
A Concerted Model-driven and Pattern-based Framework
for Developing User Interfaces of Interactive Ubiquitous

Applications
Jürgen Engel

Augsburg University of Applied
Sciences

Augsburg, Germany
juergen.engel@hs-augsburg.de

Christian Märtin
Augsburg University of Applied

Sciences
Augsburg, Germany

christian.maertin@hs-augsburg

Peter Forbrig
University of Rostock

Rostock, Germany
peter.forbrig@informatik.uni-

rostock.de

ABSTRACT
Modeling and building interactive user interfaces (UI)
typically requires the skills of software developers and HCI
experts who cooperate with platform and marketing experts
in order to arrive at solutions with the required software
quality, usability, and user experience. The combination of
model-driven user interface development practices with
pattern-based approaches that specify HCI- and software-
patterns in a formalized way and respect emerging
standards offers potentialities to facilitate and at least
partially automate the user interface development process,
therefore reduce the time-to-market and development costs,
and lead to solutions that can easily be adapted to varying
contexts and target devices. Such pattern-aided UI
adaptation is not limited to design time decisions but can
also be applied during runtime. This paper highlights the
architecture and capabilities of the Pattern-Based Modeling
and Generation of Interactive Systems (PaMGIS)
framework to broadly support the construction and
adaptation of user interface models. It is discussed, how
pattern descriptions that capture important parts of the
design knowledge should be organized in order to be
automatically processed during the modeling process.

Author Keywords
User interfaces; interactive systems; model-driven
development; pattern-based development.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
User Interfaces.

INTRODUCTION
Highly interactive software has become a crucial ingredient
of modern human life. Independent of time and location,
people are used to interact with products built around
interactive software components, such as web applications,
telecommunication devices, car navigation systems, smart
home appliances, wearables, or other electronic equipment.
Nowadays users expect that software products run on a

variety of heterogeneous devices with a consistent look and
feel, invariable high usability, and an extremely high degree
of appealing user experience. Additionally, users tend to be
impatient and want to have the software available for their
different devices at the same point in time. Therefore, time-
to-market is vital for software suppliers.

It is nearly impossible to meet all requirements simultane-
ously when exercising traditional software engineering and
development processes. A promising way out of this
dilemma is the application of a model-driven approach that
allows for describing the particular aspects of the intended
user interface by means of distinct models at different
abstraction levels which can be created - at least partially -
by automatic transformations.

We have combined model-driven user interface
development practices with pattern-based approaches that
specify HCI-patterns in a formalized way [6]. Result is the
fundamentally renovated PaMGIS 2.0 framework which is
presented in the following sections.

RELATED WORK
Model-based user interface development environments
(MB-UIDE) introduce models to the development process
of interactive applications. A variety of existing MB-UIDE
and model-driven approaches for facilitating the
development process of interactive systems can be found in
the literature. Related recapitulations and discussions are
provided in [3] [5] [9] [12]. The models used by these
approaches are usually task-based or object-oriented and
contain functional domain and data requirements at
different abstraction levels for the interactive system under
development. Typically, the models are also used for
mapping and linking the functional requirements of the
business logic to the different abstract and concrete
representations of the user interface with the intent to
achieve high user interface quality, usability, and good user
experience for the user of the final interactive application.
Possible solutions to avoid practical problems and
discrepancies between the automatic derivation of user
interfaces and their usability are discussed in [11]. Benefits
from using model-based user interface development and
meaningful use cases are provided in [8].

Workshop on Large-scale and model-based Interactive Systems:
Approaches and Challenges, June 23 2015, Duisburg, Germany.
Copyright © 2015 for the individual papers by the papers’ authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by its editors.

The role of the various models used in MB-UID
environments varies with respect to the modeling purpose.
Typically more than one model is exploited during the
development process to construct the desired solution
interactively or (semi-) automatically. Some degree of
standardization was brought into the diversity of MB-
UIDEs by the CAMELEON Reference Framework (CRF)
[1]. CRF proposes the use of domain, context-of-use, and
adaptation models. Here, the domain model combines task
and concepts sub-models, the context-of-use model consists
of user, platform, and environment models, and the
adaptation model is separated into evolution and transition
models. With regard to model abstraction levels, CRF
distinguishes task-oriented specification, abstract user
interface, concrete user interface, and final user interface.

HCI patterns are a means to document design decisions
based on established design solutions or best practice work
and therefore capture fundamental principles for good
design. In general, patterns represent a relation between a
certain design problem and a solution in a given context. In
addition, they are simple and easily readable for designers,
developers and researchers, and they alleviate the
collaboration between the involved people. In order to
ensure a certain standard, patterns are organized in so-
called pattern catalogs [1]. A catalog of related patterns that
belongs to a common domain is called a pattern language
[14]. Since many pattern authors pick their own formal
description styles and formats with often different
understanding of pattern attributes, several standardization
approaches have been introduced, e.g. the Pattern Language
Markup Language (PLML) version 1.1. PLML unifies the
description schemes of different authors with the help of
XML tags which represent the particular characteristics of
the patterns. According to PLML 1.1 the documentation of
a pattern should consist of the following elements: a pattern
identifier, name, alias, illustration, descriptions of the
respective problem, context and solution, forces, synopsis,
diagram, evidence, confidence, literature, implementation,
related patterns, pattern links, and management information
[7]. A recapitulation and discussion of existing pattern
description standardization approaches is provided in [4].

PAMGIS FRAMEWORK

Basic Concepts
The intention of the PaMGIS framework is to assist and
support its users in the process of developing highly interactive
user interfaces. As illustrated in Figure 1, the basic concept is
to combine both model-driven and pattern-based development
methods and techniques.

Hence, descriptions of HCI patterns are equipped with model
fragments that on one hand can be used as building blocks for
the diverse models and on the other hand allow influencing
model transformations. In addition, usability evaluation results
can be fed back in order to draw conclusions and improve the
patterns, models, and the resulting user interfaces.

Figure 1. Basic concepts of the PaMGIS Framework

The framework supports our research with respect to the
potentials and limits of automated UI development. In order
to enable automatic processing, all model entities as well as
pattern specifications are expressed and stored in an XML-
compliant format.

Model-driven Aspects
The model-driven part of the framework as illustrated in
Figure 2 is designed in the style of the CAMELEON
Reference Framework. Particularly, the ontological domain
and context-of-use models are used as proposed by the CRF.
However, we decided to split the CRF platform model into a
device model and a UI implementation model. While the
former comprises all relevant characteristics of the respective
end device the latter holds information about the UI elements
that are available on the respective underlying software
platform. This avoids redundancies especially in cases where
the same software basis supports significantly different
devices, e.g. Android on smartphones and tablet computer.

The framework is organized in six abstraction levels, i.e,
domain, context of use, abstract user interface (AUI), concrete
user interface (CUI), final user interface (FUI), and runtime
level. As the most abstract representation, the domain level
embodies the domain model which in turn consists of the task
and concept sub-models. The task model provides information
of domain-specific user goals and the entirety of process steps
and actions which must be executed in order to attain these
goals. The concepts model can be understood as a type of data
model describing all UI-relevant data elements and artifacts
which are required in the course of task completion. Hence,
these two models are closely interrelated. In the context of
PaMGIS, the task model is represented in a ConcurTaskTrees
(CTT) notation [10] with some specific adaptations and
enhancements which primarily refer to the specification of
relationships between certain tasks and the data elements that
are required for the execution of these tasks. The concept
model is specified on the basis of XML Schema Definition
(XSD). The context-of-use model consists of the user,
environment, and the already mentioned device and UI
implementation sub-models. While the user model holds
information about particular characteristics of individual users
or clusters of users, e.g. preferences or possible disabilities, the

environment model describes environmental influence factors,
e.g. lighting conditions, noise, or air pollution.

The knowledge captured within the domain model is used to
construct an abstract user interface model which is a canonical
representation of the rendering of the domain concepts which

is independent from the actually available UI elements as
specified within the UI implementation model. At this
juncture, the concepts model indicates which AUI objects are
required while the task model’s hierarchical structure and
inherent temporal dependencies enforce the definition of the
relationships between these objects.

Figure 2. Overview of utilized models and abstraction levels.

A list of feasible AUI objects is provided Table 1.

Abstract UI
Object Description

Activator
Activates another object or initiates
a call of a business logic function

Navigator
Facilitates the navigation to another

dialog

Output
Displays (read-only) objects of

diverse data types

Editor
Similar to Output, but manipulable

by the user

SingleChoice
Selection of exactly one item out of

several

MultiChoice
Selection of none, one, or more

items out of several

Table 1. Examples of supported abstract user interface
objects.

The information contained within the context-of-use model is
used to control the subsequent transformations of the diverse
UI models and to substantiate deliberate design decisions. For
instance, some tasks or sub-tasks might be undesired,
impractical or impossible to be carried out within a certain
context of use due to user-, device-, and/or environment-
related restrictions. In this case, the corresponding parts of the
AUI have to be eliminated. Furthermore the design of the

dialog structure is defined in consideration of the given context
of use by means of dialog graphs [13].

Once the AUI model is completed, it can be transformed into a
concrete user interface model. For this purpose, the abstract
user interface objects are replaced by appropriate concrete
ones. In this sense, the most appropriate CUI object is the one
that fits best to both the requirements and restrictions which
result from the various aspects of the context-of-use model.

Further, a first impression of the final look-and-feel is created
by roughly determining the layout, i.e., positioning, and the
appearance, e.g. color, font, and size, of the CUI objects. In a
last step, the final user interface can be automatically generated
from the CUI model.

Figure 3 recapitulates the necessary transformation steps
between the four different levels of abstraction as specified in
the CAMELEON reference framework. The process starts
with the domain model followed by the abstract and concrete
model levels and finally arrives at the final user interface.
Please note, that the framework user may perform manual
adjustments at any step of the development process.

From a runtime perspective, there are three general options
how to deal with FUIs. Firstly, the FUI is available as source
code that can be transformed into an executable format by
means of a compiler. Secondly, the FUI has the format of a
script that can be executed by an interpreter. Thirdly, the FUI
can be executed by a runtime engine provided with the
development framework. The advantage of such a runtime
engine is that it is not necessarily bound to the FUI level, but

can also create at least executable UI prototypes from higher
abstraction levels, i.e., CUI and AUI models, and therefore
enables framework users to identify design problems in early
stages of the development process.

Figure 3. Overview of PaMGIS model transformations.

The utilization of default values within the respective model
allows executing UI prototypes on the basis of not yet finalized
models. In addition, the use of a runtime engine also allows for
implementing model-based responsive designs and runtime
adaptive behavior of the user interface.

Pattern-based Aspects
Within our combined development approach, patterns are
used as means to alleviate the complexity of the model-
driven processing. The patterns provide pre-assembled
building blocks which can be used for domain and UI
model construction. In addition, certain patterns provide

valuable input to the various model transformation steps
shown in Figure 3.

For this purpose it is essential to specify the patterns in a
uniform and machine-readable manner and equip them with
the required information. Further, it must be possible to
compose pattern languages, i.e., to define the interrelation-
ships between the patterns.

Hence, we developed the PaMGIS Pattern Description
Language (PPSL) which is suitable to fulfil the
aforementioned requirements.

Figure 4. Overview of the PaMGIS Pattern Specification Language.

We reviewed existing pattern description standardization
approaches as well as pattern tools in order to define PPSL
in a way that patterns which are specified in the related
formats can be transformed to PPSL. Thus, the entirety of
all PLML 1.1 description elements is covered in PPSL,
where required in a restructured or modified form. The only
exception is the PLML element Evidence which is not
directly included, but whose two sub-elements Example and
Rationale are part of PPSL. Further, the PLML description
element Literature can be mapped to References and
Related-Patterns to Relations.

In addition, we introduced new description attributes for
storing the supplementary information required by
PaMGIS. An overview of the description elements of PPSL
is provided in Figure 4. Pattern specifications are organized
in four top level elements, i.e., Head, Body, Relationships,
and Deployment.

The Head element incorporates metadata such as unique
pattern identification, pattern classification, pattern name
and aliases, information about pattern authors, credits,
pattern evolution, and references to further sources and
literature. The Body element is split into the two sub-
elements Theory and Practice. The former provides
theoretical background, including – amongst others –
descriptions of the underlying problem, the context in
which the pattern can be applied, and the proposed solution
of the given problem. The latter demonstrates how the
pattern was applied in practice by means of illustrations,
examples, and counter-examples. The Relationships
element serves as resource for the specification of the
relationships between the various patterns and therefore
allows the construction of pattern languages. Finally, the
Deployment element contains – amongst others – model
fragments of different types and abstraction levels as
usability feedback. The model fragments are used as
building blocks for the domain and the diverse UI models.

The model fragments are stored within the
Deployment/PaMGIS/ModelFragments element and
provide ready-to-use modelings of the pattern’s inherent
solution. During the process of constructing the domain
model, the framework user can search, select, and apply
patterns, i.e., automatically insert the respective task and
concept model fragments into the domain model. It is also
possible to store prefabricated AUI, CUI, or FUI model
fragments with the pattern which can be directly embedded
into the UI models of the corresponding abstraction levels.
While patterns typically contain only one task and one
concept model fragment, they might possess multiple AUI,
CUI, and FUI model fragments for different contexts of
use. This allows both applying different UI design solutions
during design time and even during runtime, i.e.,
substituting one model fragment by another one. This
mechanism is not limited to model fragments of the
selfsame pattern. In fact, it is even possible to substitute
whole patterns by alternative ones.

Regarding the process of finding appropriate patterns the
framework offers multiple methods: pattern browsing,
keyword search, free text search, exploiting pattern
relations, or evaluating formal context descriptions which
are stored as logical expressions within the
Body/Theory/Context/Digest element.

Usability Evaluation Aspects
Running user interfaces – either on the basis of a complete
FUI or in form of a prototype based on more abstract UI
models – can be evaluated in terms of their usability and
user experience using pertinent techniques and methods.
The evaluation itself is not in the scope of PaMGIS. Hence,
the framework does not offer any support for evaluation
preparation, execution, and post-processing. But it is
possible to document relevant insights within the system.
Since the origin of model elements is captured inside the
PaMGIS domain model and the various UI models, it is
possible to locate the respective pattern and post the
evaluation results to the pattern definition. For this purpose
we introduced the pattern description element named
Body/Practice/UsabilityFeedback.

A second, more automated option is to specify and utilize
special usability evaluation (UE) patterns. They can be
integrated in the domain model where they add some
measuring instrumentation. For instance, the Textual User
Usability Feedback Dialog pattern ensures, that an
appropriate dialog is available allowing the user to record
and send his or her opinion about certain aspects of the user
interface at hand back to the PaMGIS framework. In the
simplest case, this dialog is composed at least of an Output
object providing some textual explanations for the user, an
Editor object for the acquisition of the actual textual user
feedback, and two Activators for either submitting the
feedback or canceling the action. The aforementioned
pattern includes the required task and concept model
fragments as well as AUI and optionally less abstract UI
model fragments. In this sense, the underlying domain-
specific pattern language can be enriched by such UE
patterns in order to capture usability feedback. At least in
the case that the user interface is executed by means of the
runtime environment, it is possible to automatically attach
the user feedback directly to the respective pattern.
Otherwise the information can be temporarily stored in a
log file outside the scope of PaMGIS and fed back
manually or in a semi-automatic way at a later point in
time.

The collected usability feedback can be used to improve the
quality of the patterns, the diverse models, and therefore of
the final user interface.

Functional Framework Architecture
The PaMGIS framework consists of several logical function
units, each supporting the various users in different fields of
activities. An overview of the functional framework
architecture is provided within Figure 5.

The core components are the two repositories, the Pattern
Repository for storing the pattern specifications and the
Model Repository to accommodate the diverse models as
shown in Figure 2.

Access control is managed by means of the User Database
which is administered via the Framework User
Administration component. PaMGIS distinguishes several
general types of users, i.e., unregistered users, registered
users, pattern authors, power users, and administrators.
Unregistered users are allowed to access a restricted part of
the pattern specifications solely in read-only mode. In
addition, they may register themselves to the framework.
Registered users gain more insight into pattern details, have
very limited write permissions, and may use certain

collaboration functions, such as sending messages to pattern
authors. The pattern authors have full access to the pattern
descriptions and may create new patterns and modify
existing ones. Power users can read entire pattern
specifications and are allowed to make copies to which they
have full read and write access. In addition, they can use
and control the model-driven part of the framework.
Finally, administrators take over the responsibility of
managing the framework, e.g. creating, modifying, and
deleting users, granting and withdrawing access rights, and
maintaining the PaMGIS meta-models via the Pattern Meta
Model Administration and the Model Meta Model
Administration components.

Figure 5. Overview of the functional PaMGIS architecture.

On the one hand, the Pattern and Pattern Language
Administration unit supports pattern authors in creating and
modifying patterns. On the other hand, power users can
copy particular patterns to a private workspace where they
can modify them according to their needs and build up
pattern languages by specifying interrelationships between
patterns.

The Pattern and Pattern Language Dissemination tool can
be used by unregistered users to browse, search, and display
certain aspects of the pattern descriptions which are
released for this purpose. Additionally, it allows registered
users to view more pattern details, send feedback and
comments to pattern authors, and attach information about
existing implementations to the pattern specifications. For
this purpose we introduced the Body/Practice/KnownUses
description element.

The Domain Model Editor, Context-of-Use Model Editor,
and UI Model Editor allow power users to create and
modify the respective PaMGIS models manually. In

contrast, the Pattern Selection and Assignment component
helps power users to search and find adequate patterns
which can be selected and applied, i.e., insert the attached
model fragments automatically into the domain, context-of-
use, and/or different UI models. The Model
Transformations unit supports the execution of the model
transformations summarized in Figure 3 and can be
configured to a certain extent.

The Runtime Environment is a means to execute user
interfaces in the form of final UIs or prototypes as
described above. The File Export component is used for
exporting models in the form of text files for further
external processing or documentation purposes.

Finally, the Usability Feedback unit offers support
regarding the import of usability evaluation results into the
framework and write it back to the respective patterns
and/or models.

CONCLUSION
In this paper we presented our concerted pattern-based and
model-driven approach for the development of interactive
ubiquitous systems and provided an overview of the
functional architecture of the related PaMGIS framework.

We strongly believe that the mélange of model- and
pattern-related methods and techniques has the potential to
alleviate weaknesses of the individual approaches and can
create benefits in terms of reducing complexity and
realizing reuse of already existing design knowledge.

The implementation of the framework is indeed work in
progress, but major components already exist at least in
prototypical form. Many patterns and several pattern
languages have been developed, amongst others a pattern
language for the domain of public transportation ticket
selling.

The framework is a cornerstone for our further research on
the potentials and limits of automated UI development.
Moreover, we will intensify our work on supporting
wearable computers with the PaMGIS framework.

REFERENCES
1. C. Alexander, S. Ishikawa, and M. Silverstein. 1977. A

Pattern Language.Oxford University Press.

2. G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q.
Limbourg, L. Marucci, F. Paternò, C. Santoro, N.
Souchon, D. Thevenin, and J. Vanderdonckt. 2002. The
CAMELEON Reference Framework. Retrieved April
15, 2015 from http://giove.isti.cnr.it/projects/cameleon/
pdf/CAMELEON%20D1.1RefFramework.pdf.

3. Paulo Pinheiro da Silva. 2001. User Interface
Declarative Models and Development Environments: A
Survey. In DSV-IS’00 Proceedings of the 7th
International Conference on Design, Specification, and
Verification of Interactive Systems, 207-226.

4. J. Engel, C. Herdin, and C. Märtin. 2012. Exploiting
HCI Pattern Collections for User Interface Generation.
In Proceedings of PATTERNS 2012, 36-44.

5. J. Engel, C. Herdin, and C. Märtin. 2014. Evaluation of
Model-based User Interface Development Approaches.
In Proceedings of HCII 2014. 295-307.

6. J. Engel and C. Märtin. 2009. PaMGIS: A Framework
for Pattern-based Modeling and Generation of
Interactive Systems. In Proceedings of HCI
International ‘09. San Diego, USA, 826-835.

7. S. Fincher and J. Finlay. 2003. Perspectives on HCI
Patterns: Concepts and Tools (Introducing PLML).
Interfaces, Vol. 56, 26-28.

8. G. Meixner, G. Calvary, and J. Coutaz. 2014.
Introduction to Model-Based User Interfaces. W3C
Working Group Note 07 January 2014. Retrieved May
27, 2015 from http://www.w3.org/TR/mbui-intero/.

9. Brad A. Myers. 1992. State of the Art in User Interface
Software Tools. Advances in Human-Computer
Interaction, Vol. 4, Ablex Publishing.

10. F. Paternò. 2000. The ConcurTaskTrees Notation. In
Model-Based Design and Evaluation of Interactive
Applications, Springer Berlin Heidelberg, 39-66.

11. A. Pleuss, B. Hauptmann, D. Dhungana, and G.
Botterweck. 2012. User Interface Engineering for
Software Product Lines: The Dilemma Between
Automation and Usability. In Proceedings of the 4th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. Copenhagen, Denmark,. 25-34.

12. Egbert Schlungbaum. 1996. Model-based User
Interface Software Tools - Current State of Declarative
Models. GVU TECH REPORT. Graphics, Visualization
and Usability Centre, Georgia Institute of Technology.

13. E. Schlungbaum and T. Elwert. 1996. Dialogue
Graphs: A Formal and Visual Specification Technique
for Dialogue Modelling. In Proceedings of the 1996
BCS-FACS Conference on Formal Aspects of the
Human Computer Interface FAC-FA'96, Sheffield,
UK.

14. A. Seffah. 2010. The evolution of design patterns in
HCI: from pattern langauges to pattern-oriented design.
In Proceedings of the 1st Interational Workshop on
Pattern-Driven Engineering of Interactive Computing
Systems (PEICS’10), 4-9.

