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Abstract 
   In this paper we introduce two novel algorithms that are 
able to efficiently determine an approximation to the mini-
mum dominating set problem, and at the same time, they 
will preserve the quality of the solution to an acceptable 
level. We compare these two algorithms with three existing 
algorithms, for a large number of synthetic datasets, and for 
several real world social networks. For experiments, we use 
social network generators that create both power-law and 
random networks, and a few real network datasets made 
available by the Stanford Network Analysis Project. Our 
experiments show that the proposed algorithms are viable, 
and in many instances, preferable for determining the mini-
mum dominating set of a social network. 

Introduction 
Today, online social networks are used by an ever increas-
ing number of people. For instance, Facebook has currently 
more than 1.35 billion users, LinkedIn has over 332 mil-
lion users, and 1 out of 4 people from the entire world is an 
active user in at least one existing social network (Statista 
2014). It is not a surprise that researchers from various 
domains such as sociology, economics, physics, mathemat-
ics, and computer science are analyzing different problems 
and proposing various solutions related to social networks. 
While a lot of research has been performed in the past on 
networks/graphs, nowadays the main focus is moving to-
ward social issues (as the name implies, social networks 
usually represent relationships between people) and toward 
big social networks (as previously noted, these networks 
tend to be very large).  
 Social networks existed long before the Internet. As ear-
ly as around 1200-1450 such social networks existed in 
pre-Hispanic Southwest in the current United States. The 
growth, collapse, and change of such social networks are 
reflected in thousands of ceramic and obsidian artifacts 
(Mills et al. 2013). More recently, in the first half of the 
20th century, the social network analysis discipline was 
started by the sociology community (Freeman 2011). Be-

ginning from the 1990s, other fields, in particular computer 
science and physics, brought a lot of new results to this 
field (Freeman 2011). With the advent of Myspace, Friend-
ster, and more recently, Facebook and LinkedIn, social 
networks have grown to a new dimension -- the online so-
cial network -- which allows larger numbers of people to 
participate. Many existing methods for social network 
analysis did not envision such a data explosion. Thus, de-
veloping fast and accurate solutions for large social net-
works is becoming more essential in present days. 
 An important feature in a social network is the ability to 
communicate quickly within the network. For instance, in 
an emergency situation, we may need to be able to reach to 
all network participants, but only a small number of indi-
viduals in the network can be contacted directly. However, 
if all individuals from the network are connected to at least 
one such individual who can be contacted directly (or is 
one of those individuals) then the emergency message can 
be quickly sent to all network participants. This scenario 
can be modeled by what is known as the dominating set 
problem. This is formally described below. 
 A set DS  N of nodes in a network G = (N, E) is a dom-
inating set if every node x  N is either in DS or adjacent to 
DS (Berge 1962). The dominating set with the smallest 
numbers of elements is known as the minimum dominating 
set (MDS). To find such a minimum dominating set is a 
well-known NP-complete problem, thus an exact efficient 
solution is unlikely to be found (Garey and Johnson 1979).  
 Approximation algorithms for determining the minimum 
dominating set exist in the literature, with the most com-
mon one being an adaptation of the greedy algorithm for 
determining a set cover (Lovasz 1975). However, as we 
will show in the following sections, this greedy algorithm 
is slow for large networks, and therefore more efficient so-
lutions are needed. A very efficient algorithm has also been 
proposed (Eubank et al. 2004), but this algorithm has a low 
result quality as we will show in the future sections. 
 Extensive experimental results have been performed for 



scale-free networks (that model social networks well) us-
ing either the basic greedy algorithms for approximating 
the minimum dominating set size (Molnar et al. 2013) or a 
different algorithm based on a binary integer program-
ming-based method (Nacher et al. 2012). These works do 
not compare the results of these algorithms with any other 
algorithms, and, in addition, they target social networks 
with low cardinality (up to 10,000 nodes), and therefore 
they do not discuss how the used algorithms will scale to 
large social networks. 
 In this paper we introduce two novel algorithms that are 
able to determine efficiently an approximation to the min-
imum dominating set problem and, simultaneously, they 
will preserve the quality of the solution to an acceptable 
level. Those two algorithms: one extends the greedy algo-
rithm mentioned earlier, and the other is an improvement 
of an algorithm that is also introduced in (Eubank et al. 
2004). We compare those two algorithms with three exist-
ing algorithms for a large number of synthetic datasets, 
and for several real world social networks.  For the exper-
imental part, we use social network generators that create 
both power-law and random networks, as well as real net-
work datasets made available by the Stanford Network 
Analysis Project (Leskovec and Krevl 2014).  
 The remaining of this paper is structured as follows. 
Section “Dominating Set Algorithms” introduces the two 
new algorithms that we use in this paper. In addition, in 
this section we also present three existing algorithms that 
we use for experimental evaluation. Section “Datasets” de-
scribes how we generate the synthetic social networks, and 
provides a description of the used real datasets. In section 
“Experiments and Results” we perform a detailed experi-
mental evaluation of our algorithms using the datasets pre-
sented in the previous section. Section “Discussion and Fu-
ture Extension” presents conclusions and a summary of fu-
ture extension for our work. 

Dominating Sets Algorithms 
In this section we describe the greedy algorithms we use to 
approximate the minimum dominating set. Algorithms 3 
and 4 are new, while the rest are existing algorithms 
against which we compare ours. 
 The first algorithm (Algorithm 1 or Alg. 1) is the stand-
ard greedy algorithm that choses at each step, one node 
that covers the maximum number of currently uncovered 
nodes (Eubank et al. 2004, Molnar et al. 2013). In this al-
gorithm we start with an empty set, DS, which will at the 
end store the nodes in the dominating set. Nodes from the 
network are colored according to their state during the exe-
cution of the algorithm. Nodes in DS are called black, 
nodes which are covered (because they neighbor one or 
more nodes in DS) are called gray, and all uncovered nodes 

are white. W (v) denotes the set of white nodes among the 
direct neighbors of v, including v itself. w (v) = | W (v) | is 
called the span of v. Note that in the Alg. 1, we delete the 
black nodes, and the next selected node is either gray or 
white. This algorithm is named RegularGreedy in (Eubank 
et al. 2004). Its pseudocode is presented next: 
 

Algorithm 1 (G, DS) is 
Input:   G = (N, E) – a social network; 
Output : DS – a dominating set for G; 

 

DS = ; 
while ∃ white nodes do 

choose v ∈ {x ∈ N | w(x) = max u ∈ N |W(u)|}; 
DS := DS ∪ { v }; 
// Delete the vertex v and  
// its adjacent edges from G. 
G = (N \{v}, E \{(x, y) ∈ E| x = v or y = v)});  

end while; 
end Algorithm 1. 
 

 The second algorithm (Algorithm 2 or Alg. 2) starts by 
finding the set of all nodes of degree exactly one (D1). 
Then finds the set of nodes adjacent to D1 (Neighbors(D1)). 
Obviously, any dominating set must contain Neigh-
bors(D1). Next, we run the Alg. 1 on the subgraph induced 
by N \ Neighbors(D1). This second algorithm is referred in 
previous work as VRegularGreedy (Eubank et al. 2004).  
Its pseudocode is presented next: 
 

Algorithm 2 (G, DS) is 
Input:   G = (N, E) – a social network; 
Output : DS – a dominating set for G; 

 

D1 = { x ∈ N | degree(x) = 1}; 
Neighbors(D1) = { x ∈ N |  y ∈ D1 and (x, y) ∈ E }  
DS = Neighbors(D1); 
// E’ – contains all edges from E that have  
// both ends in N \ {Neighbors(D1)  D1}. 
G’ = (N \ {Neighbors(D1)  D1}, E’); 
Algorithm 1 (G’, DS’);  
DS = Neighbors(D1)  DS’; 

end Algorithm 2. 
 

 The third algorithm (Algorithm 3 or Alg. 3) improves 
the running time of Algorithm 1 by removing both the 
black and gray nodes from the remaining network, thus re-
ducing significantly at each step the size of the network. 
Since all the time the remaining nodes are white, the use of 
node coloring is no longer useful. This algorithm is de-
scribed next:  
 

Algorithm 3 (G, DS) is 
Input:   G = (N, E) – a social network; 
Output : DS – a dominating set for G; 

 

DS = ; 
while N   do 

choose v ∈ {x ∈ N |  
degree(x) = max u ∈ N (degree(u))}; 

DS := DS ∪ { v }; 
// Delete the vertex v, Neighbors({v}), and 
// their corresponding edges. 
// The remaining edges are labeled E’ 
G = (N \{v}\ Neighbors({v},E’ );  

end while; 
end Algorithm 3. 



 The fourth algorithm (Algorithm 4 or Alg. 4) combines 
the Algorithms 2 and 3, by including in the dominating set 
all neighbors of nodes of degree 1, and then by applying 
Algorithm 3 to the remaining graph. This algorithm is de-
scribed as:  
 

Algorithm 4 (G, DS) is 
Input:   G = (N, E) – a social network; 
Output : DS – a dominating set for G; 

 

while N   do 
D1 = { x ∈ N | degree(x) = 1}; 
Neighbors(D1) = { x ∈ N |  y ∈ D1 and (x, y) ∈ E }  
DS = Neighbors(D1); 
// E’ – contains all edges in E with both ends 
// in N \ {Neighbors(D1)  Neighbors (Neighbors(D1) )}. 
G’ = (N \ {Neighbors(D1)  Neighbors (Neighbors(D1) ), E’); 
Main step in Algorithm 3 (G’, v);  
DS = Neighbors(D1) { v }; 

end while; 
end Algorithm 4. 
 

 Note that in the Alg. 4, we also delete all nodes domi-
nated by Neighbors(D1) prior to using Algorithm 3. This is 
equivalent with deleting the gray nodes along with the 
black node which is executed in Alg. 3 and it is not per-
formed in Alg. 1.  
 The last algorithm known as FastGreedy in (Eubank et 
al. 2004) is a very simple and efficient algorithm for com-
puting a dominating set. Consider the nodes in N in non-
increasing order of the degree v1, v 2, …, v |N |, with de-
gree(v 1) ≥ degree(v 2) ≥ … ≥ degree(v | N |), where degree() 
is the given degree-sequence. Pick the smallest i such that 
|ji Neighbors (vj)| = |N | and take the subset {v1, v 2, …, 
vi} to be the dominating set of the graph. In this algorithm, 
we do not take those vi nodes for which Neighbors (vi)  j 

< i Neighbors (vj). We refer to this algorithm as Algorithm 
5 or Alg. 5. The pseudocode algorithm is presented next:  
 

Algorithm 5 (G, DS) is 
Input:   G = (N, E) – a social network; 
Output : DS – a dominating set for G; 

 

DS = ; 
Order vertices in N  = {v 1, v 2, … v|N|)}  

such that degree(v 1) ≥ degree(v 2) ≥ … ≥ degree(v | N |). 
i = 1; 
while (|ji Neighbors (vj)| < |N |) do 
 if (not(Neighbors (vi)  j < i Neighbors (vj))) 

DS = DS  { v i}; 
i++; 

end Algorithm 5. 

Datasets 
In order to compare the size of dominating sets and execu-
tion times for the above 5 algorithms, we use both synthet-
ic and real network datasets. All synthetic graphs were 
generated using the SNAP library (Leskovec and Sosic 
2014).  
 We generate synthetic datasets using the well-known 
Erdos-Renyi random graph model (Bollobás 2001) and the 

configuration model (Molloy and Reed 1995, Britton et al. 
2005) that generates a scale free network (Catanzaro et al. 
2005). Details about the generation algorithms as well as 
the properties of the generated networks can be found in 
(Leskovec and Sosic 2014). We refer to those networks as 
ERNetworks and ConfNetworks respectively.  
 To generate ERNetworks we chose the following param-
eters. First we fix the size of the network, |N |, to 50,000, 
and we generate ERNetworks for 10 different average de-
gree values (AVG = 5, 10, 15, 20, .., 50).  Second we chose 
a fixed AVG value (AVG = 10) and we use 10 distinct val-
ues for the size of N (|N | = 10K, 20K, …, 100K). For each 
combination of |N | and AVG values we generate 5 distinct 
networks. The total number of ERNetworks generated is 95 
(19 combinations x 5 samples). Note that the size 50K and 
AVG = 10 is common between the two generation ap-
proaches, and therefore it is considered only once. 
 We generate the same number of ConfNetworks but we 
change the parameters as follows. For the size of the net-
works we use exactly the same values, but as a second pa-
rameter we use the power-law exponent γ from the power-
law distribution (P(k)  k-γ). For the fixed |N | value (50K) 
we use the values for γ = 1.7, 1.8, …, 2.6. When we vary 
the size of networks, we use γ = 2.0. As before, for each 
combination of |N | and γ we generate 5 district networks 
and the total number of generated ConfNetworks is 95. 
 We also use 10 real networks in this work. These net-
works are from the SNAP datasets website (Leskovec and 
Krevl 2014). The number of nodes and edges of these net-
works, as well as a short description, are shown in Table 1. 
For a full description of the networks and additional prop-
erties please consult (Leskovec and Krevl 2014). 
 

Table 1. Real Networks’ Characteristics. 
 

Name |N | |E | Description 

ego-
Facebook 4,039 88,234 Social circles from Facebook 

email-Enron 36,692 183,831 Email communication net-
work from Enron 

ca-AstroPh 18,772 198,110 Collaboration network of 
Arxiv Astro Physics 

ca-CondMat 23,133 93,497 Collaboration network of 
Arxiv Condensed Matter 

ca-GrQc 5,242 14,496 Collab.network of Arxiv 
General Relativity 

ca-HepPh 12,008 118,521 Collab. network of Arxiv High 
Energy Physics 

ca-HepTh 9,877 25,998 Collab. network of Arxiv High 
Energy Physics Theory 

com-
Amazon 334,863 925,872 Amazon product network 

com-DBLP 317,080 1,049,866 DBLP collaboration network 

com-
Youtube 1,134,890 2,987,624 Youtube online social net-

work 

 



Experiments and Results 
To execute our experiments, we implemented the Algo-
rithms 1 – 5 described in Section “Dominating Set Algo-
rithms” and the graph random generators described Section 
“Datasets” in C++ using the SNAP framework (Leskovec 
and Sosic 2014). To allow a meaningful comparison be-
tween running times, all the experiments were performed 
on an Intel® Xeon® E5430@2.66 GHz dual CPU machine 
with 4 GB memory running on 32 bit Windows Server 
2007 operating system. In the experiments executed on the 
synthetic networks (ERNetworks and ConfNetworks), the 
reported results are the average between the 5 sample da-
tasets. 
 Figures 1 – 14 show the results of all our experiments. 
For figures that report the dominating set size, the y axis 
shows the number of nodes from the graph in the dominat-
ing set. For figures that report the running time, the y axis 
shows the number of seconds needed by our algorithms to 
compute the dominating sets. 
 Figures 1 – 6 show the results for ERNetworks. These 
networks gave predictable results in terms of both mini-
mum dominating set size and running time. For dominating 
set sizes, we notice that the size of the network does not in-
fluence which algorithm performs best. However, the aver-
age degree is very important. When the average degree is 
below 25, the best algorithm is Alg. 4, followed in order by 
Alg. 3, Alg. 5, Alg. 2, and Alg. 1. When the average degree 
is over 25, Alg. 1 and Alg. 2 outperform the other 3 algo-
rithms. Also it is worth noting that even in this case, Alg. 3 
and, in particular, Alg. 4 find dominating sets of very close 
size with Alg. 1 and Alg. 2 (~15% more nodes in their 
dominating sets). For running time, Alg. 1 and Alg. 2 per-
form very poorly, and they are not suitable for very large 
networks. By comparing the other three algorithms (Fig-
ures 3 and 6), we draw the following two conclusions: 
First, Alg. 5 is always the fastest algorithm.  Second, Alg. 
4 is faster than Alg. 5 when the average degree is lower 
than 20, and the order changes for higher average degrees. 
It is worth noting that these three algorithms are suitable 
for very large networks.  Based on these experiments, we 
conclude that for Erdos-Renyi random graphs the best al-
gorithm to use in most cases is Alg. 4.  
 Figures 7 – 10 illustrate the results for ConfNetworks. 
The results are quite different compared to the ERNet-
works. In terms of finding small dominating sets (Figures 7 
and 9), Alg. 4 and 5 perform the best, with very similar re-
sults. Alg. 2 was close behind. Alg. 1 and 3 perform the 
worst. The reason for those results is that there are many 
vertices with degree = 1 that are identified early by Alg. 2 
and 4, and their only neighbors are added to the dominat-
ing set in the beginning of these algorithm, thus reducing 
the size of the graph. When power exponent values are in-
creased (Figure 9), the dominating set sizes are more simi-

lar than for low values of γ. This is expected since there are 
fewer nodes with low degree and the degree distribution 
became more equal. In terms of running time (Figures 8 
and 10), Alg. 1 performs the worst by far, and all the other 
algorithms run in a relatively small amount of time. Look-
ing more carefully at the data, Alg. 2, 3 and 4 perform very 
similarly. Alg. 3 is slightly better; Alg. 2 and 4 are very 
close, while Alg. 5 outperforms them significantly. Alg. 5 
is between 20 times and 80 times faster than Alg. 3 in all 
our experiments.  
 To summarize, for power-law networks, the best algo-
rithm is Alg. 5. While this algorithm is sometime worse 
than Alg. 4 in terms of finding the minimum dominating 
set size, it still performs best on average in this category.  It 
is by far the fastest algorithm to execute, thus being very 
suitable for very large networks. 
 Figures 11 – 14 illustrate the results for RealNetworks. 
The smallest 7 datasets (shown in Figure 12) do not have 
any nodes of degree 1, and the results for Alg. 1 and Alg. 2 
are identical. This is also true of Alg. 3 and Alg. 4 results. 
For those sets, Alg. 1 (and Alg. 2) outperform the other al-
gorithms and Alg. 5 is close behind. For the larger sets, 
Alg. 4 and 5 perform the best, while Alg. 1 performs the 
worst. The reason for this sudden change is the distribution 
of nodes’ degree; the large datasets have more of a power-
law distribution, and the results are more similar to the re-
sults obtained for ConfNetworks. In terms of running time, 
Alg. 1 and 2 (and Alg. 3 and 4) are very similar for the 
smallest 7 datasets for the same reason as above. For the 
larger datasets, Alg. 1 performs the worst. As expected, 
Alg. 5 is by far the fastest. 
 To summarize, for real networks, determining the best 
algorithm to use is not as straight-forward. If the running 
time is an important factor in this decision, then Alg. 5 is 
again the winner. If the time is not a factor, then Alg. 1 (or 
Alg. 2) is the choice for datasets without high variance in 
the average degree, and with no nodes of degree 1 (such as 
the 7 smallest datasets); while Alg 4 or 5 is the choice for 
the datasets that follow a power-law distribution (com-
amazon, com-dblp, com-youtube). 
 The experiments performed in this paper show that Alg. 
4 is a viable algorithm to find a dominating set of a small 
size in large networks of various types.  Also, the experi-
ments show that Alg. 5 is surprisingly accurate, and it can 
be used successfully, in particular when the running time is 
a very important factor. To our surprise, Alg. 1 and Alg. 2 
(which are frequently used in the literature) do not rise to 
the expected level, being outperformed in terms of domi-
nating set size in most of the experiments by the other al-
gorithms. 
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Figure 1. Dominating Set Size for ERNetworks when AVG = 10.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Running Time for ERNetworks when AVG = 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Running Time for ERNetworks when AVG = 10 (fastest 

algorithms only). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Dominating Set Size for ERNetworks when |N | = 50K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Running Time for ERNetworks when |N | = 50K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Running Time for ERNetworks when |N | = 50K (fastest 

algorithms only). 
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Figure 7. Dominating Set Size for ConfNetworks when γ = 2.0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Running Time for ConfNetworks when γ = 2.0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Dominating Set Size for ConfNetworks when |N | = 

50K.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Running Time for ConfNetworks when |N | = 50K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Dominating Set Size for RealData  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Dominating Set Size for RealData (smaller sets) 
 



0

20000

40000

60000

80000

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

0

2

4

6

8

10

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Running Time for RealData 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Running Time for RealData (smaller sets) 

Discussion and Future Extensions 
 The experiments performed in this work show that the 
two new algorithms (and in particular Alg. 4) are viable 
options to determine a small dominating set for large net-
works. In many experiments, Alg. 4 outperforms the exist-
ing algorithms, while being very efficient in terms of run-
ning time.  
 This work is a preliminary work in the dominating sets 
for social network area. As part of our future work, we in-
tend to investigate how the two new algorithms can be 
used for more specific dominating set problems, such as 
partial dominating sets (Formin et al. 2005), total dominat-
ing set (Cockayne at al. 1980), independent dominating 
sets (Cockayne at al. 1980), connected dominating sets 
(Wu and Li 1999), d-hop dominating set (Rieck et al. 
2002), positive influence dominating set (Wang et al. 

2009), and k-tuple dominating set (Klasing and Laforest 
2004). 
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