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Abstract

This pilot study investigates how considering ac-
cessibility could help to model prices of residen-
tial real estate more accurately. We introduce
two novelties from the price modeling point of
view (1) defining accessibility as travel time by
public transport, in addition to geographic dis-
tance, and (2) considering dynamic points of in-
terest from check-ins into social networks, in ad-
dition to fixed location community centers. Our
case study focuses on the Helsinki region. We
model price per square meter as a linear function
of apartment characteristics, and characteristics
of the neighborhood, including accessibility by
public transport and social activities. The result-
ing models show good predictive performance,
as compared to baselines not taking accessibility
into account. We discover that apartment price
relates to the geographical distance from the city
center, but accessibility by public transport to lo-
cal centers of interest is more informative than
just the geographical distance to those centers.

1. Introduction

Modeling real estate prices has long been of interest to re-
searchers and practitioners, and it is employed for various
purposes related to investment, lending or taxation. Ar-
guably all city residents, even non-specialists, intuitively
understand that the price of a residential apartment posi-
tively relates to the size of the apartment, and negatively re-
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lates to the distance to the city center. Professional real es-
tate price models include many more features of apartments
and environment, such as age, construction type, floor, or
population characteristics in the neighborhood.

Residential real estate prices are typically modeled using
so called hedonic models (Case & Quigley, 1991; Sirmans
et al., 2005), where the price of a house is assumed to be
affected by the structural characteristics of the house it-
self, characteristics of the neighborhood, and environmen-
tal characteristics. While in real estate domain research
mainly focuses on identifying factors that impact pricing,
in machine learning and data mining research real estate
price modeling mainly focuses on developing sophisticated
predictive models beyond linear regression (Chopra et al.,
2007; Fu et al., 2014).

A literature review on hedonic pricing models
(Bartholomew & Ewing, 2011) finds the structural
characteristics typically include the age and the size of
the house, the number of bedrooms, and the presence of
different amenities such as a garage. The effect of the
location of the house on housing prices is often captured by
physical proximity to a central business district (CBD) or a
regional center. The literature review finds evidence of an
inverse relationship between pricing and distance to CBD
in studies on various cities around the world. Another
access-related characteristic often used in hedonic models
is the proximity of the house to a transit station, measured
in air distance or walking distance. This attribute is used to
capture the effect transit has on relative accessibility of a
CBD or aregional center. Here the results are more mixed,
with the majority of studies suggesting pricing premiums
for housing located near to a transit station, and a higher
premium for transit stations that provide a higher degree of
relative proximity to a CBD.
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The era of big data provides access to new data sources,
such as public transport, traffic and social mobility data,
that potentially relate to real estate prices (at least intu-
itively we know that people consider mobility, and social
factors when buying an apartment). Integrating such data
could help to model residential real estate prices more pre-
cisely, and, as a result, better understand urban mobility
patterns and activities. Such models can contribute to man-
aging, coordinating and long term planning of mobility, and
overall development of modern smart cities.

Our pilot study investigates to what extent accessibility of a
neighborhood relates to residential real estate prices. This
case study focuses on the Helsinki region. We model price
per square meter as a linear function of apartment charac-
teristics, and characteristics of the neighborhood, including
accessibility by public transport and social activities. Our
main hypothesis is that prices are more related to travel
times than travel distances, and local centers of activities
than the city center. The resulting models show good pre-
dictive performance, as compared to baselines not taking
accessibility into account. We discover that an apartment
price relates to the geographical distance from the city cen-
ter, but accessibility by public transport to local centers of
interest is more informative than just the geographical dis-
tance to those centers.

Our study introduces two conceptual novelties in modeling
prices of residential real estate: (1) to measure accessibil-
ity, we consider travel times in addition to distances, and
(2) we consider dynamic local points of interest, defined by
4square' check-ins (people posting their location and activ-
ity on a social network), in addition to community centers
at fixed locations.

The remainder of the paper is organized as follows. Section
2 describes data acquisition and feature engineering. Sec-
tion 3 presents the results of the experimental case study,
and Section 4 concludes the study.

2. Data acquisition and feature engineering

Our dataset consists of three parts: real estate data describ-
ing characteristics of the apartments, location data describ-
ing points of interest and community centers, and acces-
sibility data describing point-to-point distances and travel
times. We make our dataset publicly available’ for re-
search.

lhttp ://foursquare.com
http://www.zliobaite.com/datahel.zip

Figure 1. Location of apartments in the dataset. The black rect-
angle indicates the area from which point of interest data is col-
lected.

2.1. Real estate data

The sales price data comes from a Finnish web portal
Oikotie®, which is the most popular marketplace for resi-
dential real estates sales and rental. Our dataset consists
of apartments in the capital region (Helsinki, Espoo, Van-
taa and Kauniainen municipalities) advertised for sales on
October 24, 2014. The pricing data is based on sales ads,
as sales transaction prices are not available for the public.
We exclude apartments that do not provide a street address
(hence no coordinates), and for which size is not available.
Moreover, we filter out very large apartments (size more
than 300 m2), very old apartments (built earlier than 1850),
far away apartments (distance to metro more than 20 km),
extremely cheap (price pr square meter less than 1200 eur)
and extremely expensive apartments (price per square me-
ter more than 12000 eur), because we aim at focusing on
modeling prices of mainstream apartments and avoiding
extreme outliers. After filtering our dataset includes 8337
apartments. Figure 1 plots all the apartment locations.

2.2. Location data

We consider two types of location data: fixed location,
and dynamic points of interest. Fixed location data in-
cludes the city center, for which the Stockmann depart-
ment store is used as a proxy (coordinates found by hand
via Google maps), and local community centers, approx-
imated by H&M shop (a chain of clothing shops) loca-
tions in Helsinki region (also found by hand from Google

3http://www.oj_kotj_e fi/
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Figure 2. Fixed locations: community centers (H&M) and city
center (Stockmann). The black rectangular indicates the area from
which point of interest data is collected.

maps). Stockmann is a well-known location in the centre of
Helsinki. H&M shops are typically present in larger shop-
ping malls. Shopping malls are local centers of attraction.
We hope that H&M serves as a proxy for local centers in
the neighborhoods. Figure 2 plots the community centers
and the city center location.

Dynamic points of interest are obtained from an existing
dataset of 4square check-ins (Le Falher et al., 2015). Each
check-in in the dataset corresponds to one user’s Vvisit to
one venue (restaurant, cafeteria, store, etc) with known ge-
ographic location, at a particular time. The data cover user
activity between March and July 2014 in the inner Helsinki
city. To extract points of interest, we perform k-means
clustering on the geographic locations of check-ins, using
k = 20. Each of the k centroids identified defines one point
of interest. Note that we extract points of interest both on
top of all check-ins contained in the dataset, regardless of
the the time of the day they occur, as well as separately for
check-ins that occur at separate time intervals in the day
(five 4-hour intervals from 2am to 10pm ). Figure 3 plots
the points of interest for each time interval.

2.3. Accessibility features

Accessibility data connects apartments with point of inter-
est. We consider two types of accessibility features: air
distance from an apartment to the location of a point of
interest, and travel time by public transport from an apart-
ment to the point of interest (including walking time).

Air distance is measured in kilometers from coordinate of
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Figure 3. Dynamic points of interest from 4square: blue 2:00-
6:00, violet 6:00-10:00, red 10:00-14:00, brown 14:00-18:00, or-
ange 18:00-22:00.

the apartment to coordinate of the point of interest, as

D = R, -arccos(s; + s2), where
s1 = cos(laty) * cos(laty) * cos(long — lony),
so = sin(laty) * sin(lats),

where R, is the radius of Earth (set to R, = 6371km),
(laty,lony) are the coordinates of the apartment, and
(lata, long) are the coordinates of the point of interest.

Travel time by public transport between two coordinates is
measured using a freely available tool Reititin*, developed
by BusFaster Ltd and researchers at University of Helsinki.
We use the default settings.

In addition to accessibility between apartments and points
of interest we also include the distance from an apartment
to the nearest metro station. The address of Metro stations
is listed on Helsinki Metro’s website® and their geographic
coordinates are collected via manual queries to the Google
Maps API®. Note that in the Helsinki region metro runs
only to the eastern part of the city, therefore, we do not
necessarily expect a regular behavior from this feature. A
regular behavior would be a higher price if there is a metro
stop nearby.

*http://blogs.helsinki.fi/saavutettavuus/
tyokaluja/metropaccess-reititin/

Shttp://www.hel.fi/hki/hkl/en/HKL+Metro

6https://developers.google.com/maps/
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Table 1. Input features (predictors).

Feature  Description Units
size apartment size m2
year year built -
fyear function of year -
east easterness km
north northerness km
dmetro  distance to nearest metro km
ametro  metro within 1 km (0,1) -
dstock  Stockmann distance km
tstock Stockmann travel time min
dhm distance to H&M km
thm travel time to H&M min
d4sq min distance to 4square km
t}sq min travel time to 4square min
d4sql distance to center 2-6:00 km
d4sq2 distance to center 6-10:00 km
d4sq3 distance to center 10-14:00 km
d4sq4 distance to center 14-18:00 km
d4sqd distance to center 18-22:00 km
t4sql travel time to center 2-6:00 min
t4sq2 travel time to center 6-10:00 min
t4sq3 travel time to center 10-14:00  min
t4sq4 travel time to center 14-18:00  min
t4sqd travel time to center 18-22:00 min

2.4. Final set of predictors

Altogether we consider 23 input features (predictors) for
modeling apartment prices. The features are listed in Ta-
ble 1.

Feature fyear is a non-linear transformation of the con-
struction year, which is based on observation that apart-
ments built around 1970 are the least valuable, because a
major pipe renovation is due in about 50 years from initial
construction. Pipe renovation is done for the whole house
at once, and brings substantial expenses for the apartment
owners. We define the derived feature as

fyear = (year — 1970)2, which puts very new and very
old apartments together, while apartments that are around
50 years old are put on the opposite end.

Easternness and northerness features try to capture another
peculiarity of the Helsinki region, where apartments in the
east are on average considered cheaper. South apartments
may be considered more expensive due to proximity to the
sea.

Figure 4 plots the values of selected input features against
the target variable price per square meter for visual inspec-
tion. General tendencies are consistent with common intu-
ition. The smaller the apartment, the higher the price per
m?2. Apartments close to metro are more expensive. The
cheapest apartments have been constructed around year
1970. The most expensive apartments are in the city cen-
ter, and apartments near to the local community centers or
points of interest are more expensive.
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Figure 4. Input features against the target variable.
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Figure 5. Correlations of features (a number indicates the Pearson
correlation coefficient x 100.

Finally, Figure 5 plots correlations across all the features.
We see that the location features are strongly correlated
with each other, therefore, many may be redundant. Never-
theless, some of those could potentially be expected to be
more informative than others, therefore, we consider them
all. We can also see than most of the location features are
negatively correlated with community centers and dynamic
points of interest. We already have seen similar tendencies
in the scatterplots. This behavior is along with a common
intuition that apartments near points of interest should be
more expensive.

The correlation and scatter plots analyzed features one-by-
one. In the next section we will consider predictive models
that use sets of features for modeling apartment prices.

3. Case study

The goal of this pilot case study is to investigate whether
accessibility information helps to model real estate prices,
as compared to using only geographical location informa-
tion. In addition, we investigate informativeness of dy-
namic points of interest (derived from social networks) as
opposed to stationary fixed points of interest.

3.1. Experimental protocol

We model price per square meter. An alternative would
be to model the total price. We choose the former as the
target variable, because price per square meter is easier to
interpret and compare across neighborhoods.

We limit our analysis to linear regression, which is easily

interpretable. Note, however, that some of the features are
expressed as non-linear functions of simpler features (e.g.
fyear is a non-linear function of a building’s age, as ex-
plained above). The ordinary least squares procedure (the
standard implementation in R) is used for estimating the
model parameters.

For assessing the performance we use two common accu-
racy measures: coefficient of determination (R2) and mean
absolute error (MAE). Coefficient of determination is a rel-
ative accuracy measure, where 1 means the best possible
performance, and 0 means the performance is equivalent to
random. Mean absolute error indicates error in the units of
the target variable, 0 is an ideal performance, the higher the
MAE, the worse the performance.

We report R2 and MAE measured on the whole dataset
used for model fitting (fit) and via 10 fold cross-validation
(cv), which iteratively fits a model on 90% of the data, and
tests on the remaining part. Cross-validation scores provide
an indication of how models would generalize to unseen
data.

3.2. Performance of base models

Base models do not use any accessibility information, and
use only very basic location information. The first base
model (Size-year) does not use location at all, and is based
only on size of the apartment and its construction year
(fyear). The second model in addition uses basic loca-
tion information, encoded as raw geographical coordinates,
centered in the old town of the city.

The resulting models for price per square meter are:

price = 3722 —4.97 x size + 0.91 X fyear,

and

price = 5643 — 5.14 x size + 0.78 X fyear +

+  38.9 x east — 147.7 x north.

The models are consistent with common intuition: the
larger the apartment, the cheaper the price per square me-
ter; older or newer apartments with respect to 1970 con-
struction year are more expensive; the further to the north
from the sea and the city center, the cheaper. Easterness
has a positive effect, which is somewhat inconsistent with
a common intuition that cheaper neighborhoods are in the
east. However, this can be explained by the range of data
(see Figure 4). Data extends further to the west than to the
east, therefore, western apartments are on average further
from the center, and thus cheaper.

Table 2 reports predictive accuracies of the base models.
We can make two observations. First, Size-year-location
model already performs quite well with the cross-validation
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Table 2. Base models for predicting price per m2. R2 - coefficient
of determination (the higher, the better), MAE - mean absolute
error (the smaller the better).

Model R2fit MAEfit R2test MAE test
Size-year 0.34 1062 0.33 1063
Size-year-location  0.56 836 0.55 837

Table 3. Accessibility for predicting price per m2. Size-year-
location model with one additional accessibility feature at a time.

Add feature R2fit MAEfit R2test MAE test
Metro distance 0.58 811 0.58 813
Metro access 0.56 835 0.55 836
H&M distance 0.56 837 0.56 838
H&M travel time 0.56 831 0.56 832
Stockmann distance ~ 0.61 781 0.61 782
Stockmann t. t. 0.58 811 0.58 812
4square dist. all 0.58 813 0.58 814
4square t. t. all 0.58 804 0.58 805
4square dist. peak 0.59 807 0.59 809
4square t. t. peak 0.59 799 0.59 800

R2 result 0.55. Second, the fit and the cross-validation per-
formance differs only a little, which suggests that there is
no notable overfitting, and the model could use more infor-
mative input features.

3.3. Predictive power of accessibility

Next we test whether adding accessibility information
helps to predict more accurately. We test accessibility to
the city center (Stockmann), local centers (HM), and dy-
namic centers of interest (4square check-ins) overall and at
morning peak times (from 6:00 to 10:00). We compare in-
formativeness of using air distance as a feature to using the
total travel time by public transport.

We use the base model Size-year-location as a starting
point, add one feature at a time to it, and measure the accu-
racy. Table 3 reports the results.

From the resulting accuracies we can see that accessibil-
ity has some predictive power, as in all cases the predictive
performance improves as compared to the base model. The
results indicate that the distance to the city center (Stock-
mann) is more informative than the travel time by pub-
lic transport. However, accessibility to the local centers
(fixed centers H&M and dynamic centers 4square) by pub-
lic transport is more informative than just the air distance
to those centers. In other words, it seems that an apartment
price relates to the overall geographical location, but acces-
sibility to local centers of interest is more important than
just the geographical distance to those centers. This is an
interesting finding for exploring in detail in future studies.

We report selected models. Metro distance is intuitive - the

closer to metro, the more expensive is the apartment:

price = 5300 — 3.94 x size + 0.77 X fyear —
—  62.2 x east — 50.8 x north — 158.4 x metro.

Adding metro distance shrinks other coefficients, which
suggests that earlier this feature was indirectly captured.
More importantly, adding metro distance changes the di-
rection of the easternness coefficient from positive to neg-
ative. Now it is more intuitive keeping in mind peculiar-
ities of Helsinki residential neighborhoods, where overall
the east is considered cheaper than the west.

Stockmann distance is as well intuitive - the closer to the
center, the more expensive is the apartment:

5698 — 3.78 x size + 0.72 x fyear +
3.3 X east — 59.8 x north — 117.8 x dstock.

price =

Shortest H&M travel time is intuitive - the shorter the travel
time to the local center, the more expensive is the apart-
ment:

price = 5681 — 5.00 x size + 0.78 x fyear +
+  37.0 x east — 139.6 x north — 39.3 x thm.

Shortest 4square travel time is intuitive - the shorter the
travel time to a center of interest, the more expensive is the
apartment:

price = 5659 — 3.55 X size + 0.77 X fyear +
4+ 13.5 X east — 103.3 X north — 31.4 x t4sq.

3.4. Final predictive model - everything together

Finally, we collect a set of promising features into one final
model, and test its performance. The final model includes
the base model (Size-year-location), metro distance, Stock-
mann distance (a proxy for distance to the city center), and
travel times to H&M and 4square (peak) local centers.

While the final feature selection is done after seeing the in-
termediate performance results, the fit accuracies have been
very similar to those of cross-validation, therefore the risk
of overfitting is not high.

The final model fitted on all the data is

5729 — 4.06 x size + 0.71 x fyear +
31.6 x east — 94.5 X north +

73.0 x metro — 139.0 x dstock +
21.6 x thm — 12.5 X t4sq2

price =

+ + +

We can see some interesting relations, reflecting peculiar-
ities of the Helsinki region. First, the longer the metro

70



Accessibility predicts real estate prices in Helsinki

Table 4. Final model for predicting price per m2.
R2fit MAEfit R2test MAE test
0.63 752 0.62 753

Model
Final model

distance, the higher the price, while one could expect the
opposite. Our interpretation is that the metro distance cap-
tures what was not very successfully captured by the east-
ernness. We observe that the coefficient of easternness
shrinks when metro comes into the equation. In Helsinki
metro runs only to the eastern suburbs, and these sub-
urbs are considered less prestigious neighborhoods than the
west, and, therefore, residential prices there are lower.

Table 4 reports the performance figures. The final model
shows the best performance seen so far, and reasonably
good accuracy in relative and absolute terms (testing R2
=0.62).

4. Conclusion

We have experimentally explored several models for real
estate prices in Helsinki region, focusing our analysis on
accessibility by public transport and dynamic points of in-
terest, obtained via check-ins into social networks. We
have found that even a basic account for accessibility fea-
tures helps to improve the accuracy of price estimates. We
have discovered that an apartment price relates to the geo-
graphical distance from the city center, but accessibility by
public transport to local centers of interest is more infor-
mative than just the geographical distance to those centers.

Integrating such data could help to model residential real
estate prices more precisely, and, as a result, better under-
stand urban mobility patterns and activities. Such mod-
els can contribute to managing, coordinating and long term
planning of mobility, and overall development of modern
smart cities.
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