupled” with this infrastructure.

7 Conclusions

Significant improvements have been made on several fronts in the battle for a
scalable, light-weight, extendible infrastructure for the execution of Semantic
Web Services. A framework for component plugability has been set in place,
backed by a sophisticated configuration system, archive format and classloading
mechanismn that ensures the proper isolation of components. Additionally the
system has been carefully engineered to support monitoring and management
in a flexible, reusable fashion. By the introduction of space-based computing we
referentially and temporally separate the components from each other. Wrappers
in turn guarantee the transparency of remoteness and distribution from the per-
spective of the individual component. They also enable the central specification
and distributed execution of the Dynamic Execution Semantics.

References

1. F. Bellifemine. JADE. A White Paper.
2. E. Freeman and S. Hupfer. Make room for JavaSpaces.

http://www.javaworld.com/javaworld/jw-11-1999/jw-11-jiniology.html,.
3. D. Martin. OWL-S: Semantic Markup for Web Services. Technical report, 2004.

http://www.daml.org/services/owl-s/1.0/owl-s.html.
4. E. Motto, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework and

Infrastructure for Semantic Web Services. In Proceedings of the second International
Semantic Web Conference Sanibal Island, FL, USA, pages 306–318, 2003.

5. OASIS. Web Services Distributed Management (WSDM). http://www.oasis-
open.org/committees/workgroup.php?wg abbrev=wsdm.

6. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Semantic Web Services: Meteor-S
Web Service Annotation Framework. In 13th International Conference on World
Wide Web, pages 553–562, 2004.

7. D. Roman, H. Lausen, and U. Keller. Web Service Modeling Ontology (WSMO).
WSMO Working Draft, 2004.

8. Sun Microsystems. Java Management Extensions (JMX) Specification 2.0.
http://www.jcp.org/en/jsr/detail?id=255.

9. Maciej Zaremba and Eyal Oren. WSMX Execution Semantics.
http://www.wsmo.org/TR/d13/d13.2, 2005.


