
The Relation between a Framework for
Collaborative Ontology Engineering and Nicola
Guarino’s Terminology and Ideas in “Formal

Ontology and Information Systems”

Christophe Debruyne

Semantics Technology and Applications Research Lab
Vrije Universiteit Brussel
chrdebru@vub.ac.be

Abstract. In this paper, we investigate the relation between Guar-
ino’s seminal paper “Formal Ontology and Information Systems” and
the DOGMA ontology-engineering framework. As DOGMA is geared to-
wards the development of ontologies for semantic interoperation between
autonomously developed and maintained information systems, it follows
that the stakeholders in this project form a community and adds a social
dimension to the ontology project. The goal of this exercise is to examine
how the different terminologies and ideas relate to one and another, thus
providing a reference for clarifying DOGMA’s ideas and notation inside
Guarino’s framework.

Key words: Formal Ontology, Ontology-engineering Frameworks

1 Introduction

An ontology is commonly defined as: “a [formal,] explicit specification of a
[shared] conceptualization” [?]1. Ontologies constitute the key resources for re-
alizing a semantic Web. The main difference between a conceptual schema and
an ontology is that the first is intended for the development of one particular
information system in one organization and the latter for reuse and therefore
general for a particular domain [15].

Gruber’s definition was based on the definition of Genesereth and Nilsson’s
notion of a conceptualization [6] that used an extensional notion for describing
one particular state of affairs. Guarino and Gieretta in [9], however, have argued
that a different intensional account of the notion of conceptualization has to be
introduced for this definition in order for Gruber’s definition to have some sense.
Guarino then wrote his – currently – most influential work “Formal Ontology
and Information Systems” in which he provided definitions for conceptualization,
ontological commitment and ontology.

1 Gruber’s original definition is without the words “shared” and “formal”, but are
accepted by relevant scientific communities to describe more precisely the intention
of ontologies.

34

chrdebru@vub.ac.be


2 Christophe Debruyne

Over the past years, quite a few (collaborative) ontology-engineering meth-
ods have been developed, each with their own characteristics; e.g., the formalism
adopted, approach of agreement processes, application domain, etc. [4]. In this
paper, we will take a closer look at one particular ontology-engineering frame-
work – which served as the framework for collaborative methods such as BSM [1],
DOGMA-MESS [3] and GOSPL [4] – and relate the concepts in this framework
to that of Guarino’s.

The goal of this paper is to investigate how the different terminologies re-
late to each other given the fact that Guarino’s work aims to provide a defini-
tion for ontology in computer science and a collaborative ontology-engineering
framework for establishing semantic interoperability between autonomously de-
veloped information systems. The paper is organized as follows: Section 2 pro-
vides a summary and explanation of Guarino’s ideas and definitions, Section 3
describes the problem of semantic interoperability between autonomously devel-
oped and maintained information systems, Section 4 describes the notion of the
fact-oriented collaborative ontology-engineering framework DOGMA, Section 5
discusses the relation between the two, followed by a conclusion in Section 6.

2 Formal Ontology and Information Systems

This section explains the terminology used in Guarino’s most influential work [8].
The definition provided by Genesereth and Nilsson [6] and adopted by Gruber
[?] is given below.

Definition 1 (Extensional notion of conceptualization [6]). A conceptu-
alization is defined as a structure 〈D,R〉, where D is a domain and R is a set
of relevant relations on D.

However, Guarino argued in [8] that this notion of conceptualization was to
restrictive as it was referring to only one particular state of affairs: “The problem
with Genesereth and Nilsson’s notion of conceptualization is that it refers to
ordinary mathematical relations on D, i.e. extensional relations. These relations
reflect a particular state of affairs: for instance, in the blocks world, they may
reflect a particular arrangement of blocks on the table. We need instead to focus
on the meaning of these relations, independently of a state of affairs: for instance,
the meaning of the “above” relation lies in the way it refers to certain couples
of blocks according to their spatial arrangement. We need therefore to speak of
intensional relations: we shall call them conceptual relations, reserving the simple
term “relation” to ordinary mathematical relations.”. He therefore introduced a
notation of domain space that refers to a set of possible states of affairs for a
particular domain and a notion of conceptual relations on such domain spaces:

Definition 2 (Domain Space [8]). A domain space is a structure 〈D,W 〉,
where D is a domain and W is a set of maximal states of affairs of such a
domain (also called possible worlds).

35



Relation between DOGMA and Guarino’s Seminal Paper 3

Definition 3 (Conceptual relation [8]). Given a domain space 〈D,W 〉, a
conceptual relation ρn of arity n on 〈D,W 〉 is defined as a total function ρn :
W → 2D

n

from W into the set of all n-ary relations on D.

With the notions introduced by Guarino, the structure 〈D,R〉 introduced
in [6] can now be regarded as referring to a particular state of affairs [8]. A
conceptualization according to Guarino is then defined as follows:

Definition 4 (intensional notion of conceptualization [8]). A conceptual-
ization for D is defined as an ordered triple C = 〈D,W,R〉, where R is a set of
conceptual relations on the domain space 〈D,R〉.

Given a logical language L with a vocabulary V , Guarino provided an exten-
sional and an intensional interpretation of the language.

Definition 5 (Extensional interpretation of a language [8]). A model for
L is defined as a structure 〈S, I〉, where S = 〈D,R〉 is a world structure and
I : V → D∪R is an interpretation function assigning elements of D to constant
symbols of V and elements of R to predicate symbols of V .

Definition 6 (Intensional interpretation of a language [8]). An inten-
sional interpretation of a language is by means of a structure 〈C, I〉, where
C = 〈D,W,R〉 is a conceptualization and I : V → D ∪ R a function assigning
elements of D to constant symbols of V and elements of R to predicate symbols
of V . This intensional interpretation is called an ontological commitment for L.
if K = 〈C, I〉 is an ontological commitment for L, we say that L commits to C
by means of K, while C is the underlying conceptualization of K.

Definition 7 (The set of intended models of a language L according
to a commitment K [8]). The set IK(L) of all intended models of a language
L that are compatible with commitment K = 〈C, I〉 are all the models of L that
are compatible with K. A model 〈S, I〉 is compatible with K if: S ∈ {SwC |w ∈
W}, where SwC = 〈D,RwC〉 is the intended structure of w according to C and
RwC = {ρ(w)|ρ ∈ R} is the set of extensions relative to w of the elements of R
(i.e., S is one of the intended world structures of C); (ii) for each constant c,
I(c) = I(c); (iii) ∃w ∈ W such that for each predicate symbol p, there exists a
conceptual relation ρ such that I(p) = ρ ∧ ρ(w) = I(p).

Guarino argued that the set of intended models only provide a weak char-
acterization of a conceptualization as an intended model does not necessarily
reflect a particular world and can even describe a situation common to most
worlds. Indeed, if one would take for instance a domain space with a domain
of the following persons D = 〈Peter, Louis, Joe,Bonnie〉 and where all words
contain all possible marriage configurations as well as all persons classified ac-
cording to their gender (Peter and Joe being male, Louis and Bonnie female). If
one takes as set of conceptual relations only the unary predicates for being male
and female, the intended model for each world – via an I an appropriate I –
will be the same.

36



4 Christophe Debruyne

Because an intended model can describe a situation common to many worlds,
it only rules out absurd situations. One can merely create a set of axioms for
a commitment K and a language L such that the models of the ontology ap-
proximates as close as possible IK(L). This set of axioms is what Guarino calls
an ontology. Ontologies thus indirectly reflect an ontological commitment by
approximating the intended models of that commitment.

3 Closed vs. Open Information Systems

Now that we have presented Guarino’s ideas and definitions, we will present
the difference between closed and open information systems. As we will see,
for both systems an ontology will be needed that will replace the real word
and hence one can state that the “same” exercise is done at an enterprise level
for the former and at a domain level for the latter. Developing ontologies for
open information systems, however, will prove to be more challenging due to the
different perceptions of reality and use of language (e.g., jargon) used by the
stakeholders representing the different autonomously developed and maintained
information systems.

An information system is a system containing information in a database for
a given application context of a given organization. The application context de-
fines the functionality of such a system, which is prescribed by the organizations’
requirements. The development of an information system thus involves the cre-
ation of a requirements specification and an agreement on the design. Costing is
an important factor here and will also influence the choice whether components
will be selected for its implementation, outsourced, or even build from scratch.
One should involve end-users during the requirements specification process for
several reasons. Two of these reasons are the impedance mismatch between the
jargon (used by end-users) and the business knowledge, and the end-users being
experts on (their part of) the domain.

As shown in Fig. 1, domain experts and end-users observe the world. Domain
experts try to abstract the world, whereas the end-users will interact with the
world and are able to test the developed information systems by comparing
the instances stored in the information systems with objects in the real world.
Both domain experts and end-users will collaborate with a knowledge designer
so that the latter can put the resulting agreements into a CASE tool to build a
conceptual schema that described the business domain. The conceptual schema
will – in turn – be used to generate parts of the processes, parts of the constraints
and a data model of the information system.

The knowledge in such a conceptual schema is typically a mixture of domain-
general knowledge and enterprise-specific knowledge derived from the require-
ments. Domain knowledge can contain constraints that are shared or generic.
Enterprise-specific knowledge describes the applications and constraints local to
the enterprise making use of the domain knowledge. Enterprise-specific knowl-
edge will often constrain the domain-general knowledge even further. For exam-
ple, the knowledge that an ISBN identifies a book is part of the domain knowl-

37



Relation between DOGMA and Guarino’s Seminal Paper 5

Information System

AGREEMENT
(N.L.)

End users

Designer

Business 
Domain Expert

Conceptual 
Schema

Design 
Tool

"Real world"
Business Domain

Abstraction 
from instances

Communicate at 
instance level

Observe/Interact => Test by 
instances

Observe/
Abstract

DB 
Schema

DBMS

DB

Apps

ENTERPRISE CONTEXT - DEFINED BY REQUIREMENTS

Fig. 1. Information Systems in an enterprise context.

edge. In an enterprise providing a movie rental service, however, the knowledge
that a customer is only able to lend at most five movies at a time is part of the
enterprise knowledge.

The conceptual schema, often in the shape of a formal (mathematical) con-
struct, actually replaces the business domain, as the business domain is not ac-
cessible inside a computer. This is necessary in order to store and reason about
semantics the business domain. The formal semantics of an information system is
then the correspondence between this system and the conceptual schema, which
represents the business domain as perceived by the domain expert and the end-
users. Once the system is adequately designed and implemented, a statement
output by the information system can be correctly interpreted by end-users in
terms of objects in the business domain if and only if such statement is derived
from stored instances of fact types described in the conceptual schema. Those
stored instances are mapped by the intensional semantics to observed relation-
ships among those same objects.

In Fig. 1, the conceptual schema corresponds with the ontology in Guarino’s
terminology (i.e., the intensional description of the concepts and relations) and
the database provides the extensional account of a particular situation.

But what happens when two or more autonomously developed and main-
tained information systems need to interoperate and yet need to remain au-
tonomous2? The business domains of each information systems relates to the
shared domain knowledge of all humans involved. In order for these systems to
interoperate meaningfully, agreements on the domain knowledge by the represen-

2 In general, semantic interoperability is defined as the ability of two or more infor-
mation systems or their (computerized) components to exchange data, knowledge or
resources and to interpret the information in those systems [2].

38



6 Christophe Debruyne

Shared World

Community

Observe/Interact

Enterprise IS 1 Enterprise IS 2


Agreement

Interaction

ONTOLOGY

leads to

results in

Replacing

Semantic
Interoperability

Enables

Fig. 2. Agreements leading to ontology for enabling semantic interoperability

tatives of these systems – which we will call a community – are needed. Again, as
the world is not accessible in each one of those information systems, the shared
domain needs to be replaced by another formal (mathematical) construct, called
an ontology. As shown in Fig. 2, each autonomous information system has its
own database which each provides an extensional interpretation of the concep-
tualization approximated by the ontology. In other words, each database of an
information system can be regarded as a possible world. Fig. 2 also depicts that
a community of stakeholders interacts to achieve agreements on what percep-
tions they share. The approximation of the shared reality that is shared among
those stakeholders is then stored as an ontology, which will in turn be used the
replace the shared world as the real world is not immediately available from the
information systems.

4 Developing Ontology Guided Methods and Applications

In [16] and [14] a formalism and method for ontology development called Devel-
oping Ontology Guided Methods and Applications (DOGMA) was defined that
illustrated and implemented these principles, now lifted to domain level from the
mere enterprise system level. In the method and life-cycle of semantic systems,
the creation of DOGMA ontology descriptions belongs upstream from such im-
plementation - although of course in many cases one will have to “mine” or elicit

39



Relation between DOGMA and Guarino’s Seminal Paper 7

the required knowledge from existing information systems and their enterprise
environments.

Definition 8 (DOGMA Ontology Descriptions). A DOGMA Ontology De-
scription Ω is an ordered triple 〈Λ, ci,K〉 where Λ is a lexon base, i.e. a finite set
of lexons. A lexon is an ordered 5-tuple 〈γ, t1, r1, r2, t2〉 where γ ∈ Γ is a context
identifier, t1, t2 ∈ T are terms, and r1, r2 ∈ R are role labels. A lexon is a binary
fact type that can be read in two directions: t1 playing the role of r1 on t2 and t2
playing the role of r2 on t1. Here, the usual alphabets for constructing the ele-
ments of T ∪R are omitted for simplicity. ci : Γ ×T → C is a function mapping
pairs of context identifiers and terms to unique elements of C, a finite given set
of concepts. K is a finite set of ontological3 commitments. Each commitment is
an ordered triple 〈σ, α, c〉 where σ ⊂ Λ is a selection of lexons from the DOGMA
ontology description, α : Σ → T is a mapping called an annotation from the set
Σ of application (information, system, database) symbols to terms occurring in
that selection, and c is a predicate over T ∪ R of that same selection expressed
in a suitable first-order language.

Context-identifiers are pointers to the origin of a lexon, and helps with the
disambiguation of term- and role-labels. Within a context γ ∈ Γ and t ∈ T ,
ci(γ, t) is the definition itself of the concept agreed by all users.

We furthermore make a distinction between community commitments and
application commitments [5]. The first is an engagement of the community mem-
bers to commit to the lexons and constraints agreed upon by the community.
The latter is a selection of lexons that are constrained (according to how the ap-
plication uses these lexons) and a set of mappings from application symbols to
terms and roles in that selection. A community commitment is motivated by the
need for proper semantic interoperation between information systems. Depend-
ing on the goal of the ontology, instances shared across different autonomous
information systems need to some degree to be compared for equivalence. One
example is joining information about an instance across heterogeneous sources.
In order to achieve this, the members of the community have to agree upon a
series of attributes that uniquely, and totally identify the concepts they share. In
other words, the conceptual reference structures. By sharing the same reference
structures, the information systems are able to interpret information describing
instances and find the corresponding instance in their data store (of that of a
third system). Application commitments refer to community commitments and
can contain additional lexons and constraints. For instance, lexons needed to
annotate application specific symbols (e.g., artificial IDs, often found in rela-
tional databases) to ensure that instances of concepts are properly aligned (e.g.,
a proper annotation of the foreign keys in a join-table). Both community- and
application commitments also store information about the agreements across
communities.

3 Not to be confused with Guarino’s ontological commitment.

40



8 Christophe Debruyne

5 Relation between the two Formalisms

As noted by [13], DOGMA embraces the intensional notion of a conceptual-
ization of Guarino, but arrived at it from a database-inspired perspective [14].
DOGMA, however, also pursues this idea to arrive at concrete software architec-
tural and engineering conclusions [13]. Other than this statement in [13], there
is no existing publication on the relationship between the work of Guarino and
DOGMA.

Lexons are plausible fact types, which means that if one can think of (an)
application(s) for such a lexon, they may be entered in the lexon base. The sets
T and R for term- and role-labels in lexons correspond to the predicate symbols
in V . The context-identifier γ provides an interpretation from terms to concepts.
Since lexons are entered when they are plausible for one or more applications,
the context-identifier γ actually corresponds to Guarino’s interpretation func-
tion I. In other words, if one selects in the lexon base all lexons holding in a
particular context with context-identifier γ, one is able to reconstruct Guarino’s
interpretation function I: all concepts x referred to by ci(γ, t) (for each term t
in those lexons) will refer to the interpretation of a unary predicate.

DOGMA’s is based on ORM [12] and NIAM [17], which are fact-oriented
modeling language. In fact-oriented formalisms, knowledge is expressed by means
of fact types. A fact type is a generalization of a fact. For example: ”Person is
born on Date” is a fact type and “Christophe is born on 8 August 1984” a fact.
Facts are thus instances of fact types. Fact types are elementary when they can
be simplified without loss of meaning. Because of DOGMA’s fact-oriented nature
– it is based on ORM [12] and NIAM [17] – the use of the predicates denoted
by the term- and role-labels are already constrained [11]. A binary fact type
〈A,R, S,B〉 is actually translated into the following first order logic statements
[11]:

– ∀x∀y(R(x, y)→ (A(x) ∧B(y))
– ∀x∀y(R(x, y)↔ S(y, x))

The combination of the predicates with quantifications and connectives al-
ready reduces the set of all possible models with those satisfying above con-
straints. The fact-orientented formalism already provides some constraints that
restrict the intended models of the language; i.e. it leaves out some absurd situa-
tions. In DOGMA, role is identified by its context, role label, term and co-term.
The roles in each of the following lexons are thus different:

– 〈Person Context, Person, with, of, Name〉
– 〈Person Context, Dog, with, of, Name〉
– 〈Person Context, Person, with, of, Age〉
– 〈Project Context, Person, with, of, Name〉

Indeed, a group can argue that the first and second lexon in the example
above are referring to the same notions of “having a name”, but such an agree-
ment would actually be a constraint on these lexons that will be captured by

41



Relation between DOGMA and Guarino’s Seminal Paper 9

community commitments that we will describe later on. Also, the first and last
lexon are deemed to be different since the term- and role-labels are residing in
different contexts. Unless explicitly specified, the same labels in different contexts
do not necessarily mean that those labels are referring to the same concepts.

A commitment k ∈ K of the DOGMA Ontology Description corresponds
with an ontology from Guarino’s framework. It is a selection of lexon from the
lexon base that is constrained such that it approximates as good as possible
the domain it aims to describe. Those constraints correspond with the notion of
axioms and typically include notions such as: type- and role hierarchies, totality
constraints, uniqueness constraints, value constraints, etc.

Value constraints are interesting to note that they limit domain elements
for the interpretation of concept referred to by a term. There are two types
of value constraints: exhaustive sets and descriptions of sets. We start with an
example of the first type of value constraints: giving the term Size referring
to the size of a drink at a fast food restaurant in the Fast Food context, one
can constraint the instances of that concept to the following values {"Small",
"Medium", "Large"}. These instances of values then would refer to the concepts
of these different sizes in that context. The latter type – e.g. a regular expression
– checks whether an instance complies with the condition and are therefore
considered restraining the use of a unary predicate.

A community commitment further restrains all possible models of the lexons
committed to. An application commitment will even further restrain those by
providing additional lexons, constraints, and narrowing down all possible models
by providing additional constants via the mappings.

Since the real world cannot be stored in a computer-based system, one needs
to replace that real world with a database (and corresponding database schema)
in order to reason about things in the real world. We assume that a database
of an organization corresponds with one real world. The mappings provided by
a commitment k ∈ K are used how the constant symbols in a database are
related in aforementioned predicates. For instance: assuming that one has the
lexon 〈Fast Food, Soda, with, of, Name〉 and a particular fast food organiza-
tion has a table SSS containing records about different sodas with information
such as the name in the field NNN, one can provide an extensional account for
the predicates ”Food”, ”Name”, ”with” and ”of” by adding the following map-
ping: MAP "SSS"."NNN" ON Name of Soda. and all symbols corresponding to
the SQL query generated with this mapping will be used to populate the predi-
cates with constants (e.g., "Pepsi", "Sprite," ...).

It is interesting to note that when relating DOGMA with Guarino’s semi-
nal work, the ontological commitment in DOGMA ontology descriptions does
not allow constant symbols, but that the ontologies in the DOGMA ontology
description do so for constraints and via the mappings.

In summary:

– Guarino’s vocabulary V would correspond with the union of DOGMA’s T ,
R, values in value constraints in each K and symbols from records of each

42



10 Christophe Debruyne

database described in the mappings of each K via queries. This vocabulary
is then used for the language L.

– Guarino’s ontology corresponds with the constraints of one commitment
k ∈ K. In the case of a community commitment, the intended models are
narrowed down with those constraints. In the case of an application com-
mitment, the intended models are even further narrowed down. This is the
case as the constant symbols of a database are then also used. Note that a
database does not necessarily describe one world, but could even describe
situations plausible for many worlds.

We can even argue that the mappings provided in an application commit-
ment are – albeit indirectly – and even further restriction of the intended
models, i.e., the mappings for a constraint on their own.

– Guarino’s seminal work is not particularly clear on the ontological language
L. On one hand it seems to be richer than the mere use of the predicate and
constant symbols of V , but on the other the constraints on those predicates
are left to the ontological commitment such as demonstrated in

[10]. The fact-orientation of DOGMA – for us – corresponds to Guarino’s
notion of a language and, as shown above, already provides some constraints
on the intended models.

From above, it follows that one needs to decompose the commitments and
combine pieces with the lexon base to reconstruct Guarino’s ontological commit-
ment. In other words, there is a high cohesion between ontological commitments
and ontologies in the DOGMA ontology-engineering framework.

6 Conclusions

This paper presented a thought exercise on relating a framework for collabora-
tive ontology engineering with Nicola Guarino’s seminal work ”Formal Ontology
and Information Systems”. This exercise allows us to provide documentation to
the reader on the DOGMA framework and might even clarify some notions pre-
sented by Guarino. As the DOGMA framework is mainly used for establishing
semantic interoperability between autonomously developed information systems,
the relation of the symbols in databases to concepts denoted by labels in the on-
tology was ”new” compared to Guarino’s framework. The work presented in this
paper will furthermore allow us to revise or clarify some of the definitions we
presented in the past.

Acknowledgements

This work was partially funded by the Brussels Institute for Research and Inno-
vation through the Open Semantic Cloud for Brussels Project.

43



Relation between DOGMA and Guarino’s Seminal Paper 11

References

1. De Leenheer, P., Christiaens, S., Meersman, R.: Business semantics management:
A case study for competency-centric HRM. Computers in Industry 61(8) (2010)
pp. 760–775

2. De Leenheer, P., Mens, T.: Ontology evolution: State of the art and future direc-
tions. In: Ontology Management: Hepp, M., De Leenheer, P., de Moor, A., Sure,
Y. (eds.). Vol. 7 of Semantic Web And Beyond Computing for Human Experience.
Springer (2008) pp. 131–176

3. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolu-
tion support system for interorganizational ontology engineering. In: Proceedings
of the 14th International Conference on Conceptual Structures (ICCS 2006). Vol.
4068 of LNCS., Springer (2006) pp. 189–203

4. Debruyne, C., Tran, T.K., Meersman, R.: Grounding ontologies with social pro-
cesses and natural language (to appear). Journal of Data Semantics (2013)

5. Debruyne, C., Vasquez, C.: Exploiting natural language definitions and (legacy)
data for facilitating agreement processes. In: SWQD: Winkler, D., Biffl, S., Bergs-
mann, J. (eds.). Vol. 133 of LNBIP., Springer (2013) pp. 244–258

6. Genesereth, M., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, San Mateo, CA (1987)

7. Gruber, T.: Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies 43 (1993) pp. 907–928

8. Guarino, N.: Formal ontology and information systems. In: International Confer-
ence On Formal Ontology In Information Systems FOIS’98, Trento, Italy, Amster-
dam, IOS Press (1998) pp. 3–15

9. Guarino, N., Giaretta, P.: Ontologies and Knowledge Bases: Towards a Termino-
logical Clarification. Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing (1995) pp. 25–32

10. Guarino, N., Oberle, D., Staab, S.: What is an ontology? Handbook on Ontologies
(2009) pp. 1–17

11. Halpin, T.A.: A Logical Analysis of Information Systems: static aspects of the
data-oriented perspective. PhD thesis, University of Queensland (1989)

12. Halpin, T.A., Morgan, T.: Information Modeling and Relational Databases. Mor-
gan Kaufmann, San Francisco, CA, USA (2008)

13. Jarrar, M., Meersman, R.: Ontology engineering – the DOGMA approach. In:
Advances in Web Semantics I: Dillon, T.S., Chang, E., Meersman, R., Sycara, K.
(eds.). Vol. 4891 of LNCS. Springer Berlin Heidelberg (2009) pp. 7–34

14. Meersman, R.: Semantic ontology tools in IS design. In: ISMIS: Ras, Z.W.,
Skowron, A. (eds.). Vol. 1609 of LNCS., Springer (1999) pp. 30–45

15. Meersman, R.: The use of lexicons and other computer-linguistic tools in semantics,
design and cooperation of database systems. In: The Proceedings of the Second
International Symposium on Cooperative Database Systems for Advanced Appli-
cations (CODAS99): Zhang, Y., Rusinkiewicz, M., Kambayashi, Y. (eds.), Springer
(1999) pp. 1–14

16. Meersman, R.: Reusing certain database design principles, methods and design
techniques for ontology theory, construction and methodology. Technical report,
VUB Starlab (2001)

17. Wintraecken, J.: The NIAM Information Analysis Method: Theory and Practice.
Kluwer Academic Publishers (1990)

44


	The Relation between a Framework for Collaborative Ontology Engineering and Nicola Guarino's Terminology and Ideas in ``Formal Ontology and Information Systems''
	Christophe Debruyne
	Introduction
	Formal Ontology and Information Systems
	Closed vs. Open Information Systems
	Developing Ontology Guided Methods and Applications
	Relation between the two Formalisms
	Conclusions





