Awareness and Control
in Adaptable Transition Systems*

Roberto Bruni', Andrea Corradini', Fabio Gadducci',
Alberto Lluch Lafuente?, and Andrea Vandin?®

! Department of Informatics, University of Pisa, IT
2 DTU Compute, Technical University of Denmark, DK
3 Electronics and Computer Science, University of Southampton, UK

The CoDa approach. Self-adaptive systems are advocated as a solution to
the problem of mastering the complexity of modern software systems and the
continuous evolution of the environment where they operate. Self-adaptation is
considered a fundamental feature of autonomic systems, one that can specialise
to several other self-* properties, like self-configuration and self-optimisation.

Should the analysis favour a black-box perspective, a software system is called
“self-adaptive” if it can modify its behaviour in response to a change in its context.
On the contrary, white-box adaptation focuses on how adaptation is realised
in terms of architectural and linguistic mechanisms and usually promotes a
clear separation of adaptation and application logics. Our own approach [2, 5]
characterizes adaptivity on the basis of a precisely identified collection of control
data (CoDa), deemed to be interpreted as those data whose manipulation triggers
an adaptation. This view is agnostic with respect to the form of interaction
with the environment, the level of context-awareness, the use of reflection for
self-awareness. In fact, our definition applies equally well to most of the existing
approaches for designing adaptive systems. Overall, it provides a satisfactory
answer to the question “what is adaptation conceptually?”.

But “what is adaptation formally?” and “which is the right way to reason about
adaptation, formally?’. We are aware of only a few works (e.g. [8]) that address
the foundational aspects of adaptive systems, including their semantics and the
use of formal reasoning methods, and often only generic analysis techniques are
applied. An example of the possibilities of such technique is our approach [4] to
adaptive self-assembly strategies using Maude (and following precisely both [8]
and [2]), where we applied standard simulation and statistical model checking.

Adaptable Transition Systems. Building on the intuitions briefly discussed
above and on some foundational models of component based systems (like 7/0
automata [7] and interface automata [1]), we proposed a simple formal model
based on a new class of transition systems [3], and we sketched how this definition
can be used to specify properties related to the adaptive behaviour of a system.
A central role is again played by control data, as well as by the interaction among
components and with the enviroment (not addressed explicitly in [2]).

* Research partially supported by the MIUR PRIN 2010LHT4KM CINA.

20 PNSE’15 — Petri Nets and Software Engineering

Let us recall that the steps of I/O and interface automata are labeled over
three disjoint sets of actions, namely input, output and internal actions. The
composition of two automata is defined only if certain disjointness constraints over
the sets of actions are satisfied, and it is obtained conceptually as a synchronous
composition on shared actions and asynchronous on the others, the differences
between the two models not being relevant at this level of abstraction.

Adaptable Transition Systems (ATSs) combine these features on actions
within an extended Kripke frame presentation, in order to capture the essence
of adaptativity. An ATS is a tuple A = (S, A, T, ®,1,) where S are the states,
A = (1,0, H) is a triple of three disjoint sets of input, output and internal actions,
and T'C S x A x S is a transition relation, where by A here we denote the union
1w Ow H. Furthermore, @ is a set of atomic propositions, and [: § — 2% is
a labeling function mapping states to sets of propositions. Finally, @< C @ is a
subset of control propositions, which play the role of the control data [2].

A transition s = s’ € T is called an adaptation if it changes the control data,
i.e., if there exists a ¢ € @° such that ¢ € I(s) <= ¢ € I(s'). Otherwise, it is
called a basic transition. An action a € A is called a control action if it labels at
least one adaptation, and the set of all control actions is denoted by C.

The relationship between the action set C' and the alphabets I, O and H
is arbitrary in general, but it could satisfy some pretty obvious constraints for
specific classes of systems. For example, an ATS A is self-adaptive if C NI = (),
i.e., if all adaptations are under the control of the system. If instead C C I
the system is adaptable; intuitively, adaptations cannot be executed locally but
should be triggered by an external manager. Hybrid situations are possible as
well, when a system has both input and local control actions.

The composition operations on I/O automata can be extended seamlessly to
ATSs. They have been exploited to model the composition of an adaptable basic
component Ap and an adaptation manager A, that realizes the adaptation logics,
for example a control loop in the style of the MAPE-K architecture [6]. In this
case, natural well-formedness constraints could be expressed as relations among
sets of actions. For example, the manager controls completely the adaptivity
features of the basic component if Cg C O)y; and if the manager itself is at least
partly adaptable (i.e., Cpy N1y # 0), a natural requirement to avoid circularities
would be that Og N Oy = 0, i.e. that the basic component cannot govern the
adaptivity of the manager. Composition of ATSs will also be used to model
different kinds of aggregation of adaptive systems, like ensembles and swarms.

Summing up the talk. ATSs are a concrete instance of a methodological
approach to white-box adaptation for software systems. More precisely, the CoDa
approach we sketched in the first section provides the designer with a criterion
to specify where adaptation is located and, as a consequence, which parts of a
system have to be adapted. It assumes the possibility to inspect, to some extent,
the internal structure of a system, and requires to identify a set of control data,
which can be changed to adapt the component’s behaviour. Adaptation is the
run-time modification of such data.

F. Gadducci et al: Awareness and Control in Adaptable Transition Systems 21

As described in the second section, ATSs extend interface automata by
equipping them with a set of control propositions evaluated on states, which
represent the formal counterpart of control data. As for control data, the choice
of control propositions is arbitrary but it imposes a clear separation between
the ordinary, functional behaviours and the adaptive ones. Control propositions
can then be exploited in the specification and analysis of adaptive systems,
formally recovering various notions proposed in the literature, such as adaptability,
feedback control loops, and control synthesis.

The talk presents ATSs and some applications, and it introduces an explicit
representation of awareness data, ideally intended as those “sensor” data that
are exploited at the control level in order to possibly enforce an adaptation.
Awareness and control data complement each other in answering the question
regarding where and when adaptation takes places: A clear identification of
awareness data helps selecting which artifacts indicate that it may be necessary
to perform an adaptation, and precisely stating when that may occur.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE 2001.
ACM SIGSOFT Software Engineering Notes, vol. 26(5), pp. 109-120. ACM (2001)

2. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A conceptual
framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE. LNCS, vol. 7212,
pp. 240-254. Springer (2012)

3. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Adaptable
transition systems. In: Marti-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol.
7841, pp. 95-110. Springer (2013)

4. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with maude. Science of Computer
Programming 99, 75-94 (2015)

5. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A white
box perspective on behavioural adaptation. In: Nicola, R.D., Hennicker, R. (eds.)
Software, Services, and Systems. LNCS, vol. 8950, pp. 552-581. Springer (2015)

6. Horn, P.: Autonomic Computing: IBM’s perspective on the State of Information
Technology (2001)

7. Lynch, N.A.) Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms.
In: PODC 1987. pp. 137-151. ACM (1987)

8. Meseguer, J., Talcott, C.L.: Semantic models for distributed object reflection. In:
Magnusson, B. (ed.) ECOOP. LNCS, vol. 2374, pp. 1-36. Springer (2002)

