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Abstract. This paper describes our participation to the Entrance Ex-
ams Task of CLEF 2015’s Question Answering Track. The goal is to an-
swer multiple-choice questions on short texts. Our system first retrieves
passages relevant to the question, through lexical expansion involving
WordNet and word vectors. Then a tree edit model is used on graph
representations of the passages and answer choices to extract edit se-
quences. Finally, features are computed from those edit sequences and
used in various machine-learned models to take the final decision. We
submitted several runs in the task, one of which yielding a c@1 of 0.36,
which makes our team the second best on the task.
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1 Introduction

The task focuses on the reading of single documents and identification of the
correct answer to a question from a set of possible answer options. The iden-
tification of the correct answer requires various kinds of inference and the con-
sideration of previously acquired background knowledge. Japanese University
Entrance Exams include questions formulated at various levels of complexity
and test a wide range of capabilities. The challenge of ”Entrance Exams” aims
at evaluating systems under the same conditions humans are evaluated to enter
the University. Previously the evaluation campaign Question Answering For Ma-
chine Reading Evaluation (QA4MRE at CLEF) [8] focused on multiple-choice
questions designed to evaluate computer systems, but this relatively new task
takes on challenges typically offered to humans. It naturally translates into more
complex inference phenomena to solve [1].

2 System Architecture

The overarching goal of our system is essentially to validate correct answers with-
out invalidating them, and invalidate wrong answers without validating them.
The architecture of our multiple-choice question-answering system is described



in Figure 1. Its pipeline is composed of mainly five modules: preprocessing, pas-
sage retrieval, graph enrichment, beam search with tree edit model and final
classifiers for validation/invalidation. The remaining of this section is dedicated
to the detailed description of those modules.
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Fig. 1. System Architecture

2.1 Preprocessing

We use Stanford CoreNLP as the main Natural Language annotation tool. Each
sentence from the document, questions or answer choices is tagged with Part-
Of-Speech [9] and syntactically parsed [4]. In addition, a coreference resolution
system [7] is applied on the whole document as well as question-answer pairs. We
add to this coreference resolution process manual rules derived from the data,
like replacing first person pronouns in non-dialogue context with “the author”
or “the writer”, depending on which is used in the questions. Named Entity
Recognition was not used, due to not being very helpful in past editions of
Entrance Exams. NER is very important to factoid QA, because it produces
annotations which correspond roughly to the expected type of answer, but on
complex multiple-choice questions which rarely use entities as an answer type,



it is intuitively less crucial.

2.2 Passage Retrieval

The passage retrieval module aims at extracting relevant short snippets from
the document to pass to the more computationally expensive modules further
down the pipeline. Words of the question and the answer choice act as the query.
However, it is very rare that words of the question exactly appear in the relevant
passage of the document, so we have to use some form of query expansion.
We enrich the lemmas with coreference information, WordNet relations (syn-
onyms, antonyms, hypernyms, hyponyms), and weigh the words by the IDF
score of the original word in the document.
If the words of the query are not found using the previous expansion methods,
we use a vector-based representation of words to compute a similarity measure.
Word vectors are those found in [3]. To each word, we assign a vector of 50 val-
ues. [3]’s resource actually provides multiple vectors for each word, to account
more accurately for polysemy, so we use the same window-based disambiguation
method as the author to compute the right one. We then pair the query word
vectors with the document word vectors with the highest cosine similarity. We
also take into account bigram vectors, by summing 2 vectors, which means that
we can effectively handle 1-to-2, 2-to-1 and 2-to-2 scored alignments.
Passages are ranked according to the scoring function defined by Equation 1 and
are then naturally extended to the full sequence of sentences they span.
#matchedW ords " i score(w;) + score(w;11)
dist(i,i+ 1)

(1)

score(passage) = FquergWords

i=1
We take into account the potential absence of query words by multiplying the
passage score by the fraction of query words the passage contains. Each w; €
{w1, ..., w, } a document word matching a query word is given a simple alignment
score (1 if they have same lemmas, 0.9 if they are WordNet synonyms, 0.8 if
they are in another WordNet relation, and their word vector cosine similarity
otherwise), weighted with the IDF of the word, and the formula is normalized
by the square of the distance between the words in the sentence.

Overall, this passage retrieval method retrieves a lot of short passages, most of
which will overlap or won’t be correct, but the beam search which uses them is
designed to handle numerous source passages.

2.3 Graph Enrichment

The passages were syntactically parsed with Stanford CoreNLP to obtain the
initial dependency graphs. We fuse those graphs together by linking their roots
with a followed-by arc which materializes in the single remaining graph that a
sentence is followed by another in the passage. Then we use ConceptNet [5] to



enrich the graph.

ConceptNet is a semantic triplet base containing relations about common-knowledge
of the world, designed to be used especially for machine understanding of text
written by people. It is built from nodes representing words or short phrases of
natural language, and labeled relationships between them (the nodes are called
”concepts” for tradition, but they’d be better known as "terms”.) For exam-
ple, ConceptNet contains everyday basic knowledge, like MotivatedByGoal(learn,
knowledge): you would learn because you want knowledge. It also contains cul-
tural knowledge, like UsedFor(saxophone, jazz): a saxophone is used for jazz.
Our assumption is that understanding the documents in the Entrance exams
corpus requires a lot of human common-sense, easily acquired by human readers
of that level, but difficult to grasp for computers. So we want to enrich the text
with relations which attempt to fill that gap.

Concepts from ConceptNet are mainly single words, like “saxophone” or “jazz”,
so they are easy to link to our original graph. However, it is not easy to integrate
relations to our graph, because they have labels that are potentially composed
of several words, like UsedFor or MotivatedByGoal. We could split those labels
into words and use those in the graph, but we preferred attaching to the orig-
inal graph the parse tree of the surfaceText element of the relations. Surface
texts are the original natural language text that expressed the statement, like
“a saxophone is used for jazz”. We attach the parse tree of these sentences to
any concept whose head word is in the original graph. We only retrieve from
ConceptNet relations that are indicative of an entailment relation of any kind,
namely: IsA, PartOf, MemberOf, UsedFor, CapableOf, Causes, HasPrerequisite,
MotivatedByGoal, Desires.

2.4 Tree edit beam search

Tree edit model Our goal is to characterize a sequence of transformations
applied to the passage to obtain the answer choice. Those transformations affect
the graph built in the previous section, which is made of parse trees, and the
transformations will be called edits, hence a tree edit model. Basically, we apply
different edits iteratively to the tree, modifying it each time, so that the edited
tree is closer to the tree of the answer choice. When we find an edit sequence to
turn the passage into the answer choice, we look at the nature of edits that were
effectively applied, and if they are elements of proof that the passage is indeed
close to the answer choice, or if it is too far to conclude anything. This will be
done in the subsequent sections.

Table 1 presents the supported edit operations. Figure 2 presents an example of
successive applications of three of them.

Beam search The main problem is that there are many choices to make when
applying an edit. Which edit to choose? Where to apply changes in the tree?
What new elements must be added? What to do next? Any of these choices is
an easy source of error, so rather than picking one each time and hoping to find



Table 1. Edit operations on trees

Edit operation Description

Delete(d: Tree) Delete the node d and replace it with its children.
Insert(i: Word, p: Tree) Insert the word 4 under its new parent p.
Rename(t: Tree, w: Word) Replace the word attached to the node ¢ with w.
Move(m: Tree, op: Tree, np: Tree)|Move the subtree m from under op to under np.

/\ /1\ /\ /\
/\ /\ /\
T
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Fig. 2. Examples of successive edit operations

the right edit sequence, we apply a lot of the possible edits, and explore only the
most promising using a satisfyingly good heuristic.

Beam search is an optimization of best-first search that reduces its memory
requirements. It uses breadth-first search to build its search space. At each step
of the search, we generate all possible edits of the trees at the current step, sorting
them in increasing order of heuristic cost defined below. However, we only store
a predetermined number of best trees at each level, called the beam width. Only
those trees are edited next and the rest is discarded. This method allows to fine-
tune via the beam width the probability to find useful edit sequences and the
memory and time costs.

Partial Tree Kernel as a heuristic We need a heuristic measure of how far
a tree at the current step is from the target tree (the dependency tree of an
answer choice). We implement the Partial Tree Kernel defined in [6] to compute
the similarity between the current tree and the target tree. As a tree kernel, it
classically computes the number of common subtrees between 2 trees, but this
particular version of the tree kernel is adapted to n-ary trees, which is what
we have in dependency structures. The kernel computation is normalized with

K(z,y) = %, for K the kernel and z,y the trees.

Algorithm At the start of the algorithm, the working set consists solely of
the enriched dependency graphs of all the retrieved passages. The target tree is
the answer choice (or the question plus the answer choice when the answer is
an end to the question sentence as can be the case in the CLEF dataset). In
our experiments, we keep at most 10 passages in the retrieval step. Then, every
possible relevant edit operation is applied to each passage. Inserts and renames



can only add a node that is present in the target tree. Moves can only move a
node under a parent so that the link parent — child is present in the target tree.
Those edited trees are added to the working set, and the partial tree kernel with
the target tree is computed for all of them. The working set is then filtered to
only the top 50 trees with the best kernel score (50 is our beam width) and the
algorithm can now start again with the application of the edit operations on the
new working set.

It stops when 10 different edit sequences have been found (some filtering is done
to ensure that we do not obtain mere variations of the first sequence found), or
after 200 edit steps, whichever comes first.

2.5 Feature extraction

The goal is to classify an edit sequence with two different machine-learned clas-
sifiers, one to decide if the related answer choice is validated, and one to decide
if it is invalidated. The design of features is thus primordial. In practice, we
will use the same features and the same machine learning algorithm for the two
classifiers, so the only difference will be the training data, discussed in the next
section.

Most features are counts of specific edit unigrams or bigrams in the edit se-
quence, and are summarized in Table 2. Pre-processing informations that were
not used in the beam search are used at this point, like dependency relations in
the parse tree, coreferences, and whether what we edit was part of the Concept-
Net additions or can be linked in WordNet.

3 Experiments and results

3.1 CLEF 2015 QA Track: Entrance Exams data and evaluation

Our data consist of the trial and test sets at CLEF 2015 Question Answering
Track, Task 2: Entrance Exams. The trial data is composed of the test sets at
CLEF 2013 and 2014, each containing a series of 12 texts, and for each of them, 4
to 6 multiple-choice questions to answer, for about 120 questions in total. In the
2015 test set, there are 19 documents, and a total of 89 questions. There are 4
answer choices possible for each of the questions. This corpus has been extracted
from the Tokyo University Entrance Exam in English as a foreign language.
Systems are evaluated according to their c@1, defined in equation 2.

1 ngr
al= - N 2
C n(nR+nU n) ( )

with n the total number of questions, nr the number of correctly answered
questions, ny the number of unanswered questions.



Table 2. Features of an edit sequence

Feature Description

editTotal Total number of edits in the sequence
deleteTotal Number of total delete edits, edits which delete
deleteVerb a verb, a noun, a proper noun, a subject (indi-
deleteNoun cated by the subj Stanford dependencies), an
deleteProperNoun object, the root of the tree, a negation (indi-
deleteSubject cated by the neg dependency), and something
deleteObject added to the graph through ConceptNet
deleteRoot

deleteNegation

deleteConceptNet

insertTotal Analogous to the above, for insert edits
insertVerb

insertNoun

insertProperNoun

insertNegation

renameTotal Analogous to the above, for rename edits + ed-
renameVerb its which rename a word into its synonym in
WordNet, or into its antonym in WordNet, or
renameSyn into a hypernym/hyponym in Wordnet, edits
renameAnt which rename a word into another with strong
renameHypHyp word vector similarity (above a threshold, de-

renameStrongWordVectorSim
renameCoref

fined empirically), edits which rename a pro-
noun into its referent according to the Stanford

renameNonCoref coreference resolution, and edits which rename
a pronoun into some other referent

moveTotal Analogous to the above, for move edits + edits

moveVerb which move more than 2 nodes

moveConceptNet

moveMoreThan2Nodes

All bigram combinations of the above

Number of pairs of the successive given edits in
the sequence

dependencyEditSequence

Number of pairs of successive edits applied to
2 nodes in a dependency relation

originalTotal
originalVerb

Fraction of the original words, verbs, nouns,
proper nouns, that was not edited in the se-
quence




3.2 Learning classifiers

The classifier pair, for validation and invalidation, uses the feature set defined in
the previous section. We experimented with two models, logistic regression and
random forest, both implemented in Weka [2], and results are presented in the
next subsection. We focus here on how we built our training data.

What we want to avoid is trying to learn how to transform any random text
snippet in the document into any random answer choice, because it serves no
purpose. Indeed, as readers, we cannot validate the right answer choice by look-
ing at a couple of arbitrary sentences in the text, nor can we invalidate a wrong
answer choice if the passage we are reading is not even related to the question.
Thus, we annotate the relevant passages in the training data manually, and our
algorithm runs on them, without a passage retrieval phase. A relevant passage
is roughly the sufficient text snippet which expresses both the question and the
elements of the answer choice. Of course, sometimes the answer choice is not ex-
actly expressed by the passage, as commonly happens for wrong answer choices,
and sometimes, albeit rarely, the answer choice is not even expressed at all in
the document. Two answer choices to the same question can share a relevant
passage, as we annotate complete sentences.

We create the learning (passage, answer choice) pairs by annotating them fol-
lowing the semantics described in Figure 3. In this figure, RP stands for right
passage, RA for right answer, WA for any wrong answer, WAx for the wrong
answer choice x, WPx for the passage expressing it, OP for any other passage
than the one expressing the paired answer choice. To summarize, the only time
we can either validate or invalidate are when we operate on passages relevant
to some answer choice: we annotate as validated only if we have both the right
passage and the right answer, and invalidated if we have a wrong answer choice
with either the passage which expresses it in the document or the right passage.
This follows the intuition that as readers, given a question, a passage and an
answer choice, we can probably tell if the provided passage is self-sufficient in
expressing the right answer to the question or if there is a mismatch between an
answer choice and the passage in the text it refers to.

Then the edit sequences for this data are computed, their features are extracted,
and sequences for both classifiers are labeled using the aforementioned seman-
tics. Implicitly, as this is not visible in Figure 3, if an edit sequence is labeled 1
(valide/invalidate) for one classifier, it is labeled 0 for the other. The thin dashed
arrows simply symbolize that the label is 0 for both classifiers.

For the test run, the algorithm runs on the test data, and the answer is
chosen based on the regression numbers output by the two classifiers. First, for
each answer choice, the edit sequence with the highest maz(validationScore,
invalidationScore) is selected. Ideally we want an edit sequence which is char-
acteristic of either a high confidence validation, or a high confidence invalidation,
so that we may classify the answer choice confidently as either correct or incor-
rect in the next step. Then, the answer choice whose selected sequence has the
highest validationScore — invalidationScore is finally picked: we want in
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Fig. 3. Semantics of (passage, answer) pairs

correctly classified answer choices as much separation between their validation
and invalidation scores as possible. If they have a similar validation and inval-
idation score, the system just ends up guessing. We acknowledge that this is a
very basic decision process and address this point more in detail in Section 3.5.

3.3 Results

In this section, we report the results of our two learning models on the testing
set of questions. Table 3 presents those results. A c@1 of 0.36 gave us the second
place among teams which participated in the task.

Table 3. Results on test

Random forest |Logistic regression
Questions answered 89 89
Errors 57 61
Accuracy 0.360 0.314
# of tests 8 4
with cQl1 > 0.5
c@1 0.360 0.314

The random forest model performed better on the test run, which confirms
what we expected during development.



3.4 Error analysis

Qualitative analysis A pertinent qualitative analysis is always delicate to do
for machine learning systems with such low performances. It is indeed always
possible to draw examples that look like the system is obviously supposed to
correctly handle but end up as errors. Conversely, it is always possible to find a
complex instance on which the system somewhat miraculously worked (i.e. made
a lucky guess).

Nevertheless, we first report some of the simple errors that our system made.
In the following passage/question pair, our system got lured by answer 3, clos-
est in surface form to the relevant passage. ConceptNet does not link "held” to
”trapped”, and ”its original nature” from the correct answer could not be linked
to anything in the passage (it is however found further in the text).

Several years ago, certain scientists developed a way of investigating the nature
of the atmosphere of the past by studying air caught in the ice around the
North or South Pole. According to their theory, when snow falls, air is trapped
between the snowflakes. The snow turns to ice with the air still inside.
Certain scientists claimed that

1) atmospheric gases increase the yearly amount of snow

2) falling snowflakes change the chemical balance of the air

3) the action of atmospheric gases causes snow to turn into ice

4) the air held between snowflakes keeps its original nature (correct)

In the following passage/question pair, our system picked the answer choice 3.
It would have been easy to pick the correct answer 1 if ”wrong” could have been
linked to "mistake”, but in ConceptNet, this is a RelatedTo relation, which we
did not consider. We realize that there is actually a lot of information in those
RelatedTo relations, and ideally our system should handle them, but we decided
in the design phase to remove them because they are not semantically precise.

Everyone stared. That was embarrassing enough, but it was worse when I
finished my coffee and got ready to leave. My face went red - as red as his hair
- when I realized I'd made a mistake.

The woman’s face turned red

1) because she realized that she had been quite wrong about the boy (correct)
2) because she realized that the boy was poor and hungry

3) because she saw everyone staring at her

4) because she hated being shouted at

In both those cases, a more precise characterization of correct passages would
have been useful, because in the first case, our answer choice skips over the sen-
tence which contains the correct answer, and in the second case, the sentence
containing our answer choice appears way before the sentence containing both
question and correct answer.

Finally we report an example of correctly answered question through mostly



invalidation. In the following passage/question pair, our system frankly invali-
dated answer choice 1 (due to the added negation) and answer choice 4 (due to
the first sentence of the passage saying the opposite). Then, answer choice 2 had
edit sequences which hinted at both validation and invalidation, so it was still a
risky pick (but with slightly more invalidation). In the end, the remaining answer
choice (3), for which the system found neither validation nor invalidation, was
correctly picked by default.

Kate was an energetic woman who expected people always to be doing some-
thing, and she found plenty of jobs for Fred to do. This made him feel part of
the household, but now he really wanted to be able to sit and reflect on the
events of his life. If he had continued to live alone, he would have had the time
to do this to his heart’s content. One afternoon he felt he simply had to get
away from the house. ”I'm going for a walk,” he said, closing the door behind
him. Leaving the town, he walked across the fields and followed a slow-moving
stream toward the hills. After a while he came to a pool in the stream under
some trees. Here, he thought, was a place he could come to when he needed to
reflect on the past. Although the stream seemed unlikely to have any fish, he
would simply tell Kate he had found a place to go fishing. When he mentioned
the stream that night, his son-in-law, Jim, said in disbelief, ” There aren’t any
fish there. That stream runs dry half the summer.”

Why did Fred tell Kate that he had found a place to go fishing?

1) He didn’t feel part of the household with Kate and Jim.

2) He enjoyed fishing very much and was glad to be able to do it again.

3) He wanted a way to leave the house without hurting Kate’s feelings.

4) He was bored in the house because there were few things to do.

Quantitative analysis The general trend was that our system performed bet-
ter when edit sequences remained short, with over 40% accuracy when the chosen
edit sequences are shorter than 6 edits (on average on all the answer choices).
We considered this was still not significant enough of an advantage to choose
not to answer questions based on a length threshold of edit sequences.

3.5 Future work

We did not take advantage of the possibility to choose not to answer a question.
In our experience, every missed answer adds variance when running on the test
set (we are evaluated on even fewer questions, when there are not many to begin
with), so we did not prioritize exploiting this feature of the evaluation. However,
we believe our learning method has the potential to handle it. In future works,
it would be interesting to design a meta-classifier working on the output of the
two current classifiers.



4 Conclusion

Our system has been developed to answer multiple-choice questions. We extract
features from edit sequences obtained from our tree edit beam search method,
and learn two classifiers for validation and invalidation of answer choices. In the
CLEF 2015 evaluation campaign, Question Answering track, Entrance Exams
task, our best submitted run obtained the second performance among teams.
In further works, we plan to improve our graph enrichment method, which seems
to be a promising avenue. We are considering adding paraphrases to the graph.
Moreover, we plan to develop a meta-classifier dealing with the final decision,
based on the individual validation/invalidation scores per answer choice, instead
of relying on manually crafted rules.
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