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Abstract. In automation plants, the software that controls the behavior of a 

plant must adhere to strict process requirements arising from the technical pro-

cesses and from the physical plant design. In current practice, the validation of 

the control software starts late in the engineering process – in many cases not 

before the plant is almost completely constructed, leading to increased efforts 

for correcting revealed defects. Based on an industrial example, we propose an 

approach that allows early validation of automation software against the plant 

processes and assumptions about the physical plant design through simulation.  
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1 Introduction 

The development of plants (e.g. processing facilities in the chemical industry, produc-

tion facilities in factories, or baggage routing facilities at airports) is a complex plan-

ning and engineering task. Typically, such plants are designed individually and the 

entire construction process from the first idea until commissioning takes years, in-

volving many different disciplines like process engineering, physical plant design, 

mechanics, electronics, and software engineering [1]. 

The automation software of the plant controls its various technical devices (e.g. 

valves, containers, or conveyor belts). The overall goal of the automation software is 

to control the involved processes safely, reliably, with sufficient quality, and with the 

lowest demand on resources, such as time, energy, and material input [2]. Validating 

whether the automation software satisfies the process requirements of the entire plant 

is typically conducted at a late stage in the plant development when technical process-

es and the physical plant design are already defined. However, it is widely acknowl-

edged, that the later the control software of the plant is validated, the higher the effort 

for correcting revealed defects is, leading to budget overruns and project delays. 

mailto:vogelsan@in.tum.de


 

 

In this paper, we propose an approach that fosters early validation of automation 

control software against the plant process based on specified requirements of the con-

trol software and assumptions about the physical plant design. Our approach aims at 

identifying defects in the requirements for the automation software (in the sense of 

incorrectly or incompletely specified requirements). The key idea of the approach is 

to use simulation during early stages of plant development to assess the impact of the 

specified requirements for the automation software on the plant process. The ap-

proach primarily aims at validating requirements for control software of plants. Yet, 

we expect that our approach can be used widely to validate application software for 

technical systems with complex technical and physical incarnations, where assump-

tions about the physical design can be made early in the development process. 

2 Running Example 

We illustrate our approach by means of a seawater desalination plant1. Desalination 

plants are used to remove salts from seawater to produce drinking water. In our sim-

plified running example, seawater is collected through a subsurface intake system of 

four beach wells drilled into the seashore. From there the salt water is pumped 

through pipelines to the seawater tank, where it is stored and pretreated with chemi-

cals before desalination can take place. An overview of a typical plant architecture 

and the technical architecture of one such beach wells is shown in Fig. 1. In the auto-

mation industry, technical architectures are documented using piping and instrumen-

tation diagrams (P&ID). The left hand side of Fig. 1 shows the P&ID for one beach 

well, which is equipped with a pump and a discharge valve through which water is 

advanced to the seawater tank, a bypass control valve to adjust the flow rate into the 

tank, and a set of sensors. These beach well components are controlled by the beach 

well software to ensure that beach well actuators are controlled according to strict 

process requirements. In the remainder of this paper, we will focus on the beach well 

software to satisfy the process requirements shown in Table 1. 

  

Fig. 1. Technical architecture of a typical seawater desalination plant and one beach well 

                                                           
1  This running example is based on a free instructional DVD, see http://goo.gl/ppsNNo  

http://goo.gl/ppsNNo


 

 

Table 1. Process requirements for a beach well 

ID Process Requirement 

Req 1 The pump must only run if filling level of the beach well tank is sufficient 

Req 2 The pump load shall be minimized using the bypass control valve 

Req 3 Discharge valve must be closed before pump starts 

Req 4 Discharge valve must be open after pump has started 

Req 5 Discharge valve must be closed after pump has stopped 

3 Solution Approach  

We seek to foster the early validation of automation software by means of simulation 

during early stages of the plant development process, i.e. when the plant is not yet 

finished, but when assumptions about the technical architecture of the plant can be 

made. The key idea of our approach (sketched in Fig. 2) is to document assumptions 

about the plant architecture explicitly by means of context models (see Section 3.1).  

 

Fig. 2. Overview over the approach 

Context models often serve as a reference artifact in quality assurance approaches 

(see, e.g. [8]) and allow for systematically developing validation use cases (see Sec-

tion 3.2) with execution semantics, which is necessary for the simulation of automa-

tion control software in particular (see, e.g., [9]). Based on the validation use cases, 

we derive an executable specification, configure the simulation tool, and execute the 

formal specification and check it against the validation use cases (see Section 3.3). 

The output of the simulation reveals incorrect or incomplete behavioral requirements 

of the automation software. 

3.1 Assumptions about the Prospective Plant  

We employ a number of diagrammatic representations, which we call operational 

context models, to document assumptions about the beach well’s technical environ-

ment. These are introduced in the following. 

Structural Operational Context Model (SOCM). The SOCM documents structural 

characteristics of the beach well’s software, its physical components, and the compo-

nents interacting with the beach well. This also entails dependencies between human 

users and automation software of other plant components, as shown in Fig. 3. 
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As can be seen, the SOCM depicts the interactions between the beach well compo-

nents from Fig. 1 and documents the information exchange as well as relevant inter-

faces. Furthermore, interaction with human users is depicted as well as context influ-

ences (e.g., the beach wells pump water to a seawater tank). 

 

Fig. 3. Structural operational context model of the beach well control software 

Functional Operational Context Model (FOCM). The FOCM documents the exter-

nally visible functions of the automation software and the physical plant. By abstract-

ing from structural dependencies, the focus is on the functional dependency between 

the automation software and the physical plant components. This allows adopting a 

service-oriented view on the functionality by depicting only functions that influence 

each other. Fig. 4 depicts the FOCM of the beach well software and component func-

tions. The software offers three externally visible functions by which the beach well 

component functions are controlled: “start beach well”, “stop beach well”, and “bal-

ance load”. The signals from the SOCM in Fig. 3 were supplied with concrete values.  

 

Fig. 4. Functional operational context model of the beach well control software 



 

 

Behavioral Operational Context Model (BOCM). The BOCM documents the 

externally observable states of the physical plant components. Internal states of the 

plant components are abstracted and only states relevant to the automation software 

are documented. Transitions between states are triggered depending on the values of 

the signals from the FOCM. Fig. 5 shows an example of the BOCM of the beach well. 

As can be seen, the externally observable states of the beach well components from 

the SOCM are depicted as concurrent substates of the entire beach well. The guards 

on the transitions are conditions specified in the FOCM with regard to the beach well 

function “start beach well”. Both bypass valve and discharge valve can be open or 

closed. The pump can either be off or on assume some intermediate states. 

 

Fig. 5. Behavioral operational context model of the beach well and its components 

3.2 Validation Use Cases 

Based on the assumptions about the beach well’s context (see Section 3.1), validation 

use cases are developed for every automation software function from the FOCM. 

Table 2 shows the validation use case for the FOCM function “Start Beach Well” 

using the Reqs 1, 3, and 4 from Table 1 as pre- and post-conditions regarding the 

startup procedure for the beach wells.  

Table 2. Validation use case "Start Beach Well" 

Title Start Beach Well 

Description A beach well is manually started by the user of the desalination plant 

Trigger BWControl == “The user initiates the start of the beach well”. 

Precondition bypass_valve.open == true && discharge_valve.closed == true 

Postcondition pump.on == true && discharge_valve.open == true && bypass_valve.closed == true 

Step Action Actor 

1 The User initiates the start of a beach well User 

2 The Beach Well Software checks whether the beach well is in standby Beach Well Software 

3 The Beach Well Software closes the discharge valve Beach Well Software 

4 The Discharge Valve sends feedback that the valve is closed Discharge Valve 

5 The Beach Well Software starts the Pump with minimal revolutions Beach Well Software 

6 The Pump sends feedback that the Pump is started Pump 

7 The Beach Well Software closes the Bypass valve Beach Well Software 

8 The Beach Well Software opens the Discharge Valve Beach Well Software 

9 The Discharge Valve sends feedback that the valve is opened Discharge Valve 

10 The Beach Well Software reports that the beach well is on Beach Well Software 



 

 

Typically, use cases comprise a set of sequential steps called a scenario, which docu-

ment interactions between the automation software and the physical plant components 

that lead to the desired post-conditions [4]. Since the process requirements demand a 

certain sequence of valve actuation and minimal tank filling level, the beach well 

software must perform several steps as documented in the scenario. 

Simulation requires the scenario to be executable. Hence, we formalize the scenar-

io using Message Sequence Charts (MSCs, [5]), as shown in Fig. 6. The MSC defines 

a sequence of messages based on the interface information and the plant signals from 

the SOCM (Fig. 3). These messages trigger transitions between states from the 

BOCM (Fig. 5). This formalized scenario serves as reference for the simulation of the 

beach well software and beach well technical process (see Section 3.3). 

 

Fig. 6. Formalized scenario from the validation use case “Start Beach Well” in Table 2 

3.3 Executable Requirements Specifications 

After the validation use case was documented and the scenario was formalized, a 

simulation tool can be configured (e.g. in Aspen, MATLAB-SIMULINK, or Modeli-

ca). For this purpose, the simulated plant process (which gave rise to the process re-

quirements from Table 1) must be modeled and coupled with the formalized scenario 

in a simulation process, which executes the validation use case. 

Modeling the Simulated Plant Process. The plant process is described using al-

gebraic equations representing the physical behavior of the beach well components. 

These equations can be taken from component libraries, in which the relevant config-

uration parameters (e.g. height of tank, length of pipes) are stored. Fig. 7 shows the 

steps involved in modeling the plant process of the beach well. The upper section of 

Fig. 7 depicts the relevant excerpt of the plant architecture taken from the SOCM 

(Fig. 3). The middle section of Fig. 7 shows the differential equations for flow, filling 

level, beach well tank pressure, and the seawater tank pressure. The process models of 

pump and discharge valve comprise two equations for flow and pressure. Since the 

four components are associated with three connecting pipes, six additional equations 

are necessary to describe the flow balance in the physical pipes and the pressure po-
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tential at the connection points. Once the relevant physical plant components and the 

equations representing their dynamic behavior are identified, the simulation tool can 

be configured (bottom section of Fig. 7)2. 

Fig. 7. Modeling the Simulated Beach Well Processes. 

Coupling with the Executable Automation Software Behavior. The functional 

interplay between the beach well software and the plant process must be represented 

in the simulation tool. To this end, we structure the behavior of the automation soft-

ware by functions [6], which subsume the process requirements from Table 1 and 

formalizes them by a behavioral model using the executable specification from Fig. 6.  

 

Fig. 8. SysML block definition diagram showing two beach well software functions 

Fig. 8 shows two functions of the beach well software: “Toggle Beach Well” and 

“Balance Load”. Each function handles a subset of the input and output signals of the 

automation software specified in the SOCM (Fig. 3). The behavior of these functions 

must be specified by an executable behavior description (e.g. a state machine or a 

code snippet), which allows executing the scenario from Fig. 6, as shown in Fig. 9. 

Simulation Process. Based on the formalized validation use cases (see Section 

3.2), the equation system documenting the plant processes (Fig. 7) and the automation 

                                                           
2  In this example, we have used the inhouse tool CoSMOS by Siemens, which can be used to 

configure and simulate automation plants in an object-oriented fashion, similar to Matlab. 



 

 

software behavior (Fig. 8), simulation can be conducted by executing the beach well 

processes and emulating a physical process that takes place therein. The scenario from 

the validation use cases is used as input for the simulation. If the simulation tool can 

execute the scenario and the externally observable states from the BOCM match the 

final states of the physical plant components at the end of the simulation run, the re-

quirements specification is valid with regard to that use case.  

 

Fig. 9. Behavior of the “Toggle Beach Well” function described by a state machine 

4 Conclusion 

In this paper, we presented an approach, which enables the developers to validate the 

control software of automation plants early in the engineering process by first model-

ing assumptions about the design of the plant and subsequently deriving an executable 

specification which can be simulated. If no defects are revealed in the simulation it 

can be concluded that the behavior of the control software is valid with respect to the 

plant process and the assumptions about the plant design (assuming the behavior is 

implemented correctly). Albeit this approach was illustrated using an example of the 

automation industry, we believe it is applicable to any type of software system that 

controls real-world processes (e.g., business processes for information systems). 
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