

Fast Dominating Set Algorithms for Social Networks

Alina Campan, Traian Marius Truta, and Matthew Beckerich
Computer Science Department
Northern Kentucky University

Highland Heights, KY 41099, U.S.A.
campana1@nku.edu, trutat1@nku.edu, beckerichm1@mymail.nku.edu

Abstract
 In this paper we introduce two novel algorithms that are
able to efficiently determine an approximation to the mini-
mum dominating set problem, and at the same time, they
will preserve the quality of the solution to an acceptable
level. We compare these two algorithms with three existing
algorithms, for a large number of synthetic datasets, and for
several real world social networks. For experiments, we use
social network generators that create both power-law and
random networks, and a few real network datasets made
available by the Stanford Network Analysis Project. Our
experiments show that the proposed algorithms are viable,
and in many instances, preferable for determining the mini-
mum dominating set of a social network.

Introduction
Today, online social networks are used by an ever increas-
ing number of people. For instance, Facebook has currently
more than 1.35 billion users, LinkedIn has over 332 mil-
lion users, and 1 out of 4 people from the entire world is an
active user in at least one existing social network (Statista
2014). It is not a surprise that researchers from various
domains such as sociology, economics, physics, mathemat-
ics, and computer science are analyzing different problems
and proposing various solutions related to social networks.
While a lot of research has been performed in the past on
networks/graphs, nowadays the main focus is moving to-
ward social issues (as the name implies, social networks
usually represent relationships between people) and toward
big social networks (as previously noted, these networks
tend to be very large).
 Social networks existed long before the Internet. As ear-
ly as around 1200-1450 such social networks existed in
pre-Hispanic Southwest in the current United States. The
growth, collapse, and change of such social networks are
reflected in thousands of ceramic and obsidian artifacts
(Mills et al. 2013). More recently, in the first half of the
20th century, the social network analysis discipline was
started by the sociology community (Freeman 2011). Be-

ginning from the 1990s, other fields, in particular computer
science and physics, brought a lot of new results to this
field (Freeman 2011). With the advent of Myspace, Friend-
ster, and more recently, Facebook and LinkedIn, social
networks have grown to a new dimension -- the online so-
cial network -- which allows larger numbers of people to
participate. Many existing methods for social network
analysis did not envision such a data explosion. Thus, de-
veloping fast and accurate solutions for large social net-
works is becoming more essential in present days.
 An important feature in a social network is the ability to
communicate quickly within the network. For instance, in
an emergency situation, we may need to be able to reach to
all network participants, but only a small number of indi-
viduals in the network can be contacted directly. However,
if all individuals from the network are connected to at least
one such individual who can be contacted directly (or is
one of those individuals) then the emergency message can
be quickly sent to all network participants. This scenario
can be modeled by what is known as the dominating set
problem. This is formally described below.
 A set DS  N of nodes in a network G = (N, E) is a dom-
inating set if every node x  N is either in DS or adjacent to
DS (Berge 1962). The dominating set with the smallest
numbers of elements is known as the minimum dominating
set (MDS). To find such a minimum dominating set is a
well-known NP-complete problem, thus an exact efficient
solution is unlikely to be found (Garey and Johnson 1979).
 Approximation algorithms for determining the minimum
dominating set exist in the literature, with the most com-
mon one being an adaptation of the greedy algorithm for
determining a set cover (Lovasz 1975). However, as we
will show in the following sections, this greedy algorithm
is slow for large networks, and therefore more efficient so-
lutions are needed. A very efficient algorithm has also been
proposed (Eubank et al. 2004), but this algorithm has a low
result quality as we will show in the future sections.
 Extensive experimental results have been performed for

scale-free networks (that model social networks well) us-
ing either the basic greedy algorithms for approximating
the minimum dominating set size (Molnar et al. 2013) or a
different algorithm based on a binary integer program-
ming-based method (Nacher et al. 2012). These works do
not compare the results of these algorithms with any other
algorithms, and, in addition, they target social networks
with low cardinality (up to 10,000 nodes), and therefore
they do not discuss how the used algorithms will scale to
large social networks.
 In this paper we introduce two novel algorithms that are
able to determine efficiently an approximation to the min-
imum dominating set problem and, simultaneously, they
will preserve the quality of the solution to an acceptable
level. Those two algorithms: one extends the greedy algo-
rithm mentioned earlier, and the other is an improvement
of an algorithm that is also introduced in (Eubank et al.
2004). We compare those two algorithms with three exist-
ing algorithms for a large number of synthetic datasets,
and for several real world social networks. For the exper-
imental part, we use social network generators that create
both power-law and random networks, as well as real net-
work datasets made available by the Stanford Network
Analysis Project (Leskovec and Krevl 2014).
 The remaining of this paper is structured as follows.
Section “Dominating Set Algorithms” introduces the two
new algorithms that we use in this paper. In addition, in
this section we also present three existing algorithms that
we use for experimental evaluation. Section “Datasets” de-
scribes how we generate the synthetic social networks, and
provides a description of the used real datasets. In section
“Experiments and Results” we perform a detailed experi-
mental evaluation of our algorithms using the datasets pre-
sented in the previous section. Section “Discussion and Fu-
ture Extension” presents conclusions and a summary of fu-
ture extension for our work.

Dominating Sets Algorithms
In this section we describe the greedy algorithms we use to
approximate the minimum dominating set. Algorithms 3
and 4 are new, while the rest are existing algorithms
against which we compare ours.
 The first algorithm (Algorithm 1 or Alg. 1) is the stand-
ard greedy algorithm that choses at each step, one node
that covers the maximum number of currently uncovered
nodes (Eubank et al. 2004, Molnar et al. 2013). In this al-
gorithm we start with an empty set, DS, which will at the
end store the nodes in the dominating set. Nodes from the
network are colored according to their state during the exe-
cution of the algorithm. Nodes in DS are called black,
nodes which are covered (because they neighbor one or
more nodes in DS) are called gray, and all uncovered nodes

are white. W (v) denotes the set of white nodes among the
direct neighbors of v, including v itself. w (v) = | W (v) | is
called the span of v. Note that in the Alg. 1, we delete the
black nodes, and the next selected node is either gray or
white. This algorithm is named RegularGreedy in (Eubank
et al. 2004). Its pseudocode is presented next:

Algorithm 1 (G, DS) is
Input: G = (N, E) – a social network;
Output : DS – a dominating set for G;

DS = ;
while ∃ white nodes do

choose v ∈ {x ∈ N | w(x) = max u ∈ N |W(u)|};
DS := DS ∪ { v };
// Delete the vertex v and
// its adjacent edges from G.
G = (N \{v}, E \{(x, y) ∈ E| x = v or y = v)});

end while;
end Algorithm 1.

 The second algorithm (Algorithm 2 or Alg. 2) starts by
finding the set of all nodes of degree exactly one (D1).
Then finds the set of nodes adjacent to D1 (Neighbors(D1)).
Obviously, any dominating set must contain Neigh-
bors(D1). Next, we run the Alg. 1 on the subgraph induced
by N \ Neighbors(D1). This second algorithm is referred in
previous work as VRegularGreedy (Eubank et al. 2004).
Its pseudocode is presented next:

Algorithm 2 (G, DS) is
Input: G = (N, E) – a social network;
Output : DS – a dominating set for G;

D1 = { x ∈ N | degree(x) = 1};
Neighbors(D1) = { x ∈ N |  y ∈ D1 and (x, y) ∈ E }
DS = Neighbors(D1);
// E’ – contains all edges from E that have
// both ends in N \ {Neighbors(D1)  D1}.
G’ = (N \ {Neighbors(D1)  D1}, E’);
Algorithm 1 (G’, DS’);
DS = Neighbors(D1)  DS’;

end Algorithm 2.

 The third algorithm (Algorithm 3 or Alg. 3) improves
the running time of Algorithm 1 by removing both the
black and gray nodes from the remaining network, thus re-
ducing significantly at each step the size of the network.
Since all the time the remaining nodes are white, the use of
node coloring is no longer useful. This algorithm is de-
scribed next:

Algorithm 3 (G, DS) is
Input: G = (N, E) – a social network;
Output : DS – a dominating set for G;

DS = ;
while N   do

choose v ∈ {x ∈ N |
degree(x) = max u ∈ N (degree(u))};

DS := DS ∪ { v };
// Delete the vertex v, Neighbors({v}), and
// their corresponding edges.
// The remaining edges are labeled E’
G = (N \{v}\ Neighbors({v},E’);

end while;
end Algorithm 3.

 The fourth algorithm (Algorithm 4 or Alg. 4) combines
the Algorithms 2 and 3, by including in the dominating set
all neighbors of nodes of degree 1, and then by applying
Algorithm 3 to the remaining graph. This algorithm is de-
scribed as:

Algorithm 4 (G, DS) is
Input: G = (N, E) – a social network;
Output : DS – a dominating set for G;

while N   do
D1 = { x ∈ N | degree(x) = 1};
Neighbors(D1) = { x ∈ N |  y ∈ D1 and (x, y) ∈ E }
DS = Neighbors(D1);
// E’ – contains all edges in E with both ends
// in N \ {Neighbors(D1)  Neighbors (Neighbors(D1))}.
G’ = (N \ {Neighbors(D1)  Neighbors (Neighbors(D1)), E’);
Main step in Algorithm 3 (G’, v);
DS = Neighbors(D1) { v };

end while;
end Algorithm 4.

 Note that in the Alg. 4, we also delete all nodes domi-
nated by Neighbors(D1) prior to using Algorithm 3. This is
equivalent with deleting the gray nodes along with the
black node which is executed in Alg. 3 and it is not per-
formed in Alg. 1.
 The last algorithm known as FastGreedy in (Eubank et
al. 2004) is a very simple and efficient algorithm for com-
puting a dominating set. Consider the nodes in N in non-
increasing order of the degree v1, v 2, …, v |N |, with de-
gree(v 1) ≥ degree(v 2) ≥ … ≥ degree(v | N |), where degree()
is the given degree-sequence. Pick the smallest i such that
|ji Neighbors (vj)| = |N | and take the subset {v1, v 2, …,
vi} to be the dominating set of the graph. In this algorithm,
we do not take those vi nodes for which Neighbors (vi)  j

< i Neighbors (vj). We refer to this algorithm as Algorithm
5 or Alg. 5. The pseudocode algorithm is presented next:

Algorithm 5 (G, DS) is
Input: G = (N, E) – a social network;
Output : DS – a dominating set for G;

DS = ;
Order vertices in N = {v 1, v 2, … v|N|)}

such that degree(v 1) ≥ degree(v 2) ≥ … ≥ degree(v | N |).
i = 1;
while (|ji Neighbors (vj)| < |N |) do
 if (not(Neighbors (vi)  j < i Neighbors (vj)))

DS = DS  { v i};
i++;

end Algorithm 5.

Datasets
In order to compare the size of dominating sets and execu-
tion times for the above 5 algorithms, we use both synthet-
ic and real network datasets. All synthetic graphs were
generated using the SNAP library (Leskovec and Sosic
2014).
 We generate synthetic datasets using the well-known
Erdos-Renyi random graph model (Bollobás 2001) and the

configuration model (Molloy and Reed 1995, Britton et al.
2005) that generates a scale free network (Catanzaro et al.
2005). Details about the generation algorithms as well as
the properties of the generated networks can be found in
(Leskovec and Sosic 2014). We refer to those networks as
ERNetworks and ConfNetworks respectively.
 To generate ERNetworks we chose the following param-
eters. First we fix the size of the network, |N |, to 50,000,
and we generate ERNetworks for 10 different average de-
gree values (AVG = 5, 10, 15, 20, .., 50). Second we chose
a fixed AVG value (AVG = 10) and we use 10 distinct val-
ues for the size of N (|N | = 10K, 20K, …, 100K). For each
combination of |N | and AVG values we generate 5 distinct
networks. The total number of ERNetworks generated is 95
(19 combinations x 5 samples). Note that the size 50K and
AVG = 10 is common between the two generation ap-
proaches, and therefore it is considered only once.
 We generate the same number of ConfNetworks but we
change the parameters as follows. For the size of the net-
works we use exactly the same values, but as a second pa-
rameter we use the power-law exponent γ from the power-
law distribution (P(k)  k-γ). For the fixed |N | value (50K)
we use the values for γ = 1.7, 1.8, …, 2.6. When we vary
the size of networks, we use γ = 2.0. As before, for each
combination of |N | and γ we generate 5 district networks
and the total number of generated ConfNetworks is 95.
 We also use 10 real networks in this work. These net-
works are from the SNAP datasets website (Leskovec and
Krevl 2014). The number of nodes and edges of these net-
works, as well as a short description, are shown in Table 1.
For a full description of the networks and additional prop-
erties please consult (Leskovec and Krevl 2014).

Table 1. Real Networks’ Characteristics.

Name |N | |E | Description

ego-
Facebook 4,039 88,234 Social circles from Facebook

email-Enron 36,692 183,831 Email communication net-
work from Enron

ca-AstroPh 18,772 198,110 Collaboration network of
Arxiv Astro Physics

ca-CondMat 23,133 93,497 Collaboration network of
Arxiv Condensed Matter

ca-GrQc 5,242 14,496 Collab.network of Arxiv
General Relativity

ca-HepPh 12,008 118,521 Collab. network of Arxiv High
Energy Physics

ca-HepTh 9,877 25,998 Collab. network of Arxiv High
Energy Physics Theory

com-
Amazon 334,863 925,872 Amazon product network

com-DBLP 317,080 1,049,866 DBLP collaboration network

com-
Youtube 1,134,890 2,987,624 Youtube online social net-

work

Experiments and Results
To execute our experiments, we implemented the Algo-
rithms 1 – 5 described in Section “Dominating Set Algo-
rithms” and the graph random generators described Section
“Datasets” in C++ using the SNAP framework (Leskovec
and Sosic 2014). To allow a meaningful comparison be-
tween running times, all the experiments were performed
on an Intel® Xeon® E5430@2.66 GHz dual CPU machine
with 4 GB memory running on 32 bit Windows Server
2007 operating system. In the experiments executed on the
synthetic networks (ERNetworks and ConfNetworks), the
reported results are the average between the 5 sample da-
tasets.
 Figures 1 – 14 show the results of all our experiments.
For figures that report the dominating set size, the y axis
shows the number of nodes from the graph in the dominat-
ing set. For figures that report the running time, the y axis
shows the number of seconds needed by our algorithms to
compute the dominating sets.
 Figures 1 – 6 show the results for ERNetworks. These
networks gave predictable results in terms of both mini-
mum dominating set size and running time. For dominating
set sizes, we notice that the size of the network does not in-
fluence which algorithm performs best. However, the aver-
age degree is very important. When the average degree is
below 25, the best algorithm is Alg. 4, followed in order by
Alg. 3, Alg. 5, Alg. 2, and Alg. 1. When the average degree
is over 25, Alg. 1 and Alg. 2 outperform the other 3 algo-
rithms. Also it is worth noting that even in this case, Alg. 3
and, in particular, Alg. 4 find dominating sets of very close
size with Alg. 1 and Alg. 2 (~15% more nodes in their
dominating sets). For running time, Alg. 1 and Alg. 2 per-
form very poorly, and they are not suitable for very large
networks. By comparing the other three algorithms (Fig-
ures 3 and 6), we draw the following two conclusions:
First, Alg. 5 is always the fastest algorithm. Second, Alg.
4 is faster than Alg. 5 when the average degree is lower
than 20, and the order changes for higher average degrees.
It is worth noting that these three algorithms are suitable
for very large networks. Based on these experiments, we
conclude that for Erdos-Renyi random graphs the best al-
gorithm to use in most cases is Alg. 4.
 Figures 7 – 10 illustrate the results for ConfNetworks.
The results are quite different compared to the ERNet-
works. In terms of finding small dominating sets (Figures 7
and 9), Alg. 4 and 5 perform the best, with very similar re-
sults. Alg. 2 was close behind. Alg. 1 and 3 perform the
worst. The reason for those results is that there are many
vertices with degree = 1 that are identified early by Alg. 2
and 4, and their only neighbors are added to the dominat-
ing set in the beginning of these algorithm, thus reducing
the size of the graph. When power exponent values are in-
creased (Figure 9), the dominating set sizes are more simi-

lar than for low values of γ. This is expected since there are
fewer nodes with low degree and the degree distribution
became more equal. In terms of running time (Figures 8
and 10), Alg. 1 performs the worst by far, and all the other
algorithms run in a relatively small amount of time. Look-
ing more carefully at the data, Alg. 2, 3 and 4 perform very
similarly. Alg. 3 is slightly better; Alg. 2 and 4 are very
close, while Alg. 5 outperforms them significantly. Alg. 5
is between 20 times and 80 times faster than Alg. 3 in all
our experiments.
 To summarize, for power-law networks, the best algo-
rithm is Alg. 5. While this algorithm is sometime worse
than Alg. 4 in terms of finding the minimum dominating
set size, it still performs best on average in this category. It
is by far the fastest algorithm to execute, thus being very
suitable for very large networks.
 Figures 11 – 14 illustrate the results for RealNetworks.
The smallest 7 datasets (shown in Figure 12) do not have
any nodes of degree 1, and the results for Alg. 1 and Alg. 2
are identical. This is also true of Alg. 3 and Alg. 4 results.
For those sets, Alg. 1 (and Alg. 2) outperform the other al-
gorithms and Alg. 5 is close behind. For the larger sets,
Alg. 4 and 5 perform the best, while Alg. 1 performs the
worst. The reason for this sudden change is the distribution
of nodes’ degree; the large datasets have more of a power-
law distribution, and the results are more similar to the re-
sults obtained for ConfNetworks. In terms of running time,
Alg. 1 and 2 (and Alg. 3 and 4) are very similar for the
smallest 7 datasets for the same reason as above. For the
larger datasets, Alg. 1 performs the worst. As expected,
Alg. 5 is by far the fastest.
 To summarize, for real networks, determining the best
algorithm to use is not as straight-forward. If the running
time is an important factor in this decision, then Alg. 5 is
again the winner. If the time is not a factor, then Alg. 1 (or
Alg. 2) is the choice for datasets without high variance in
the average degree, and with no nodes of degree 1 (such as
the 7 smallest datasets); while Alg 4 or 5 is the choice for
the datasets that follow a power-law distribution (com-
amazon, com-dblp, com-youtube).
 The experiments performed in this paper show that Alg.
4 is a viable algorithm to find a dominating set of a small
size in large networks of various types. Also, the experi-
ments show that Alg. 5 is surprisingly accurate, and it can
be used successfully, in particular when the running time is
a very important factor. To our surprise, Alg. 1 and Alg. 2
(which are frequently used in the literature) do not rise to
the expected level, being outperformed in terms of domi-
nating set size in most of the experiments by the other al-
gorithms.

0

10000

20000

30000

40000

50000

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

|N |=

0

50

100

150

200

250

300

350

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

|N |=

0

1

2

3

4

5

6

7

Alg. 3 Alg. 4 Alg. 5

|N |=

0

5000

10000

15000

20000

25000

5 10 15 20 25 30 35 40 45 50

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

|AVG |=

0
10
20
30
40
50
60
70
80
90

5 10 15 20 25 30 35 40 45 50

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

0

0.5

1

1.5

2

2.5

5 10 15 20 25 30 35 40 45 50

Alg. 3 Alg. 4 Alg. 5

Figure 1. Dominating Set Size for ERNetworks when AVG = 10.

Figure 2. Running Time for ERNetworks when AVG = 10.

Figure 3. Running Time for ERNetworks when AVG = 10 (fastest

algorithms only).

Figure 4. Dominating Set Size for ERNetworks when |N | = 50K.

Figure 5. Running Time for ERNetworks when |N | = 50K.

Figure 6. Running Time for ERNetworks when |N | = 50K (fastest

algorithms only).

0

20000

40000

60000

80000

100000

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

|N |=

0
50

100
150
200
250
300
350
400
450

Alg. 1 Alg. 2 Alg.3 Alg. 4 Alg. 5

|N |=

0

10000

20000

30000

40000

50000

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

|PE |=

0

20

40

60

80

100

120

140

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

|N |=

0
200000
400000
600000
800000

1000000
1200000

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

0

3000

6000

9000

12000

15000

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

Figure 7. Dominating Set Size for ConfNetworks when γ = 2.0.

Figure 8. Running Time for ConfNetworks when γ = 2.0.

Figure 9. Dominating Set Size for ConfNetworks when |N | =

50K.

Figure 10. Running Time for ConfNetworks when |N | = 50K.

Figure 11. Dominating Set Size for RealData

Figure 12. Dominating Set Size for RealData (smaller sets)

0

20000

40000

60000

80000

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

0

2

4

6

8

10

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

Figure 13. Running Time for RealData

Figure 14. Running Time for RealData (smaller sets)

Discussion and Future Extensions
 The experiments performed in this work show that the
two new algorithms (and in particular Alg. 4) are viable
options to determine a small dominating set for large net-
works. In many experiments, Alg. 4 outperforms the exist-
ing algorithms, while being very efficient in terms of run-
ning time.
 This work is a preliminary work in the dominating sets
for social network area. As part of our future work, we in-
tend to investigate how the two new algorithms can be
used for more specific dominating set problems, such as
partial dominating sets (Formin et al. 2005), total dominat-
ing set (Cockayne at al. 1980), independent dominating
sets (Cockayne at al. 1980), connected dominating sets
(Wu and Li 1999), d-hop dominating set (Rieck et al.
2002), positive influence dominating set (Wang et al.

2009), and k-tuple dominating set (Klasing and Laforest
2004).

References
Berge C. 1962, Theory of Graphs and its Applications. Methuen,
London.

Bollobás B., 2001, Random Graphs (2nd ed.). Cambridge Univer-
sity Press. ISBN 0-521-79722-5.

Britton T,; Deijfen M; and Martin-Lof A. 2006. Generating Sim-
ple Random Graphs with Prescribed Degree Distribution. Journal
of Statistical Physics, Vol. 124, Issue 6, 1377-1397.

Catanzaro M.; Boguna M.; and Pastor-Satorras R., 2005, Genera-
tion of Uncorrelated Random Scale-Free Networks. Physical Re-
view, E 71, 027103.

Cockayne E. J.; Dawes R. M.; and Hedetniemi S. T. (1980). Total
Domination in Graphs. Networks, Vol. 10, No 3, pp. 211-219.

Eubank S.; Anil Kumar V. S.; Marathe M.; Srinivasan A.; and
Wang N. 2004. Structural and Algorithmic Aspects of Massive
Social Networks. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, 718–727.

Fomin F. V.; Kratsch D.; and Woeginger G. J. (2005). Exact (Ex-
ponential) Algorithms for the Dominating Set Problem. In Graph-
Theoretic Concepts in Computer Science, pp. 245-256 Springer
Berlin Heidelberg.

Freeman L. C. 2011. The Development of Social Network Analy-
sis — with an Emphasis on Recent Events. In Sage Handbook of
Social Network Analysis edited by J. Scott and P. Carrington, 26–
39.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness. W.H. Free-
man, ISBN 0-7167-1045-5, page 190.

Klasing R. and Laforest C. (2004). Hardness Results and Approx-
imation Algorithms of k-Tuple Domination in
Graphs. Information Processing Letters, Vol. 89, No. 2, pp. 75-
83.

Leskovec J. and Krevl A. 2014a. SNAP Datasets: Stanford Large
Network Dataset Collection, Available at: http://snap.stanford.
edu/data.

Leskovec J. and Sosic R. 2014b. SNAP: A general purpose net-
work analysis and graph mining library in C++, Available at:
http://snap.stanford.edu/snap.

Lovasz L. 1975. On the Ratio of Optimal Integral and Fractional
Covers. Discrete Mathematics, Vol. 13, 383–390.

Mills B.; Clark J.; Peeples M.; Haas W. R.; Roberts J.; Hill J. B.;
Huntley D.; Borok L.; Breiger R.; Clauset A.; and Shackley M. S.
2013. Transformation of Social Networks in the Late Pre-

Hispanic US Southwest. In Proceedings of the National Academy
of Sciences of the United States of America, Vol. 110, No. 15,
April 9, 2013, 5785–5790.

Molloy M. and Reed B. 1995. A Critical Point for Random
Graphs with a Given Degree Sequence. Random Structures and
Algorithms, Vol. 6, 161-180.

Molnar F,; Sreenivasan S.; Szymanski K.; and Korniss G. 2013.
Minimum Dominating Sets in Scale-Free Network Ensembles,
Scientific Reports, No. 3, Nature Publishing Group.

Nacher J. C. and Akutsu T. 2012. Dominating Scale-free Net-
works with Variable Scaling Exponent: Heterogeneous Networks
are not Difficult to Control. New Journal of Physics, Vol. 14.

Rieck M. Q.; Pai S.; and Dhar S. (2002). Distributed Routing Al-
gorithms for Wireless Ad Hoc Networks using d-Hop Connected
d-Hop Dominating Sets. In Proc. 6th Int. Conf. High Perfor-
mance Computing Asia Pacific, Vol. 2, pp. 443-450.

Statista 2014. Available online at http://www.statista.com/topics/
1164/social-networks/.

Wang F.; Camacho E.; and Xu K. (2009). Positive Influence
Dominating Set in Online Social Networks. In Combinatorial Op-
timization and Applications, pp. 313-321, Springer Berlin Heidel-
berg.

Wu J. and Li H. (1999). On Calculating Connected Dominating
Set for Efficient Routing in Ad Hoc Wireless Networks.
In Proceedings of the ACM 3rd International Workshop on Dis-
crete Algorithms and Methods for Mobile Computing and Com-
munications, pp. 7-14.

