
An XML to WSML Adapter Implementation

Edward Kilgarriff, Brahmananda Sapkota, Laurentiu Vasiliu, David Aiken
Digital Enterprise Research Institute (DERI), National University Ireland, Galway

FirstName.LastName@deri.org

1. Introduction

This paper describes an implementation of an Adapter that converts XML to a Web
Service Modeling Language (WSML) [1]. WSML is the language used to describe
Web Service Modeling Ontology (WSMO) [2] concepts, related to Semantic Web
services (SWS). SWS are web services that are semantically annotated. The semantic
annotation is necessary to address various business logics in an appropriate manner,
thus allowing complex business applications to be built and executed. The Web
Service Execution Environment (WSMX) [3] is an execution environment for
dynamic discovery, selection, mediation and invocation of semantic web services.
WSMX is a reference implementation for WSMO.

2. The need for an XML to WSML adapter

When considering the scope of an adapter mediating two heterogeneous formats
we must consider the process in which that adapter is involved. The process is
initiated when a service requester (or originator) submits their goal (or desire) to
WSMX in the form of an XML [4] message. The WSMX environment is responsible
for matching the requester goal to the capabilities of web services registered to
WSMX. WSMX then selects the most appropriate web service, mediates between the
ontology’s of service requester and provider, and finally, invokes the selected web
service. However, WSMX can only understand its internal language WSML.
Therefore, there is a need of some component to convert a requester’s XML message
to WSML message. We call this ‘component’ an Adapter.

An Adapter needs to be able to convert the XML message coming from the
requester (for example the requester wishes to buy books), into a WSML message for
the WSMX to be able to execute it. In this paper, we concentrate only on the message
adaptation aspect. Other aspects, such as security (i.e., the message might have been
digitally signed) are outside the scope of this paper.

3. Implementation

Adapters allow heterogeneous systems using their own message format to
communicate with WSMX. The adapter that has been implemented transforms
received XML files from a user into WSML files. After the Message Adapter receives
a XML message, the XML content is validated then the document is parsed looking
for specific constants or keywords (marked in CAPITAL italics, see Fig. 1) in order to
decide what kind of XML file type has been received.

Fig.1. XML to WSML Transformation.

Once the received XML file type is identified, the XML is parsed and particular
data extracted from it. This particular data provides the necessary parameters to call a
method that implements the transformation from a class containing the transformation
details. This transformation method performs the conversion from the XML file into
the WSML file with the help of a WSML template file. The WSML template file is
stored in the local database and when it is retrieved from the database, the
transformation rules specific to the XML message are applied. The XML file type is
identified by a number of ‘if’ statements which check the few home-grown XML files
constructed especially for this implementation. How the adapter would handle ‘any’
type of XML message will be discussed in the future work.

The WSML template has several constants that are replaced with specific
parameters extracted from the initially parsed XML files. Once the constants are
replaced, the new created WSML file is sent from the Message Adapter to WSMX.
WSMX will send the acknowledgement of receipt and an order number back to the
originator application.

The technologies used in this implementation were; MySQL [5], a freeware
database, Tomcat [6], a freeware Java Servlet, JSP [7] technologies used for
implementing the GUI and a Java environment with an Apache-Ant [8] plug-in to
publish the WSDL interfaces.

An XML to WSML Adapter Implementation 3

4. Conclusions and Future Work

The direction of work concerning this adapter should move towards the use of
independent dynamic ontologies in order to provide a neutral message template from
which a message in the target ontology language may be constructed. Decoupling
ontologies from the WSML template aims to improve efficiency of the adaptor
management process by using only one global template. This template may be used to
create a message, tailored to the format of any particular ontology used in the
adaptation process (i.e. from XML or another source language to WSML).

The aim of this design direction would be to create an adaptive resource to adjust
the source information to meet our needs. The advantage of this is that instead of
having ‘N’ message templates, there are ‘N’ independent, pluggable ontologies and
one message template [9]. However, rather than mapping one message format to
another, the conceptualised design allows for message decomposition and
reconstruction in another format.

Work has already begun to facilitate the use of XSLT [10] technologies mapping
all XML messages to one single XML format, then applying the mapping to the
WSML template. This would reduce the need for separate WSML templates for
different XML message formats. There will also be some effort in the direction of
connecting the Message Adapter Framework into other WSMO compliant execution
environments (e.g., IRS III [11]). Lastly, we will consider using other language
adapters other than XML, for example, EDI [12], etc.

References

1. J. de Bruijn: WSML Specification (2004), available at: http://www.wsmo.org/2004/d16/
2. D. Roman, H. Lausen, U. Keller, E. Oren, C. Bussler, M. Kifer, D. Fensel: Web Service

Modelling Ontology (2004), available at: http://www.wsmo.org/2004/d2/v1.0/
3. E. Cimpian, M. Moran, E. Oren, T. Vitvar, and M. Zaremba. Overview and Scope of

WSMX. Technical report, WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.0/v0.2/ , February 2005.

4. XML: http:// http://www.w3.org/XML/
5. MySQL: http://www.mysql.com/
6. Tomcat: http://java.sun.com/products/jsp/tomcat/
7. JSP: http://java.sun.com/products/jsp/
8. Apache-Ant : http://ant.apache.org/
9. H. Assal: Translation Methodology for Design Databases, UCLA, (1996). available at:

http://www.calpoly.edu/~hassal/thesisintro.pdf
10. J. Clarke : XSL Transformation, W3C, (1999), available at: http://www.w3.org/TR/xslt
11. J. Domingue L. Cabral, F. Hakimpour, D. Sell, E. Motta: DEMO IRS III: A Platform and

Infrastructure for Creating WSMO-based Semantic Web Services, available at:
http://iswc2004.semanticweb.org/demos/45/paper.pdf

12. EDI: http://www.unece.org/trade/untdid/welcome.htm

