
An overview on the termination conditions in
the evolution of game bots

A. Fernández-Ares, P. Garćıa-Sánchez, A. M. Mora, P. A. Castillo, J. J.
Merelo, M. G. Arenas, and G. Romero

Dept. of Computer Architecture and Technology, University of Granada, Spain
{antares,pablogarcia,amorag,pacv,jmerelo,mgarenas,gustavo}@ugr.es

Abstract. Evolutionary Algorithms (EAs) are frequently used as a mech-
anism for the optimization of autonomous agents in games (bots), but
knowing when to stop the evolution, when the bots are good enough,
is not as easy as it would a priori seem. The first issue is that optimal
bots are either unknown (and thus unusable as termination condition) or
unreachable. In most EAs trying to find optimal bots fitness is evaluated
through game playing. Many times it is found to be noisy, making its
use as a termination condition also complicated.
This paper summarizes our previous published work where we tested
several termination conditions in order to find the one that yields op-
timal solutions within a restricted amount of time, to allow researchers
to compare different EAs as fairly as possible. To achieve this, we ex-
amined several ways of finishing an EA who is finding an optimal bot
design process for a particular game, Planet Wars in this case, with the
characteristics described above, determining the capabilities of every one
of them and, eventually, selecting one for future designs.

Keywords: Videogames, RTS, evolutionary algorithms, termination cri-
teria, noisy fitness

1 Introduction

Evolutionary Algorithms (EAS) are one of the methods usually applied to find
the best autonomous agent for playing a game, i.e. the best bot [1, 2] through a
process mimicking the natural evolution of the species. As in any other algorithm,
the termination condition is a key factor as the rest ot the experimental setup
since it affects the algorithmic performance, with respect to the quality of the
yielded solution, and also to the amount of resources devoted to the run. The
usual stopping criterion in EAs [3] is reaching a constant number of generations
(or evaluations), which is normally related to a fixed computing power budget for
carrying out the run. Another usual approach is based in a number of generations
in which the best solution is not improved or the distance to the optimum is not
reduced [4]. However, neither of them might be useful in certain kind of problems
such as games, mainly due to the noisy nature of the fitness function [2].

Noise and optimal fitness reachability, are normally not taken into account
when choosing how to stop the evolution process. Usual approach is to use a fixed



2 A. Fernández-Ares et al.

number of evaluations or a fixed amount of time, usually given by the game or
challenge constraints.

In this paper we present a summary of our previous work [5], where we tried
to solve these issues by the introduction of novel stopping criteria for the EAs.
They are compared against classical ones, and among themselves when trying
to generate competitive bots for video games using Genetic Programming (GP)
[6], as this method has proved to be quite flexible and has obtained good results
in previous works [7].

Planet Wars1 game was chosen in our experiment, as it is a simple Real
Time Strategy (RTS) combat-based game (only one type of resource, one type
of attack and one type of unit), and also it has been widely used in the literature,
using different generation methods and fitness functions [8–11]. This game fulfills
the next two conditions: initial position of bots is random and the decisions are
stochastic, although the result of the combat is deterministic.

Summarizing, the objective of the study presented in [5] (and outlined in
this work) was to find a stopping criteria that converges to optimal solutions
and that is independent of the method chosen. To measure the quality of every
approach, we considered time, or number of generations, needed to obtain the
solution and the quality of that solution.

2 Methodology and experimental setup

As previously stated, in our described work [5] we proposed different termination
criteria based on different EA features, such as the parameters of the algorithm
(maximum number of generations) or the population (improvement, replacement
or age). A Score Function was proposed in order to measure the quality of a
generated bot (a solution or individual in the algorithm). This scoring method
tries to reduce the effects of the noisy evaluation (following the guidelines of
other works [12]) by computing fitness from the result of 30 different matches
against an expert rival. Thus, the function considers the number of victories,
turns to win and turns resisted before being defeated by the opponent (in the
case of lose). The rival is ExpGenebot [13], and based on the improvement of the
heuristics proposed by a human player.

The fitness of each individual i of the population is obtained using the next
formula where N is the number of simulations2:

Scorei = α+ β + γ (1)

α = v, α ∈ [0, NB] (2)

β = NB ×
twin + 1

N×tMAX+1
twin

v+1 + 1
, β ∈ [0, NB] , twin ∈ [0, NB × tMAX ] (3)

1 http://planetwars.aichallenge.org/
2 The ‘1’ in all denominators is used to avoid dividing by 0 and for the ratio calculation.



An overview on the termination conditions 3

γ =
tdefeated

NB × tMAX + 1
, γ ∈ [0, 1] , tdefeated ∈ [0, NB × tMAX ] (4)

The terms used are: the number of battles (NB) to test, the number of
victories of the individual against ExpGenebot (v), the sum of turns used to
beat ExpGenebot (twin) in winners simulations, the sum of turns when the
individual has been defeated by ExpGenebot (tdefeated) in losing simulations
and the maximum number of turns a battle lasts (tMAX).

GP algorithm evolves a binary tree formed by decisions (logical expressions
that evaluate the current state of the game) and actions (the leafs of the tree:
the amount of ships to send to a specific planet). This tree is evaluated in each
player’s planet, analysing the current state of the map/planet (decision), and
how many ships send from that planet to an specific target planet (action).
These target planets can be the wealthiest, the closest one, etc. owned by the
player or the enemy, or neutral. The possible actions and decisions are listed
in [7]. The complete set of used parameters were described in the work we are
summarizing here [5].

We designed a set of five different algorithm stop criteria which were checked
in the paper, namely:

– [NG] Number of Generations: it is the classical termination criteria in evo-
lutionary algorithms: 30, 50, 100 and 200 generations.

– [AO] Age of Outliers: if the age of individual is an outlier in the compar-
ison with the rest of the population then it would be potentially an optimal
solution and the algorithm can be stopped: 1, 1.5, 2 and 2.5 times the in-
terquartile range (IQR)

– [RT] Replacement Rate: when using an elitist strategy in which individuals
are replaced only if the offspring is better, the fact that the population stops
generating better individuals might be a sign of stagnation: n

2 , n
4 , n

8 , and n
16 .

– [FT] Fitness Threshold: a maximum value to obtain in the evolution
could be set considering the top limit of the score function: 20 (as half the
maximum: MAXSC/2), 30 (as half the maximum score plus half this value:
MAXSC/2+MAXSC/4), and the division in four parts of the interval these
values compose: 22, 24, 26 and 28.

– [FI] Fitness Improvement: if the best fitness is not improved during a
number of generations, the algorithm must stop. Four possible values will be
tested: 3, 7, 10 and 15 generations.

3 Experiments and Results

The experiments conducted involved 36 runs, each of them configured including
all the defined stop criteria, and also adding an extra termination one, i.e. getting
to 500 generations, in order to avoid non-ending runs.

The results showed the absence of some of the commented stop values for the
Fitness Threshold criterion, namely 28 and 30, because they were not reached in



4 A. Fernández-Ares et al.

any of the runs. The results also showed that all the criterion are well defined,
since all the scores grow in every criterion block, so as more restrictive the
criterion is (they are met with a lower probability), the higher the obtained score
is. The score function worked as expected, even with the presence of noise. This
is true in all the cases except in the Age of Outliers which is so far the criterion
with the worse results, as it is also proved by the statistical test which does
not find significant differences between the scores obtained by every age-based
criterion and the previous and next ones. The Replacement Rate criterion yielded
the best distribution of results, with a clear fitness improvement tendency and
a very good maximum score, close to that obtained by the Fitness Thresholds.

In addition to these two studies, a new measure factor was computed by
means of a benchmark based in battles against a different competitive bot avail-
able in the literature [13] in 100 maps (some of them used during the evolution).
This test was conducted for the best individual obtained when every criterion
was met in every run, thus 20x36 bots have been tested. The best results were
yielded by the most restrictive of each criterion, highlighting the FT results.
This is also a reinforcement to the correctness of the score function. Score and
generations measures are compared in Figure 1. As it can be seen, an improve-
ment in the fitness/score means a higher number of generations are required.
This happens in almost all the cases, with some exceptions such as some of RT
criteria, which get a higher score value in less generations than other criteria.
However, this happens due to the commented problem of noise. Finally Table 1
presents all the results as a summary. It also shows the completion rate of every
stop criterion. Moreover, a comparative set of values was computed, considering
the number of generations equal to 30 (usual in previous papers) as the standard
value to relativize the rest.

The FI criterion is useful to ‘detect’ local optima. Increasing the restriction
value of this method lets the EA more generations to escape from a local opti-
mum, obtaining significantly better results. As the EA can quickly converge to a
local optima, using this method could be equivalent to set a fixed (but unknown)
number of generations, enough to detect a stagnation in the population (that
can be useful in some evolutionary approaches). However, the results show that
this criterion has stopped in local optima that other methods have surpassed.
Finally, RT provides the best results considering all metrics: generations, score
and completion rate. It is based on replacement rate, so it indirectly measures
how the whole population increases their abilities, without explicitly measure
the average fitness. This is useful in this kind of problems, i.e. where there is a
noisy fitness function and the optimal solution is unknown.

4 Conclusions

Using Evolutionary Algorithms (EAs) to generate bots for playing games have
two main issues: the fitness is noisy and optimal bots are either not known or
unreachable. This makes it difficult to find a good stopping criterion for the EA.
In [5] four different stopping criteria, based in fitness and in the population,



An overview on the termination conditions 5

1 2 5 10 20 50 100 200 500

1
0

1
5

2
0

2
5

Average GENERATION to stop

A
ve

ra
g
e
 S

C
O

R
E

 o
f 
B

e
s
t 
In

d
iv

id
u
a
l

AO_1.0 <100%>

AO_1.5 <100%>

AO_2.0 <100%>
AO_2.5 <100%>

FI_03.0 <100%>

FI_07.0 <100%>

FI_10.0 <100%>

FI_15.0 <100%>

FT_20.0 <100%>

FT_22.0 <100%>

FT_24.0 <78%>

FT_26.0 <22%>

NG_050.0 <100%>

NG_100.0 <100%>

NG_200.0 <100%>

RT_n/02 <100%>

RT_n/04 <100%>

RT_n/08 <100%>

RT_n/16 <67%>

Fig. 1: Average score of the best individual and
average reached generations per termination crite-
ria.

Stopping Absolute Relative
R

Criteria G S V G S V

NG 030.0 30.00 16.31 45.92 1.00 1.00 1.00 1.00
NG 050.0 50.00 17.80 52.72 1.70 1.09 1.15 1.00
NG 100.0 100.00 19.21 57.25 3.37 1.18 1.25 1.00
NG 200.0 200.00 20.25 58.39 6.70 1.24 1.27 1.00
AO 1.0 8.83 13.46 35.89 0.29 0.83 0.78 1.00
AO 1.5 10.33 14.07 34.83 0.34 0.86 0.76 1.00
AO 2.0 14.61 14.93 38.08 0.49 0.92 0.83 1.00
AO 2.5 17.17 15.30 39.92 0.57 0.94 0.87 1.00
RT n/02 2.00 10.20 20.58 0.07 0.63 0.45 1.00
RT n/04 5.47 12.21 28.17 0.18 0.75 0.61 1.00
RT n/08 78.64 18.16 50.94 2.62 1.11 1.11 1.00
RT n/16 248.21 21.34 62.92 8.27 1.31 1.37 0.66
FT 20.0 55.08 20.62 54.22 1.84 1.26 1.18 1.00
FT 22.0 127.56 22.65 58.25 4.25 1.39 1.27 1.00
FT 24.0 276.71 24.39 63.39 9.22 1.50 1.38 0.77
FT 26.0 378.88 26.45 74.75 12.63 1.62 1.63 0.22
FI 03.0 10.31 13.34 30.00 0.34 0.82 0.65 1.00
FI 07.0 24.56 15.54 41.39 0.82 0.95 0.90 1.00
FI 10.0 35.47 16.50 47.94 1.18 1.01 1.04 1.00
FI 15.0 52.22 17.56 53.00 1.74 1.08 1.15 1.00

Table 1: Average results of every criterion
for the three measures: Number of genera-
tions (G), Score (S), and Victories in bench-
mark (V); plus the Completion rate in ex-
periments (R). Relative values are computed
with respect to NG 30.0.

were tested and compared with the classical approach of the fixed number of
generations. This paper summarizes the contents of that previous work.

Several experiments were conducted, using different metrics based in a score
function, the number of generations reached for each criterion, and the number
of victories that the best yielded bots per criterion have obtained against an
external rival (not the same used in the fitness computation). According to the
results, initially, a stopping criterion based in Fitness Threshold would be the
most desirable option, as it attains the best score. However, in this kind of
problems, it is quite difficult to find an optimal fitness value to use (normally it
is unknown). Therefore, the best option would be using a Replacement Rate as
stopping criterion, since it is a compromise solution which relies in the population
improvement without implicitly use the fitness.

As future work, new problems (and algorithms) will be addressed to validate
the proposed stopping criteria, using different environments and new score func-
tions. In addition, mechanisms to improve the EA will be used in conjunction
with the proposed methods, for example, increasing the search space when a
stagnation of the population is detected.



6 A. Fernández-Ares et al.

Acknowledgments

This work has been supported in part by SIPESCA (Programa Operativo FEDER de Andalućıa
2007-2013), TIN2011-28627-C04-02 (Spanish Ministry of Economy and Competitivity), SPIP2014-
01437 (Dirección General de Tráfico), PRY142/14 (Fundación Pública Andaluza Centro de Estudios
Andaluces en la IX Convocatoria de Proyectos de Investigación), PYR-2014-17 GENIL project and
V17-2015 of the Microprojects program 2015 (CEI-BIOTIC Granada).

References

1. Small, R., Bates-Congdon, C.: Agent Smith: Towards an evolutionary rule-based
agent for interactive dynamic games. In: Evolutionary Computation, 2009. CEC
’09. IEEE Congress on. (2009) 660–666

2. Mora, A.M., Montoya, R., Merelo, J.J., Sánchez, P.G., Castillo, P.A., Laredo,
J.L.J., Mart́ınez, A.I., Espacia, A.: Evolving Bots AI in Unreal. In di Chio et
al., C., ed.: Applications of Evolutionary Computing, Part I. Volume 6024 of Lec-
ture Notes in Computer Science., Istanbul, Turkey, Springer-Verlag (2010) 170–179

3. Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University Press
(1996)

4. Roche, D., Gil, D., Giraldo, J.: Detecting loss of diversity for an efficient termina-
tion of eas. In: 15th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2013, Timisoara, Romania, September 23-26,
2013, IEEE (2013) 561–566

5. Fernández-Ares, A., Garćıa-Sánchez, P., Mora, A.M., Valdivieso, P.A.C., Guervós,
J.J.M., Arenas, M.I.G., Romero, G.: It’s time to stop: A comparison of termination
conditions in the evolution of game bots. In: Applications of Evolutionary Com-
putation. Volume 9028 of Lecture Notes in Computer Science., Springer (2015)
355–368

6. Koza, J.R.: Genetic Programming: On the programming of computers by means
of natural selection. MIT Press, Cambridge, MA (1992)

7. Garćıa-Sánchez, P., Fernández-Ares, A.J., Mora, A.M., Castillo, P.A., Merelo, J.J.,
González, J.: Tree depth influence in genetic programming for generation of com-
petitive agents for rts games. In: EvoApplications, EvoStar. (2014) 411–421

8. Mora, A.M., Fernández-Ares, A., Guervós, J.J.M., Garćıa-Sánchez, P., Fernandes,
C.M.: Effect of noisy fitness in real-time strategy games player behaviour opti-
misation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5) (2012)
1007–1023

9. Fernández-Ares, A., Mora, A.M., Guervós, J.J.M., Garćıa-Sánchez, P., Fernandes,
C.: Optimizing player behavior in a real-time strategy game using evolutionary
algorithms. In: IEEE C. on Evolutionary Computation, IEEE (2011) 2017–2024

10. R, L.C., Cotta, C., Fernández-Leiva, A.: On balance and dynamism in procedural
content generation with self-adaptive evolutionary algorithms. Natural Computing
13(2) (2014) 157–168

11. Nogueira-Collazo, M., C., C., Fernández-Leiva, A.: Virtual player design using
self-learning via competitive coevolutionary algorithms. Natural Computing 13(2)
(2014) 131–144

12. Mora, A.M., Fernández-Ares, A., Guervós, J.J.M., Garćıa-Sánchez, P., Fernandes,
C.M.: Effect of noisy fitness in real-time strategy games player behaviour optimi-
sation using evolutionary algorithms. J. CST. 27(5) (2012) 1007–1023

13. Fernández-Ares, A., Garćıa-Sánchez, P., Mora, A.M., Guervós, J.J.M.: Adaptive
bots for real-time strategy games via map characterization. In: CIG, IEEE (2012)
417–721


