
1

A B2B message-exchange pattern based formal
approach for Semantic Web services

Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler
Digital Enterprise Research Institute (DERI), Ireland. National Univesity of Ireland, Galway.

Abstract: Current Business-to-Business interactions rely on complex exchange of
messages. Web Services technologies provide a basis to establish the Web as
the ubiquitous technical platform for B2B applications. However, there is a
need of formalism for specifying behaviour and verifying certain properties
such as well-formedness or deadlock freedom. In this paper, we present a
message-exchange pattern based language and its formal semantics and
discuss the benefits obtained by such formalization.

Key words: Semantic Web Services, B2B, process algebra

1. INTRODUCTION

This method of producing a text is one we all intuitively understand.
After al The Internet is going trough several major changes. Recently, it has
become a new vehicle for business transactions and information exchange
rather than just a repository of information. Companies are challenged to
publish and share services on the web. Furthermore, integration of services
through different companies would foster the development of Business-to-
Business (B2B) [Bussler, 03] interactions by sharing costs and reusability.

As the technology associated to Business-to-Business (B2B) interactions
gains momentum, the need for a formal approach to message exchange
becomes increasingly important. The concept of web services has recently
come up into the arena. Web services provide standard protocols for
discovering, invoking, describing and composing services. Current web

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

service technology, based on SOAP, WSDL and UDDI, has a very basic and
non-automated interaction model. Composition of simple services into
complex ones represents a natural evolution of the technology. In this
context, some business processes proposals are in the playground, from
which, at the moment, BPEL4WS [Thatte et al, 03] seems to be ahead.

 However, the problem is that none of these current approaches is
formalized and present the real semantics of the B2B interaction. Deadlock-
detection or well-formedness of the interactions may not be accomplished
and they lack the reliability and efficiency that is expected from a business
context point of view. For example, this deficiency could lead to a massive
failure of the system in case of a deadlock, which reverts into a loss of profit,
bad-mouthing and complaints and a negative image that technical
departments are usually appalled by and try to avoid at any price.

 Hence, in this paper, we propose a new approach that, to our knowledge
has never been attempted. We take as a reference the W3C WSDL message
exchange patterns and present a formal approach for B2B interactions. This
approach is based on a pat-ter-based algebra built on well- founded process
algebra semantics. Our model allows properties such as well-formedness
and deadlock freedom to be checked. Given that we are trying to provide
very well-defined semantics for Web Services technologies, our effort falls
into the category of Semantic Web Services, which aim to provide a
conceptual and formal model for Web Services.

This paper is structured as follows. In section 2, we present a general
introduction to W3C WSDL message exchange patterns. Section 3 describes
and defines, firstly the syntax and informal description of our algebra, and
then its formal semantics. In section 4, the advantages of our approach for
modeling B2B interactions are discussed and a simple B2B use case is
modeled. Finally, we present future and related work in section 5.

2. MESSAGE EXCHANGE PATTERNS

The W3C Architecture describes a set of related technologies that
exchange messages between senders and receivers. The architecture
formalizes the exchange of messages into "patterns". These basic patterns
can be combined to more complex patterns that build up a whole
conversation. For example a bid process can be modelled as a number of
incoming messages (representing the single bids), followed by a single out
message signaling one of the buyers the acceptance of a bid. Describing
these patterns and the specific combinations of those will enable reusability
and a common understanding between the parties involved. In that way

A B2B message-exchange pattern based formal approach for
Semantic Web services

patterns form a contract between provider and requester enabling their
communication:

To describe those patterns we will use a simplified version of the scheme
proposed in [Hohpe & Woolf, 2003]:
– Name of the pattern
– Short Description / Sketch: One or two sentences possibly accompanied

by a diagram to grasp the essence of the pattern
– Description: The actual description of the pattern.
– Example: A simplified example illustrating the pattern.

 First, we focus on patterns describing one participant of the
conversation called Input Output Patterns (IOP), in Section 2.1. Section 2.2
describes how these patterns can take both participants of the conversation
account.

2.1 Input Output Patterns (IOP)

An Input Output Pattern (IOP) is a sequence of one or more messages
related, in the case of W3C WSDL patterns [Gudgin et al., 2003] to a Web
Service. Actually, each pattern is a combination of the following elements:
an input message received by a web service and output message sent and a
fault handling mechanism. The IOP specifies the sequence and the number
of messages including their direction as either a specific number or a
variable. The IOP patterns are as follows:

P1- Pattern 1: In-Only Pattern

– Name: In-Only
– AKA: One-way-in
– Short Description: An endpoint or node receives a message
– Description: This pattern consists of exactly one message as follows: A

message with the direction ‘in’ received from some node N.
– Example: The receipt of any kind of Notification (e.g. a shipment notice

of a retailer that an ordered product left its premises); or a Receipt of a
Request for Quotation (that is not directly followed by an offer)

P2- Pattern 2: In-Out Pattern

– Name: In-Out
– AKA: Request-Response
– Short Description: An endpoint or node receives a message and then

sends a message handling any fault.

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

– Description: This pattern consists of exactly two messages, in order, as

follows: A message with the direction ‘in’ received from some node N.
– A message with the direction ‘out’ sent to node N
– Example: The receipt of a Purchase Order (PO) and the reply with a POA

(Purchase Order Acknowledgment)

P3 – Pattern 3: Out-Only Pattern

– Name: Out-Only
– AKA: One-way-Out
– Short Description: An endpoint or node sends one message out.
– Description: This pattern consists of exactly one message as follows: A

message with the direction ‘out’ sent to some node N
– Example: The sending of any kind of Notification (e.g. a shipment notice

of a retailer that an ordered product left its premises); or the broadcast of
a Request for Quotation (where the reply is not modelled within this
pattern)

P4- Pattern 4: Out-In Pattern

– Name: Out-In
– AKA: Solicit Response
– Short Description: An endpoint or node sends one message out and

receives one message in.
– Description: This pattern consists of exactly two messages, in order, as

follows: A message with the direction out is sent to some node N and
then a response.

– Example: An issue of a Purchase Order (PO) followed by a receipt of a
Purchase Order Acknowledgement (POA).

P5- Pattern5: In-Multi-Out Pattern

– Name: In-Multi Out
– AKA: Multicasting
– Short Description: An endpoint or node receives a message and sends

zero, one, or more messages out handling any fault.
– Description: This pattern consists of one or more messages. A message

with the direction ‘in’ received from some node N and zero, one or more
messages with the direction ‘out’ sent to node N.:

– Example: An event message received which triggers a notification
message to multiple parties.

A B2B message-exchange pattern based formal approach for
Semantic Web services

P6- Pattern 6: Out-Multi-In Pattern
– Name: Out-Multi In
– AKA: Multicasting
– Short Description: An endpoint or node sends one message out,

optionally receives zero, one or more message in and handles any fault.
– Description: This pattern consists of one or more message. A message

with the direction ‘out; is sent to some node N and zero, one or more
messages with the direction ‘in’ are sent from node N.

– Example: An issue of a Request for Tender followed by an optional
receipt from interested parties.

2.2 Message Exchange Patterns (MEP)

 A message exchange pattern (MEP) describes both nodes involved in a

conversation and introduce the notion of compatibility. This distinction
follows also the discussion in [Both & Lewis, 2003], which in essence
describe that IOPs make no explicit assumption about the second node of a
conversation, whereas MEPs do.

 Generally a Message Exchange Pattern can be described as a template
for the ex-change of messages between nodes [Haas&Brown, 03]. More
precisely a Message Exchange Pattern (MEP) is the combination of two
IOPs such that sender and receiver of every message are exactly defined. A
conversation is defined here as a specific exchange of messages. Concrete
Message exchange patterns are described in Table 2. This table summarizes
possible combinations between IOPs.

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

Node 2

 In-
Only

In-
Out

In-
Multi-
Out

Out-
Only

Out
-In

Out-
Multi
-In

In-
Only X X

In-Out X X

In-
Multi-
Out

 X X X

Out-
Only X X

Out-In X X

N
od

e
1 Out-

Multi-
In

X X X

Table 1: Message Exchange Pattern Matrix

Legend: X, the IOP combination is fully compatible between the two

nodes

 not applicable
 omitted (since duplicated)

By describing MEPs, the analysis is starting to look at both sides of the

interaction. If one node is described by an IOP and has a particular behavior,
we need to show a complementary behavior (IOP) of a second node in order
to describe a whole conversation.

In this section, we discussed various ways of combining message
exchange patterns. However, a formal approach is required to check certain
properties of the conversation. In this context, next section will provide
further steps in that direction.

A B2B message-exchange pattern based formal approach for
Semantic Web services

3. PATTERN-BASED APPROACH

In this section, we describe first the syntax and informal semantics of our
pattern-based algebra. Then, we will use the formal semantics of CCS given
in [Plotkin,81]. Our goal is to represent a conversation in a formal way as a
set of the message-exchange patterns detailed in the previous sections. A
conversation is a set of messages exchanged from two processes or entities.
By formalizing this exchange, we can analyze and check behavioural
properties of the conversation. In the case of a B2B system, this means we
can verify deadlock and livelock freedom, behavioural equivalence and
some other suitable properties for the reliability of the system. In our model,
we will not consider the use of recursive expressions. A conversation can not
be infinitely long.

3.1 Informal semantics and syntax

Here comes the first definition of our pattern-based algebra and its
informal BNF grammar syntax.

Definition 3.1 Our pattern-based algebra sticks to the following BNF-
grammar:

 1 2 1 2:: | | | ||C N K P P P P== +
where:

– C represents a conversation
– N represents the 0 / Nil pattern, which performs no action.
– K represents a simple pattern.
– 1 2P P+ represents a composite pattern. The add operator is a constructor

to describe a sequential behavior. Given two patterns, 1P and 2P , 1P is
performed followed by the 2P pattern.

– 1 2||P P represents a composite pattern. It describes two patterns P1 and
P2 being performed in parallel.

3.2 Formal semantics

We will somehow base our algebra in the CCS theory and formal
semantics. The theory of Calculus Communicating Systems (CCS) was
developed by Robin Milner, from 1973 to 1980, culminating with the
foundational book [Milner,80]. Milner noticed that concurrent processes
have an algebraic structure. For example, once we have built two processes P
and Q, a new process is created from combining P and Q sequentially or in
parallel. These combinations result in processes whose behaviour depends

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

on P and Q and the used operation to combine them. Identifying ways of
combining them with algebraic operators leads to the conclusion that we can
create new processes from existing ones following an algebraic structure.
These processes also need to communicate and interact with one another, so
an inter-process communication theory is also developed. In CCS, a process
presents an interface, which de-scribes a collection of communication ports,
also called channels. Communication happens trough the ports in an input or
output way. However, this interface only gives static information about the
process. Behaviour of the process is given by a CCS description.

 The formal semantics of CCS are given by Labelled Transition Systems
(LTS), explained in [Keller, 90]. CCS expressions can be translated to set of
states of a Labelled Transition Systems, whose actions are either input or
output actions on communications ports or internal actions. Since we will
use in future sections a Labelled Transition System, here comes the
definition.

Definition 3.2 A Labelled Transition System (LTS) is a triple (Sts, Act ,{

|a a Act⎯⎯→ ∈ }), where:
 Sts is a set of states
 Act is a set of actions
 a Sts Sts⎯⎯→⊆ × is a transition relation for every a Act∈

When defining the formal model of CCS, some rules capture the informal

semantics of CCS constructors and turn them into, first, an elegant and
formal syntax, secondly defining its formal semantics. These semantics are
taken from the framework for Structural Operational Semantics.
[Plotkin,81].

 Now we will proceed to define all the elements of our algebra in the
context of the CCS formal semantics.

Definition 3.3 The N pattern represents the empty pattern. It is
equivalent to the CCS 0 or Nil process, which performs no action i.e. it is a
no-op process.

Definition 3.4 The composite pattern P1+P2 is defined as follows. Let

LTS1 be the Labelled Transition System corresponding to P1 and LTS2 the
one corresponding to P2 as stated in Definition 3.1. Let Sts1N be the final
state of LTS1 and STS21 the initial state of LTS2. P1+P2 is represented by the
LTS formed by the union of LTS1 and LTS2 in a way that the next state for
STS1N is STS21.

Definition 3.5 The composite pattern P1 || P2 is defined by the CCS

parallel composition operation. It describes two processes that run in

A B2B message-exchange pattern based formal approach for
Semantic Web services

parallel one with the other and may communicate via the communication
ports they share and use in complementary fashion. By complementary, we
understand that one of the processes uses the port for input and the other for
output. In the general theory of CCS this communication is possible, but not
compulsory. These processes may proceed independently and have no
interaction.

 Actually, some of the patterns described in section 2.1 can be expressed

by means of our algebra. For example, Pattern 5 could be described with the
expression (1), a Pattern 1 pattern and a sequence of Pattern 3. In the
expression P1 represents a Pattern 1 and P3 a Pattern 3.

1 3 3 3...P P P P+ + + + (1)

Likewise, Pattern 6 can be described as one Pattern 3 and a sequence of

Pattern 1 as in expression (2).

3 1 1 1...P P P P+ + + + (2)

In the next section, we take a closer look to the advantages of this

approach and how can we use our algebra.

4. THE ADVANTAGES OF OUR APPROACH

There are several advantages in our approach. First of all, the defined
semantics can be used to prove algebraic properties of the constructs such as
commutativity or transitivity. These properties may help to produce complex
conversations by combining a set of different patterns in different ways.
Properties of the overall conversation can be proofed and analyzed.

 Model checking is another interesting feature we can apply to know
about the well-formedness of our conversation model. As specified in
[Clarke et al,96], model checking is a technique that relies on building a
finite model of a system and checking that a desired property holds in that
model. In other words, an exhaustive state space search check is performed
which is guaranteed to finish, given that the model is finite. In our
conversation, model checking devises algorithms and data structures to
handle large search spaces. This technique has been widely used in
hardware and protocol verification and recently, it has been used for
analyzing specification of software systems.

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

 One of the most desirable properties to be checked is deadlock-freedom.
Even if our system is well-formed, it can contain the possibility of deadlock.
[Roscoe,98] describes deadlock as the situation in which there exist several
unanswered attempts to communicate from process to process. In this
situation, each process is blocked, waiting patiently for the other process to
unblock it.

In our case, we will prove that deadlock detection is possible following
the approach described in [Brand et al, 83]. First, we will refer to Definition
3.2 to express the interaction as a Labeled Transition System, composed by
states and actions. Then we will use a common representation for the
connection of our processes. Each pair of processes involved in the
conversation is connected by a full-duplex, error-free, FIFO channel. Queues
and delays are not represented in the model. There are no assumptions about
the time a transition can occur, which stresses the asynchronous nature of
our system. Finally, we formally define:

Definition 4.1 .A global state is a pair <Sts,C>, where Sts is a N-tuple,

where N is a finite natural number, of states 1... NS S (where iS represents
the current state of the process) and C is a N2-tuple (11 1 21... , ...N NNC C C C)
where each ijC is a sequence of messages. Actually, ijC represents the
content of the channel from process i to process j.

Definition 4.2 .A stable N-tuple is a reachable global state where all the

channels are empty and there is no transmission from any state.
 Hence, a deadlock can be defined as the situation in which a stable N-

tuple is reached. Deadlock freedom subsequently depends on the avoidance
of such stable. For this it is necessary the detection of stable N-tuples. A
“tree-algorithm” as the one showed in [Brand et al, 83] must be used. A “tree
protocol algorithm” evaluates all possible global states and identifies every
stable N-tuples. This can only be possible because the finite number of states
of the model.

 Behavioral equivalence as understood in the CCS concurrency theory is
also an interesting property. We may like to verify if our pattern-based
conversation is similar to another. A first attempt would take us back to
Definition 3.1. Viewing our model as a Labeled Transition System, which
models processes in terms of states and transitions, we could be tempted to
argue the trace equivalence of several patterns. However, as explained in
[Milner, 80], trace equivalence is not suitable for testing behavioral
equivalence, but strong bisimulation is. Nevertheless, the analysis of how to
apply strong or weak bisimulation to our approach is far beyond the scope of
this paper.

A B2B message-exchange pattern based formal approach for
Semantic Web services

5. CONCLUSIONS AND RELATED WORK

In this paper, we presented a message exchange pattern-based algebra for
modeling interactions. The formal semantics of the algebra is expressed in
terms of the Calculus of Communicating Systems by providing a direct
correspondence between our algebra operators and a CCS constructor.
Hence, any conversation, understood as a message exchange sequence, can
be validated by means of formal methods techniques such as model-
checking. Interesting properties from the conversation can be verified, like
well-formedness or deadlock freedom.

 In the context of Semantic Web Services and B2B interactions, the need
of modeling conversations as a set of interaction patterns is gaining
momentum. A conversation can be described as “the set of acceptable
message exchanges and the order in which they should occur” [Benatallah et
al, 03].

Some proposals like the Web Services Conversation Language (WSCL)
deal with defining business payload in the public interface, typically using
XML and XML schemas. Yet defining only which documents are expected
by a web-service and which are returned in response, is not enough, it is also
necessary to define the order in which these documents are exchanged. The
notion of conversation in WSCL allows to specifying the order by diving
them into interactions, transitions and, finally, conversations. The Web
Services Choreography Interface (WSCI) [Arkin et al, 03] is a W3C
initiative to describe the flow of messages exchanged by web services.
WSCI addresses choreography from two levels: first, it builds on top of
WSDL capabilities and then it defines a model, which allows the
composition of two or more interface definitions. In The Business Process
Execution Languages (BPEL4WS) [Curbera et al,03], Abstract Processes use
process descriptions that specify the mutually visible message exchange
behaviors of each of the parties involved in an interaction.

 Finally, WS-CDL [Kavantzas et al, 04] appears as the ultimate initiative
of the W3C to represent choreographies. In a nutshell, WS-CDL is a
declarative, XML based language for defining the complementary and
observable behavior of a set of collaborating web services. The observable
behaviors are defined from a global point of view and not from the point of
view of a particular partner.

 However, none of these alternatives take into account formalization.
Formalization of web services composition based on a Petri-net algebra is
presented in [Hamadi et al, 04]. Formalization of web services
choreographies, concretely WSCI, are tackled by the interesting
contributions of [Brogi et al,0 4] by using CCS [Milner,80]. An interesting

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

link with some other process algebras such as CSP [Hoare, 85] or Pi-
Calculus [Sangiorgi, 04] could be appealing research in the direction of
mobility or axiomatization of behavioral equivalences.

 Very interesting major initiatives in the field of semantic web services
such as the Web Service Modelling Ontology (WSMO) [Roman et al., 2004]
provide a way to model choreographies by means of Abstract State
Machines [Glasser et al, 04]. Together with its reference implementation,
the Web Services Modeling Execution Environment (WSMX), they will be a
reference point for future achievements in the scope of this paper.

6. ACKNOWLEDGEMENT

This work is funded by the European Commission under the projects
DIP, KnowledgeWeb, Ontoweb, SEKT, SWWS, Esperonto, COG and h-
TechSight; by Science Foundation Ireland under the DERI-Lion project; and
by the Vienna city government under the CoOperate program.

7. REFERENCES

[Alexander, 1979] Alexander C.: The Timeless Way of Building, Oxford
University Press, 1979.

[Arkin et al. 2002] Arkin, A. et al, Web Service Choreography Interface
(WSCI) 1.0.

 [Booch et al., 1998] Booch G. Jacobsen I. and Rumbaugh J. : The
Unified Modeling Language Reference Manual, Addison Wesley, 1998.

[Both & Lewis, 2003] Booth D. and Lewis A. : Message Exchange
Patterns Versus Input/Output Patterns,W3C Disscussion Document, 2003.

[Brand et al, 83] Brand D., Zafiropulo, P. On Communicating Finite
State Machines.

[Brogi et al, 04] Brogi, A.Canal, C. Pimentel, E. Vallecillo, A.
Formalizing web services choreographies. Proceedings of the 1st
International Workshop on Web Services and Formal methods.

[Bussler,2003] Bussler,C. B2B Integration. Concepts and architecture.
Springer-Verlag,2003.

 [Clarke et al, 96] Clarke,E. Wing, J.M. Formal methods: state of the art
and future directions. Technical report. CMU-CS-96-178. Carnegie Mellon
University.

A B2B message-exchange pattern based formal approach for
Semantic Web services

 [Chinnici et al., 2003] Chinnici R., Gudgin M., .Moreau J.J, Schlimmer
J. and Weerawarana J.: Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language, W3C Working Draft, 2003, available at:
http://www.w3.org/TR/2003/WD-wsdl20-20031110/

[Glasser et al,04] Glasser,U. Gurevich,Y. Veanu,M. An Abstract
Communication model.Microsoft Technical report.

[Gudgin et al., 2003] Gudgin M., Lewis A. and Schlimmer J.: Web
Services Description Language (WSDL) Version 2.0 Part 2: Message
Patterns, W3C Working Draft 10 November 2003, available at:
http://www.w3.org/TR/2003/WD-wsdl20-patterns-20031110/.

[Haas & Brown, 2003] Haas H. and Brown A.: Web Services Glossary,
W3C Working Draft, 2003

[Hamadi et al,04] Hamadi R.,Benatallah B.. A Petri Net based model for
Web Service Composition. Fourteenth Australasian Database Conference
(ADC2003).

[Hoare, 85] Hoare, C.A.R. Communicating sequential processes.
Prentice-Hall. London,1985.

 [Hohpe & Woolf, 2003] Hohpe G. and Woolf B.: Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solutions, Pearson
Education, 2003.

[Huth & Ryan, 1999] Huth M. Ryan M.: Logic in Computer Science:
Modelling and reasoning about systems, Cambridge University Press,
Cambridge, 1999.

[Kavantzas et al, 04] Kavantzas, K. Burdett D. Ritzinger G. W3C
Working Draft. Web Services Choreography Description Language. Version
1.0, 27 April 2004.

[Keller, 76] Keller,R. Formal verification of parallel programs.
Communications of the ACM,19.pp.371-384

[Milner, 80] Milner,R. A Calculus of communicating systems. Number
32 in Lecture Notes in Computer Science.Springer-Verlag,1980

[Plotkin,81] Plotkin,G. A structural approach to operational semantics.
Report DAIMI FN-19, Computer Science Department, Aarhus
University,1981.

[Roscoe, 98] Roscoe,A.W. A theory and practice of Concurrency.
Prentice-Hall. London,98

[Roman et al., 2004] D. Roman, H. Lausen and U. Keller: Web Service
Modeling Ontology - Standard (WSMO - Standard), WSMO Working Draft,
2004, available at: http://www.wsmo.org/2004/d2/v02/20040306/

[Sangiorgi et al, 04] Sangiorgi,D. Walker.D. The Pi-Calculus: A theory
of Mobile Processes.Cambridge Press.

 Juan Miguel Gomez, Sung-Kook Han, Christoph Bussler

[Thatte et al,03] Thatte. D. (Ed) Andrews T. Curbera, F., Goland, Y.,
Klein, J., Leyman, F., Soller, D., Thatte, S., Weerawarana, S., Business
Process Execution Language for Web Services.

