

Copyright © 2015 by the authors. Copying permitted for private and academic purposes. This volume is

published and copyrighted by its editors.

This research was funded in part by the BMBF under grants 01IS12005A, 01IS12005C, and 01IS12005R.

Early Validation of Control Software for Automation

Plants on the Example of a Seawater Desalination Plant

Veronika Brandstetter1, Andreas Froese2, Bastian Tenbergen2,

Andreas Vogelsang3, Jan Christoph Wehrstedt1, Thorsten Weyer2

1 Siemens AG, Corporate Technology, Germany

{veronika.brandstetter|janchristoph.wehrstedt}@siemens.com

2 paluno – The Ruhr Institute for Software Technology, Univ. of Duisburg-Essen, Germany

{andreas.froese|bastian.tenbergen|thorsten.weyer}@paluno.uni-due.de
3 Technische Universität München, Germany

vogelsan@in.tum.de

Abstract. In automation plants, the software that controls the behavior of a

plant must adhere to strict process requirements arising from the technical pro-

cesses and from the physical plant design. In current practice, the validation of

the control software starts late in the engineering process – in many cases not

before the plant is almost completely constructed, leading to increased efforts

for correcting revealed defects. Based on an industrial example, we propose an

approach that allows early validation of automation software against the plant

processes and assumptions about the physical plant design through simulation.

Keywords: Automation Technology, Process Plants, Desalination Plant, Con-

text Modeling, Simulation, Validation, Executable Requirements, Models.

1 Introduction

The development of plants (e.g. processing facilities in the chemical industry, produc-

tion facilities in factories, or baggage routing facilities at airports) is a complex plan-

ning and engineering task. Typically, such plants are designed individually and the

entire construction process from the first idea until commissioning takes years, in-

volving many different disciplines like process engineering, physical plant design,

mechanics, electronics, and software engineering [1].

The automation software of the plant controls its various technical devices (e.g.

valves, containers, or conveyor belts). The overall goal of the automation software is

to control the involved processes safely, reliably, with sufficient quality, and with the

lowest demand on resources, such as time, energy, and material input [2]. Validating

whether the automation software satisfies the process requirements of the entire plant

is typically conducted at a late stage in the plant development when technical process-

es and the physical plant design are already defined. However, it is widely acknowl-

edged, that the later the control software of the plant is validated, the higher the effort

for correcting revealed defects is, leading to budget overruns and project delays.

mailto:vogelsan@in.tum.de

In this paper, we propose an approach that fosters early validation of automation

control software against the plant process based on specified requirements of the con-

trol software and assumptions about the physical plant design. Our approach aims at

identifying defects in the requirements for the automation software (in the sense of

incorrectly or incompletely specified requirements). The key idea of the approach is

to use simulation during early stages of plant development to assess the impact of the

specified requirements for the automation software on the plant process. The ap-

proach primarily aims at validating requirements for control software of plants. Yet,

we expect that our approach can be used widely to validate application software for

technical systems with complex technical and physical incarnations, where assump-

tions about the physical design can be made early in the development process.

2 Running Example

We illustrate our approach by means of a seawater desalination plant1. Desalination

plants are used to remove salts from seawater to produce drinking water. In our sim-

plified running example, seawater is collected through a subsurface intake system of

four beach wells drilled into the seashore. From there the salt water is pumped

through pipelines to the seawater tank, where it is stored and pretreated with chemi-

cals before desalination can take place. An overview of a typical plant architecture

and the technical architecture of one such beach wells is shown in Fig. 1. In the auto-

mation industry, technical architectures are documented using piping and instrumen-

tation diagrams (P&ID). The left hand side of Fig. 1 shows the P&ID for one beach

well, which is equipped with a pump and a discharge valve through which water is

advanced to the seawater tank, a bypass control valve to adjust the flow rate into the

tank, and a set of sensors. These beach well components are controlled by the beach

well software to ensure that beach well actuators are controlled according to strict

process requirements. In the remainder of this paper, we will focus on the beach well

software to satisfy the process requirements shown in Table 1.

Fig. 1. Technical architecture of a typical seawater desalination plant and one beach well

1 This running example is based on a free instructional DVD, see http://goo.gl/ppsNNo

http://goo.gl/ppsNNo

Table 1. Process requirements for a beach well

ID Process Requirement

Req 1 The pump must only run if filling level of the beach well tank is sufficient

Req 2 The pump load shall be minimized using the bypass control valve

Req 3 Discharge valve must be closed before pump starts

Req 4 Discharge valve must be open after pump has started

Req 5 Discharge valve must be closed after pump has stopped

3 Solution Approach

We seek to foster the early validation of automation software by means of simulation

during early stages of the plant development process, i.e. when the plant is not yet

finished, but when assumptions about the technical architecture of the plant can be

made. The key idea of our approach (sketched in Fig. 2) is to document assumptions

about the plant architecture explicitly by means of context models (see Section 3.1).

Fig. 2. Overview over the approach

Context models often serve as a reference artifact in quality assurance approaches

(see, e.g. [8]) and allow for systematically developing validation use cases (see Sec-

tion 3.2) with execution semantics, which is necessary for the simulation of automa-

tion control software in particular (see, e.g., [9]). Based on the validation use cases,

we derive an executable specification, configure the simulation tool, and execute the

formal specification and check it against the validation use cases (see Section 3.3).

The output of the simulation reveals incorrect or incomplete behavioral requirements

of the automation software.

3.1 Assumptions about the Prospective Plant

We employ a number of diagrammatic representations, which we call operational

context models, to document assumptions about the beach well’s technical environ-

ment. These are introduced in the following.

Structural Operational Context Model (SOCM). The SOCM documents structural

characteristics of the beach well’s software, its physical components, and the compo-

nents interacting with the beach well. This also entails dependencies between human

users and automation software of other plant components, as shown in Fig. 3.

stepwise refinement

& transformation

Key Engineering Progress Simulation Reference Activity Artifact

Assumptions in

Context Models

Exec. Requirements

Specificationdocument

explicitly
develop systematically

input for

simulation

input for

simulation

Mathematical models of physical

plant component behavior

Simulation

Simulated Technical

Plant Processes

Validation Use Cases

for Simulation

Executed Automation

Software Behavior

Revealed Defects in

Requirements of the

Control Software
Prospective Technical

Plant Architecture

Process Requirements

simulation output

As can be seen, the SOCM depicts the interactions between the beach well compo-

nents from Fig. 1 and documents the information exchange as well as relevant inter-

faces. Furthermore, interaction with human users is depicted as well as context influ-

ences (e.g., the beach wells pump water to a seawater tank).

Fig. 3. Structural operational context model of the beach well control software

Functional Operational Context Model (FOCM). The FOCM documents the exter-

nally visible functions of the automation software and the physical plant. By abstract-

ing from structural dependencies, the focus is on the functional dependency between

the automation software and the physical plant components. This allows adopting a

service-oriented view on the functionality by depicting only functions that influence

each other. Fig. 4 depicts the FOCM of the beach well software and component func-

tions. The software offers three externally visible functions by which the beach well

component functions are controlled: “start beach well”, “stop beach well”, and “bal-

ance load”. The signals from the SOCM in Fig. 3 were supplied with concrete values.

Fig. 4. Functional operational context model of the beach well control software

Behavioral Operational Context Model (BOCM). The BOCM documents the

externally observable states of the physical plant components. Internal states of the

plant components are abstracted and only states relevant to the automation software

are documented. Transitions between states are triggered depending on the values of

the signals from the FOCM. Fig. 5 shows an example of the BOCM of the beach well.

As can be seen, the externally observable states of the beach well components from

the SOCM are depicted as concurrent substates of the entire beach well. The guards

on the transitions are conditions specified in the FOCM with regard to the beach well

function “start beach well”. Both bypass valve and discharge valve can be open or

closed. The pump can either be off or on assume some intermediate states.

Fig. 5. Behavioral operational context model of the beach well and its components

3.2 Validation Use Cases

Based on the assumptions about the beach well’s context (see Section 3.1), validation

use cases are developed for every automation software function from the FOCM.

Table 2 shows the validation use case for the FOCM function “Start Beach Well”

using the Reqs 1, 3, and 4 from Table 1 as pre- and post-conditions regarding the

startup procedure for the beach wells.

Table 2. Validation use case "Start Beach Well"

Title Start Beach Well

Description A beach well is manually started by the user of the desalination plant

Trigger BWControl == “The user initiates the start of the beach well”.

Precondition bypass_valve.open == true && discharge_valve.closed == true

Postcondition pump.on == true && discharge_valve.open == true && bypass_valve.closed == true

Step Action Actor

1 The User initiates the start of a beach well User

2 The Beach Well Software checks whether the beach well is in standby Beach Well Software

3 The Beach Well Software closes the discharge valve Beach Well Software

4 The Discharge Valve sends feedback that the valve is closed Discharge Valve

5 The Beach Well Software starts the Pump with minimal revolutions Beach Well Software

6 The Pump sends feedback that the Pump is started Pump

7 The Beach Well Software closes the Bypass valve Beach Well Software

8 The Beach Well Software opens the Discharge Valve Beach Well Software

9 The Discharge Valve sends feedback that the valve is opened Discharge Valve

10 The Beach Well Software reports that the beach well is on Beach Well Software

Typically, use cases comprise a set of sequential steps called a scenario, which docu-

ment interactions between the automation software and the physical plant components

that lead to the desired post-conditions [4]. Since the process requirements demand a

certain sequence of valve actuation and minimal tank filling level, the beach well

software must perform several steps as documented in the scenario.

Simulation requires the scenario to be executable. Hence, we formalize the scenar-

io using Message Sequence Charts (MSCs, [5]), as shown in Fig. 6. The MSC defines

a sequence of messages based on the interface information and the plant signals from

the SOCM (Fig. 3). These messages trigger transitions between states from the

BOCM (Fig. 5). This formalized scenario serves as reference for the simulation of the

beach well software and beach well technical process (see Section 3.3).

Fig. 6. Formalized scenario from the validation use case “Start Beach Well” in Table 2

3.3 Executable Requirements Specifications

After the validation use case was documented and the scenario was formalized, a

simulation tool can be configured (e.g. in Aspen, MATLAB-SIMULINK, or Modeli-

ca). For this purpose, the simulated plant process (which gave rise to the process re-

quirements from Table 1) must be modeled and coupled with the formalized scenario

in a simulation process, which executes the validation use case.

Modeling the Simulated Plant Process. The plant process is described using al-

gebraic equations representing the physical behavior of the beach well components.

These equations can be taken from component libraries, in which the relevant config-

uration parameters (e.g. height of tank, length of pipes) are stored. Fig. 7 shows the

steps involved in modeling the plant process of the beach well. The upper section of

Fig. 7 depicts the relevant excerpt of the plant architecture taken from the SOCM

(Fig. 3). The middle section of Fig. 7 shows the differential equations for flow, filling

level, beach well tank pressure, and the seawater tank pressure. The process models of

pump and discharge valve comprise two equations for flow and pressure. Since the

four components are associated with three connecting pipes, six additional equations

are necessary to describe the flow balance in the physical pipes and the pressure po-

<<Context Subject>>

Beach Well Software Beach Well

BWStart
BWInStandby

User Discharge Valve

closed

Pump

off

Bypass Valve

open

DVCommandClose

true

PumpCommandOn

RevolutionSetpoint(400)

PumpStateOn

on

activate

closed
DVCommandOpen

true

open

onBWIsOn

tential at the connection points. Once the relevant physical plant components and the

equations representing their dynamic behavior are identified, the simulation tool can

be configured (bottom section of Fig. 7)2.

Fig. 7. Modeling the Simulated Beach Well Processes.

Coupling with the Executable Automation Software Behavior. The functional

interplay between the beach well software and the plant process must be represented

in the simulation tool. To this end, we structure the behavior of the automation soft-

ware by functions [6], which subsume the process requirements from Table 1 and

formalizes them by a behavioral model using the executable specification from Fig. 6.

Fig. 8. SysML block definition diagram showing two beach well software functions

Fig. 8 shows two functions of the beach well software: “Toggle Beach Well” and

“Balance Load”. Each function handles a subset of the input and output signals of the

automation software specified in the SOCM (Fig. 3). The behavior of these functions

must be specified by an executable behavior description (e.g. a state machine or a

code snippet), which allows executing the scenario from Fig. 6, as shown in Fig. 9.

Simulation Process. Based on the formalized validation use cases (see Section

3.2), the equation system documenting the plant processes (Fig. 7) and the automation

2 In this example, we have used the inhouse tool CoSMOS by Siemens, which can be used to

configure and simulate automation plants in an object-oriented fashion, similar to Matlab.

software behavior (Fig. 8), simulation can be conducted by executing the beach well

processes and emulating a physical process that takes place therein. The scenario from

the validation use cases is used as input for the simulation. If the simulation tool can

execute the scenario and the externally observable states from the BOCM match the

final states of the physical plant components at the end of the simulation run, the re-

quirements specification is valid with regard to that use case.

Fig. 9. Behavior of the “Toggle Beach Well” function described by a state machine

4 Conclusion

In this paper, we presented an approach, which enables the developers to validate the

control software of automation plants early in the engineering process by first model-

ing assumptions about the design of the plant and subsequently deriving an executable

specification which can be simulated. If no defects are revealed in the simulation it

can be concluded that the behavior of the control software is valid with respect to the

plant process and the assumptions about the plant design (assuming the behavior is

implemented correctly). Albeit this approach was illustrated using an example of the

automation industry, we believe it is applicable to any type of software system that

controls real-world processes (e.g., business processes for information systems).

References

1. Löwen, U., Bertsch, R., Böhm, B., et a.: Systematization of the Engineering in Automation

Plants. In: Automatisierungstechnische Praxis 4, pp. 54-61 (2005)

2. Wagner, T., Wehrstedt, J., Löwen, U., et al: Application and Evaluation in the Automation

Domain. In: Model-based Engineering of Embedded Systems, Springer, (2012)

3. Davis, A.: Software Requirements: Objects, Functions, and States. Prentice-Hall (1993)

4. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional (2001)

5. ITU-T Z.120: Formal description techniques – Message Sequence Chart, 02/2011.

6. Vogelsang, A., Eder, S., Hackenberg, G., et al.: Supporting concurrent de-velopment of

requirements and architecture: A model-based approach. MODELSWARD 2014.

7. Broy, M.: Multifunctional software systems: Structured modeling and specification of

functional requirements. In: Science of Comp. Prog. 75(12), pp. 1193-1214 (2010)

8. Jackson, M.: Problem frames. Addison-Wesley. Harlow (2006)

9. Li, D., Li, X., Liu, J., Liu, Z.: Validation of requirement models by automatic prototyping.

Innovations in Systems and Softw. Eng. 4, pp. 241–248 (2008)

