A Concerted Model-driven and Pattern-based Framework
for Developing User Interfaces of Interactive Ubiquitous
Applications

Jurgen Engel

Sciences
Augsburg, Germany

ABSTRACT
Modeling and building interactive user interfacedl)(
typically requires the skills of software developand HCI
experts who cooperate with platform and marketixgees
in order to arrive at solutions with the requiremftware
quality, usability, and user experience. The coratim of
model-driven user interface development practiceth w
pattern-based approaches that specify HCI- andvaodt
patterns in a formalized way and
standards offers potentialities to facilitate and l@ast
partially automate the user interface developmeaotegss,
therefore reduce the time-to-market and developroestis,
and lead to solutions that can easily be adapteditying
contexts and target devices. Such pattern-aided
adaptation is not limited to design time decisitmg can
also be applied during runtime. This paper highBgthe
architecture and capabilities of the Pattern-Badedeling
and Generation of Interactive Systems

Christian Martin

Augsburg University of Applied Augsburg University of Applied
Sciences

Augsburg, Germany

juergen.engel@hs-augsburg.dechristian.maertin@hs-augsburg

respect emerging

Peter Forbrig
University of Rostock
Rostock, Germany
peter.forbrig@informatik.uni-
rostock.de

variety of heterogeneous devices with a considterk and
feel, invariable high usability, and an extremeilgthdegree
of appealing user experience. Additionally, usergltto be
impatient and want to have the software availabtettieir
different devices at the same point in time. Theneftime-
to-market is vital for software suppliers.

It is nearly impossible to meet all requirementsdtane-
ously when exercising traditional software engimegand
development processes. A promising way out of this
dilemma is the application of a model-driven apptothat
allows for describing the particular aspects of ititended
user interface by means of distinct models at wbfie
Ebstraction levels which can be created - at lpastally -
y automatic transformations.

We have combined model-driven user interface
development practices with pattern-based approattiets

(PaMGIS) specify HCl-patterns in a formalized way [6]. Resslthe

framework to broadly support the construction and fundamentally renovated PaMGIS 2.0 framework whigch

adaptation of user interface models. It is disadis$ow
pattern descriptions that capture important paftsthe

design knowledge should be organized in order to be

automatically processed during the modeling pracess

Author Keywords
User interfaces; interactive systems;
development; pattern-based development.

ACM Classification Keywords
H.5.m. Information interfaces and presentation.(e4g1):
User Interfaces.

INTRODUCTION

Highly interactive software has become a crucigtéalient
of modern human life. Independent of time and liocat
people are used to interact with products builtuat
interactive software components, such as web agijuits,
telecommunication devices, car navigation systesnsrt
home appliances, wearables, or other electronigetant.
Nowadays users expect that software products rura on

Workshop on Large-scale and motheksed Interactive Syster
Approaches and Challenges, June 23 2015, Duis@engnany.
Copyright © 2015 for the individual papers by thapers’ author
Copying permitted only for private and academicppses. Thisolume it
published and copyrighted by its editors.

model-drivenand model-driven

presented in the following sections.

RELATED WORK

Model-based user interface development environments
(MB-UIDE) introduce models to the development psxe

of interactive applications. A variety of existilngB-UIDE
approaches for facilitating
development process of interactive systems camtadfin
the literature. Related recapitulations and disounss are
provided in [3] [5] [9] [12]. The models used byete
approaches are usually task-based or object-odeatel
contain functional domain and data requirements
different abstraction levels for the interactivestgyn under
development. Typically, the models are also used fo
mapping and linking the functional requirements toé
business logic to the different abstract and cdacre
representations of the user interface with the ninte
achieve high user interface quality, usability, gjocdd user
experience for the user of the final interactivelayation.
Possible solutions to avoid practical problems and
discrepancies between the automatic derivation sdr u
interfaces and their usability are discussed ifj. [B&nefits
from using model-based user interface developmext a
meaningful use cases are provided in [8].

the

at

The role of the various models used in MB-UID
environments varies with respect to the modelingppse.
Typically more than one model is exploited durirte t
development process to construct the desired saluti
interactively or (semi-) automatically. Some degree
standardization was brought into the diversity oB-M
UIDEs by the CAMELEON Reference Framework (CRF)
[1]. CRF proposes the use of domain, context-of-asel
adaptation models. Here, the domain model combiams
and concepts sub-models, the context-of-use maohslists

of user, platform, and environment models, and the

adaptation model is separated into evolution aadsition
models. With regard to model abstraction levels,FCR
distinguishes task-oriented specification, abstradter
interface, concrete user interface, and final ugterface.

HCI patterns are a means to document design dasisio
based on established design solutions or bestigeasbrk
and therefore capture fundamental principles foodgo
design. In general, patterns represent a relateiwden a
certain design problem and a solution in a givemtext. In
addition, they are simple and easily readable &sighers,

Model-driven
Ul Development

I

Automation

Pattern-based
Ul Development

NS

Figure 1. Basic concepts of the PaMGIS Framework

Usability
Evaluation

The framework supports our research with respedh¢o
potentials and limits of automated Ul developménbrder
to enable automatic processing, all model entdgesvell as
pattern specifications are expressed and storad KML-
compliant format.

Model-driven Aspects
The model-driven part of the framework as illugdatin

developers and researchers, and they alleviate th&igure 2 is designed in the style of the CAMELEON

collaboration between the involved people. In order
ensure a certain standard, patterns are organizesb-
called pattern catalogs [1]. A catalog of relatattgrns that
belongs to a common domain is called a patternuagg
[14]. Since many pattern authors pick their ownnfal
description styles and formats with often different
understanding of pattern attributes, several staliwktion
approaches have been introduced, e.g. the Patteguiage
Markup Language (PLML) version 1.1. PLML unifieseth
description schemes of different authors with tledp hof
XML tags which represent the particular charactiessof
the patterns. According to PLML 1.1 the documentaif
a pattern should consist of the following elemeatpattern
identifier, name, alias, illustration, descriptiord the
respective problem, context and solution, forcgappsis,
diagram, evidence, confidence, literature, impletatson,
related patterns, pattern links, and managemeaotrirgtion
[7]. A recapitulation and discussion of existingttpen
description standardization approaches is providéd].

PAMGIS FRAMEWORK

Basic Concepts

The intention of the PaMGIS framework is to assiatl

support its users in the process of developingigteractive

user interfaces. As illustrated in Figure 1, thsibaoncept is
to combine both model-driven and pattern-basedlderent

methods and techniques.

Hence, descriptions of HCI patterns are equippet miodel
fragments that on one hand can be used as buliticls for
the diverse models and on the other hand allowentting
model transformations. In addition, usability eaion results
can be fed back in order to draw conclusions anmtdre the
patterns, models, and the resulting user interfaces

Reference Framework. Particularly, the ontologidamain
and context-of-use models are used as proposelsebgRF.
However, we decided to split the CRF platform madts a
device model and a Ul implementation model. White t
former comprises all relevant characteristics ef bspective
end device the latter holds information about theslgments
that are available on the respective underlyingwswoé
platform. This avoids redundancies especially isesavhere
the same software basis supports significantly ewifft
devices, e.g. Android on smartphones and tablepaten

The framework is organized in six abstraction levele,
domain, context of use, abstract user interfacelfAidncrete
user interface (CUI), final user interface (FUIhdaruntime
level. As the most abstract representation, theadforevel
embodies the domain model which in turn consistheftask
and concept sub-models. The task model providesniattion
of domain-specific user goals and the entiretyrotess steps
and actions which must be executed in order tonattese
goals. The concepts model can be understood g= atylata
model describing all Ul-relevant data elements andacts
which are required in the course of task completiéence,
these two models are closely interrelated. In thetext of
PaMGIS, the task model is represented in a Consldiifaes
(CTT) notation [10] with some specific adaptatioasd
enhancements which primarily refer to the speditioaof
relationships between certain tasks and the dataesits that
are required for the execution of these tasks. ddmecept
model is specified on the basis of XML Schema Difim
(XSD). The context-of-use model consists of ther,use
environment, and the already mentioned device ahd U
implementation sub-models. While the user modeldsol
information about particular characteristics ofividbial users
or clusters of users, e.g. preferences or posdigdbilities, the

environment model describes environmental infludactors,
e.g. lighting conditions, noise, or air pollution.

The knowledge captured within the domain modelsisduto
construct an abstract user interface model whiehdanonical
representation of the rendering of the domain qascehich

Domain Model
Domain
Level Task Concept
Model Model

is independent from the actually available Ul eletaeas
specified within the Ul implementation model. Atisth
juncture, the concepts model indicates which AUects are
required while the task model's hierarchical stitestand
inherent temporal dependencies enforce the definitif the
relationships between these objects.

Context of Use Model

Context of Use
Level

User
Model

Environment
Model

Device
Model

Ul Impl.
Model

Domain to AUl transformation

Abstract Ul
Level

AUI to CUI transformation

Abstract Ul
ons «—————————— |
Model Intra AUI transformations

Concrete Ul
Level

Concrete Ul
Model

Final Ul
Level

Runtime
Level

Intra CUI transformations <——

CUlto FUI transformation <———

Runtime
Environment

Executable
ul

Compiler Interpreter

Figure 2. Overview of utilized models and abstractin levels.

A list of feasible AUI objects is provided Table 1.

Abstract Ul Description
Object P
. Activates another object or initiates
Activator . .)
a call of a business logic function
. Facilitates the navigation to another
Navigator .
dialog
Output D|splay§ (read-only) objects of
diverse data types
Editor Similar to Output, but manipulable
by the user
SingleChoice Selection of exactly one item out of
several
MultiChoice Selection of none, one, or more

items out of several

Table 1. Examples of supported abstract user intedce
objects.

The information contained within the context-of-umedel is
used to control the subsequent transformationbeofiverse

Ul models and to substantiate deliberate desigisidas. For
instance, some tasks or sub-tasks might be undgsire
impractical or impossible to be carried out witlsincertain
context of use due to user-, device-, and/or enment-
related restrictions. In this case, the correspangarts of the
AUl have to be eliminated. Furthermore the desifirthe

dialog structure is defined in consideration ofghesn context
of use by means of dialog graphs [13].

Once the AUI model is completed, it can be tramséat into a
concrete user interface model. For this purpose,athstract
user interface objects are replaced by appropdaterete
ones. In this sense, the most appropriate CUI bigebe one
that fits best to both the requirements and reistnis which
result from the various aspects of the contextsafimodel.

Further, a first impression of the final look-are#ff is created
by roughly determining the layout, i.e., positiapirand the
appearance, e.g. color, font, and size, of the @lj#icts. In a
last step, the final user interface can be autealbtigenerated
from the CUI model.

Figure 3 recapitulates the necessary transformagieps
between the four different levels of abstractiorspecified in
the CAMELEON reference framework. The process start
with the domain model followed by the abstract aadcrete
model levels and finally arrives at the final ussterface.
Please note, that the framework user may performuaia
adjustments at any step of the development process.

From a runtime perspective, there are three gerngtidns
how to deal with FUIs. Firstly, the FUI is availakds source
code that can be transformed into an executablaatoby
means of a compiler. Secondly, the FUI has the dorof a
script that can be executed by an interpreterdihithe FUI
can be executed by a runtime engine provided with t
development framework. The advantage of such anmant
engine is that it is not necessarily bound to tbié [Evel, but

can also create at least executable Ul prototyppes higher
abstraction levels, i.e., CUl and AUI models, ahdréfore
enables framework users to identify design problemesarly
stages of the development process.

Domain
Model
l ——— Build abstract user interface model
P rted Ul objects AhSrectl Design dialog struch
urge unsu oree oDjec esign dialog structure
B PP | Model 5 g
l ———— Map abstract to concrete Ul objects
Det: ine Ul object pl t tancretelll Det ine Ul object
etermine objec acemen etermine object a earance
] P Model J] pp
l ———— Generate final Ul automatically
Final Ul
Model

Figure 3. Overview of PaMGIS model transformations.

The utilization of default values within the resipee model
allows executing Ul prototypes on the basis ofyetfinalized
models. In addition, the use of a runtime engige allows for
implementing model-based responsive designs antimein
adaptive behavior of the user interface.

valuable input to the various model transformatgiaps
shown in Figure 3.

For this purpose it is essential to specify thequas in a
uniform and machine-readable manner and equip thidim
the required information. Further, it must be pblesito
compose pattern languages, i.e., to define theraétion-
ships between the patterns.

Pattern-based Aspects

Within our combined development approach, pattenres
used as means to alleviate the complexity of theleho _—
driven processing. The patterns provide pre-assambl Hence, we developed Fhe I_DaMGI.S Pattern Degcrlptlon
building blocks which can be used for domain and Ui L@nguage (PPSL) which is suitable to fulfil the
model construction. In addition, certain pattermevile ~ &forementioned requirements.

. Digest
Pattern Compilation Identifier (PCID) Prablem &———
aboratios
Pattern ID (PID) - st
—— 1 { Unique Pattern ID (UPID) Digest
Version Number %
S e Fizboration
Revision Number 4
T WV Orces |- Orce
Pattern Type —
P— Digest
Abstraction Level
e {Pattern Clossification H [etaborstion
Subcatagor, FatioaR
Y
= Resulting Context
Pattern Name —D'
] iagram
Alias
atus
2 Tllustration
Synapsis el Lh Label
— abel
Last Name
First N e
irst Name uthar uthors
HExamples |-—{Exampie}-| 1mage
Contact Information
i | Realization
redits
i YMedelings} —{Madeling} | Model Fragment 1D
Creation Date ol
Labe
Last Modified —D 4
escription
Date
History Counter Examples || Counter Exampie}| Image
Originator _ {Fstorv H H. . }
Dasatotion TLC2nge -oChange Toa) HRrealizations) _gealization
: [Modelings}—{Modeling}-|_Model Fragment ID
cason
Type Creation Date
Originatar
Title T
abel
avthor_|{Reference |- {References e
escription
Reference i
B IO L
Nature -
— mage

Implementation 1D (11D)
Label

{1mplementation }- [Implementaticns

Dascription
Code
Embedded Link ID (ELID)

Label

{Embedding Link }-{Embedding Links

Refersnce Class ID
UML Relationship Type

Task Model Fragment

Concepts Model Fragment

Deployment

[AUI Model Fragment

{Mode| Fragments |- { PaMG1s

CUI Model Fragment

FUI Model Fragment

Relationshi

Usability Feedback

Description

Relation Type

Related UPID

Annotation

Relation ID

Pattern Compilation Identifier (PCID)
Pattern 1D (PID}

Version Number

Revision Number

Figure 4. Overview of the PaMGIS Pattern Specificabn Language.

We reviewed existing pattern description standatihn
approaches as well as pattern tools in order tmel&fPSL
in a way that patterns which are specified in thkated
formats can be transformed to PPSL. Thus, theeatpntof
all PLML 1.1 description elements is covered in BPS
where required in a restructured or modified fofiine only
exception is the PLML elemeriEvidencewhich is not
directly included, but whose two sub-elemeBtampleand

Rationaleare part of PPSL. Further, the PLML description

element Literature can be mapped tdreferencesand
Related-Patternto Relations

In addition, we introduced new description attrésutfor
storing the supplementary information
PaMGIS. An overview of the description element®BiSL
is provided in Figure 4. Pattern specifications @nganized
in four top level elements, i.e4ead Body, Relationships
andDeployment

The Head element incorporates metadata such as uniqu

pattern identification, pattern classification, teat name
and aliases, information about pattern authorsditse
pattern evolution, and references to further sauraed
literature. TheBody element is split into the two sub-
elements Theory and Practice The former provides
theoretical background, including — amongst others
descriptions of the underlying problem, the contéxt
which the pattern can be applied, and the propeskdion
of the given problem. The latter demonstrates hbe t
pattern was applied in practice by means of ilatgins,
examples, and counter-examples. THeelationships
element serves as resource for the specificatiorthef
relationships between the various patterns andefiwer
allows the construction of pattern languages. Rindghe

Regarding the process of finding appropriate pastehe
framework offers multiple methods: pattern browsing
keyword search, free text search, exploiting patter
relations, or evaluating formal context descripsiomhich
are stored as logical expressions within
Body/Theory/Context/Digestement.

the

Usability Evaluation Aspects

Running user interfaces — either on the basis airaplete
FUI or in form of a prototype based on more absttaic
models — can be evaluated in terms of their usgkaind
user experience using pertinent techniques and adsth
The evaluation itself is not in the scope of PaMGi8nce,

required by the framework does not offer any support for evidua

preparation, execution, and post-processing. Butisit
possible to document relevant insights within tlystesm.
Since the origin of model elements is captureddimghe
PaMGIS domain model and the various Ul modelssit i
ossible to locate the respective pattern and phost
valuation results to the pattern definition. Hus tpurpose

we introduced the pattern description element named
Body/Practice/UsabilityFeedback

A second, more automated option is to specify ailtzel
special usability evaluation (UE) patterns. Thewy dae
integrated in the domain model where they add some
measuring instrumentation. For instance, Trextual User
Usability Feedback Dialogpattern ensures, that an
appropriate dialog is available allowing the usereécord
and send his or her opinion about certain aspddteaiser
interface at hand back to the PaMGIS frameworkthia
simplest case, this dialog is composed at leaah@utput
object providing some textual explanations for tiser, an
Editor object for the acquisition of the actual textuaku

Deploymentelement contains — amongst others — modelfeedback, and twoActivators for either submitting the

fragments of different types and abstraction levats

feedback or canceling the action. The aforementione

usability feedback. The model fragments are used agattern includes the required task and concept mode

building blocks for the domain and the diverse Widals.

The model fragments are stored within
Deployment/PaMGIS/ModelFragments element and
provide ready-to-use modelings of the pattern’seieht
solution. During the process of constructing thendm
model, the framework user can search, select, apty a
patterns, i.e., automatically insert the respectask and
concept model fragments into the domain models klso
possible to store prefabricated AUI, CUI, or FUI deb
fragments with the pattern which can be directlybedded
into the Ul models of the corresponding abstractewels.
While patterns typically contain only one task aode
concept model fragment, they might possess muléé
CUI, and FUI model fragments for different contexits
use. This allows both applying different Ul desgpiutions

during design time and even during runtime, i.e.

the

fragments as well as AUl and optionally less alosttal
model fragments. In this sense, the underlying doma
specific pattern language can be enriched by sugh U
patterns in order to capture usability feedbacklesist in
the case that the user interface is executed bysnefathe
runtime environment, it is possible to automaticattach
the user feedback directly to the respective patter
Otherwise the information can be temporarily stoiredc
log file outside the scope of PaMGIS and fed back
manually or in a semi-automatic way at a later pam
time.

The collected usability feedback can be used taovgthe
quality of the patterns, the diverse models, amdefore of
the final user interface.

Functional Framework Architecture
' The PaMGIS framework consists of several logicatfion

substituting one model fragment by another one.SThi ,nits each supporting the various users in diffefields of
mechanism is not limited to model fragments of the petivities. An overview of the functional framework

selfsame pattern. In fact, it is even possible ubsstute
whole patterns by alternative ones.

architecture is provided within Figure 5.

The core components are the two repositories Péitéern collaboration functions, such as sending messagpattern
Repositoryfor storing the pattern specifications and the authors. The pattern authors have full accessdaéttern
Model Repositoryto accommodate the diverse models asdescriptions and may create new patterns and modify
shown in Figure 2. existing ones. Power users can read entire pattern
specifications and are allowed to make copies tizchvthey
have full read and write access. In addition, tbhag use
and control the model-driven part of the framework.
Finally, administrators take over the responsipilibf
managing the framework, e.g. creating, modifyingd a
deleting users, granting and withdrawing acced#sjgand
maintaining the PaMGIS meta-models via Battern Meta
Model Administration and the Model Meta Model
Administrationcomponents.

Access control is managed by means ofllser Database
which is administered via theFramework User
Administration component. PaMGIS distinguishes several
general types of users, i.e., unregistered usegistered
users, pattern authors, power users, and admioistra
Unregistered users are allowed to access a restnrt of
the pattern specifications solely in read-only motie
addition, they may register themselves to the fraamk.
Registered users gain more insight into patteraildethave
very limited write permissions, and may use certain

PaMGIS

Pattern Selection
and Assignment

Pattern and
Pattern Language
Dissemination

Domain Model Context of Use

/' Editor /' Model Editor
Pattern and - tiiNicdel - Model
Pattern Language [«+—» Pattern + ¥ it — Model > Meta Model
Administration Repository wer Repository Administration

Model / ‘\- Runtime

Transformations Environment

Pattern
Meta Model
Administration

Usability File
Feedback Export

i |

Framework i . g
User User Usability Compiler / Running
Administration Database Evaluation Interpreter User Interface

Figure 5. Overview of the functional PaMGIS architeture.

On the one hand, th@attern and Pattern Language contrast, thePattern Selection and Assignmettmponent
Administrationunit supports pattern authors in creating and helps power users to search and find adequatersatte
modifying patterns. On the other hand, power usens which can be selected and applied, i.e., insertatteched
copy particular patterns to a private workspacere/tibey model fragments automatically into the domain, egtibf-

can modify them according to their needs and buid use, and/or different Ul models. TheModel
pattern languages by specifying interrelationstipeveen Transformationsunit supports the execution of the model
patterns. transformations summarized in Figure 3 and can be

The Pattern and Pattern Language Disseminationl can configured to a certain extent.

be used by unregistered users to browse, seardidisplay = The Runtime Environments a means to execute user
certain aspects of the pattern descriptions whica a interfaces in the form of final Uls or prototypes a
released for this purpose. Additionally, it allovegistered described above. ThEile Export component is used for
users to view more pattern details, send feedbauwk a exporting models in the form of text files for foer
comments to pattern authors, and attach informatimout external processing or documentation purposes.

existing implementations to the pattern specifaragi For
this purpose we introduced tlody/Practice/KnownUses
description element.

Finally, the Usability Feedback unit offers support
regarding the import of usability evaluation restitito the
framework and write it back to the respective pate
The Domain Model Editor Context-of-Use Model Editor and/or models.

and Ul Model Editor allow power users to create and

modify the respective PaMGIS models manually. In

CONCLUSION
In this paper we presented our concerted patteseeband
model-driven approach for the development of indtve

ubiquitous systems and provided an overview of '[he10

functional architecture of the related PaMGIS frammek.

We strongly believe that the mélange of model- and

pattern-related methods and techniques has thetmito
alleviate weaknesses of the individual approachmescan

create benefits in terms of reducing complexity and

realizing reuse of already existing design knowtedg

The implementation of the framework is indeed wartk
progress, but major components already exist at len

prototypical form. Many patterns and several patter 12,
languages have been developed, amongst othergeasnpat

language for the domain of public transportatiocket
selling.

The framework is a cornerstone for our further aesie on
the potentials and limits of automated Ul developtne

Moreover, we will intensify our work on supporting

wearable computers with the PaMGIS framework.

REFERENCES
1. C. Alexander, S. Ishikawa, and M. Silverstein. 19X7
Pattern Language.Oxford University Press.

2. G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q.
Limbourg, L. Marucci, F. Paterno, C. Santoro, N.

Souchon, D. Thevenin, and J. Vanderdonckt. 2002. Th

CAMELEON Reference Framework. Retrieved April
15, 2015 from http://giove.isti.cnr.it/projects/cal@on/
pdf/fCAMELEON%20D1.1RefFramework.pdf.

3. Paulo Pinheiro da Silva. 2001. User Interface

Declarative Models and Development Environments: A

Survey. INDSV-1S'00 Proceedings of th& 7
International Conference on Design, Specificatimmd
Verification of Interactive Systea07-226.

4. J. Engel, C. Herdin, and C. Martin. 2012. Explaitin
HCI Pattern Collections for User Interface Generati
In Proceedings o0PATTERNS2012, 36-44.

5. J. Engel, C. Herdin, and C. Martin. 2014. Evaluati$

Model-based User Interface Development Approaches.

In Proceedings of HCIl 201495-307.

6. J. Engel and C. Martin. 2009. PaMGIS: A Framework

for Pattern-based Modeling and Generation of
Interactive Systems. IRroceedings of HCI
International ‘09 San Diego, USA, 826-835.

7. S. Fincher and J. Finlay. 2003. Perspectives on HCI
Patterns: Concepts and Tools (Introducing PLML).
Interfaces, Vol. 5626-28.

8. G. Meixner, G. Calvary, and J. Coutaz. 2014.
Introduction to Model-Based User Interfacés3C
Working Group Note 07 January 2Q1Retrieved May
27, 2015 from http://www.w3.org/TR/mbui-intero/.

9. Brad A. Myers. 1992. State of the Art in User Ifdee

Software ToolsAdvances in Human-Computer
Interaction Vol. 4, Ablex Publishing.

. F. Paterno. 2000. The ConcurTaskTrees Notation. In

Model-Based Design and Evaluation of Interactive
Applications Springer Berlin Heidelberg, 39-66.

. A. Pleuss, B. Hauptmann, D. Dhungana, and G.

Botterweck. 2012. User Interface Engineering for
Software Product Lines: The Dilemma Between
Automation and Usability. IProceedings of the 4th
ACM SIGCHI Symposium on Engineering Interactive
Computing System€openhagen, Denmark,. 25-34.
Egbert Schlungbaum. 1996. Model-based User
Interface Software Tools - Current State of Dedlaea
Models.GVU TECH REPORTGraphics, Visualization
and Usability Centre, Georgia Institute of Techigglo

. E. Schlungbaum and T. Elwert. 1996. Dialogue

Graphs: A Formal and Visual Specification Technique
for Dialogue Modelling. IrProceedings of the 1996
BCS-FACS Conference on Formal Aspects of the
Human Computer Interface FAC-FA'98heffield,

UK.

. A. Seffah. 2010. The evolution of design pattems i

HCI: from pattern langauges to pattern-orientedgies
In Proceedings of thelinterational Workshop on
Pattern-Driven Engineering of Interactive Computing
System¢PEICS’10), 4-9.

