

LINKING SEMANTICS WEB SERVICE
EFFORTS
Integrating WSMX and METEOR-S

Kunal Verma1, Adrian Mocan2, Michal Zaremba2,Amit Sheth1, John A.
Miller1, Christoph Bussler2
1LSDIS Lab, University of Georgia, Athens, Georgia, USA
2DERI, National University of Ireland, Galway

Abstract: The METEOR-S and WSMO projects deal with the lifecycle
Semantic Web services and processes. Though, they are
separate projects with different approaches, we have identified
points of interoperability between them. In this paper, we
describe the projects and present the points of interoperability.
We intend this work as a starting point for the Semantic Web
services community to start building interoperable systems.

Key words:

WSMO, WSMX, METEOR-S, Semantic Web services, WSDL-S,
Ontologies, Web service Interoperability, Web service Semantic Annotation

1. INTRODUCTION

With the growth of service oriented architectures, there has been a
exponential growth in the number of applications being exposed as Web
services. While the industrial focus has so far been on creating open
standards for Web services, there is now a greater realization in the industry
that the original goals of service oriented architectures, may be not be
realized without adequate semantic representation of the entities involved.
This is evidenced by creation of committees to formally create models for
Service Oriented Architectures [SOA-RM] and Web service choreography
[WS-CHOR] and the recent IBM-UGA technical note [WSDL-S].

 Kunal Verma, Adrian Mochan, Michal Zaremba, Amit Sheth, John
Miller, Christoph Bussler

Researchers in the academic community have been working with declaring
semantics of Web services for quite some time – OWL-S [OWL-S],
METEOR-S [METEOR-S] and WSMO [WSMO]. In this paper, we will
briefly describe two leading projects in this area –METEOR-S and WSMO,
and then discuss the points of interoperability between them. We expect this
work to act as an starting point for semantic interoperability across different
Semantic Web service and Process projects. The rest of the paper is
organized as follows. In sections 2 and 3, we provide brief discussions of
METEOR-S and WSMO (WSMX) projects. Sections 4 and 5 discuss using
WSDL-S as an interoperation point from WSMX and METEOR-S
perspectives respectively. Section 6 discusses other points of interoperability
and finally section 7 discusses our conclusions and future work.

2. WEB SERVICES EXECUTION ENVIRONMENT – WSMX

Web service Execution Environment (WSMX) is an execution
environment which enables discovery, selection, mediation, and invocation
of Semantic Web services [Cimpian et al., 2005]. WSMX is based on the
conceptual model provided by WSMO, being at the same time a reference
implementation of it. It is the scope of WSMX to provide a test bed for
WSMO and to prove its viability as a mean to achieve dynamic
interoperability of Semantic Web services. In this section, we briefly present
the WSMX functionality and its external behavior, followed by a short
overview of the WSMX architecture.

WSMX functionalities can be classified in two main categories: first is the
functionality that should be part of any environment for Semantic Web
services and second, the additional functionality coming from the enterprise
system features of the framework. In the first case, the overall WSMX
functionality can be seen as an aggregation of the components'
functionalities, which are part of the WSMX architecture. In the second case,
WSMX offers features such as plugging mechanism that allows the
integration of various distributed components, an internal workflow engine
capable of executing formal descriptions of the components behavior or a
resource manager that enables the persistency of WSMO and non-WSMO
data produced during run-time.

The main components that have been already designed and implemented
in WSMX, as described in [Cimpian et al., 2005] are: Core Component,
Resource Manager, Discovery, Selection, Data and Process Mediator,
Communication Manager, Choreography Engine, Web service Modeling
Toolkit and Reasoner. The Core Component is the central component of the

http://lsdis.cs.uga.edu/projects/METEOR-S/
http://www.wsmo.org/

Linking Semantics Web service Efforts

system connecting all the other components and managing the business logic
of the system. The Resource Manger manages the set of repositories
responsible for the persistency of the WSMO and non-WSMO related data
flowing through the system. It is offering an uniform and at the same time
the only (in the framework) point of access to potentially heterogeneous
implementation of such repositories. The Discovery component has the role
of locating the services that fulfill a specific user request. This task is based
on the WSMO conceptual framework for discovery [Keller et al., 2004]
which envision three main steps in this process: Goal Discovery, Web
service Discovery, and Service Discovery. Currently in WSMX, the Service
Discovery covers only the matching of user's goal against service
descriptions based on syntactical consideration. In case that more than one
suitable services are found, WSMX offers support for choosing only one of
them; this operation is performed by the Selection component by applying
different techniques ranging from simple "always the first" to multi-criteria
selection of variants (e.g., Web services non-functional properties as
reliability, security, etc.) and interactions with the requester. Two types of
mediators are provided by WSMX to resolve the heterogeneity problems on
data and process level. Data mediation is based on paradigms of ontologies,
ontologies mappings and alignment with direct application on instance
transformation. The Process mediation offers functionality for runtime
analysis of two given patterns (i.e., WSMO choreographies) and
compensates the possible mismatches that may appear. The Communication
Manager through its two subcomponents, the Receiver and the Invoker,
enables the communication between the requester and the provider of the
services. The invocation of services is based on the underlying
communication protocol used by the service provider and it is the
responsibility of an adapter framework to implement the interactions that
require a different communication protocol than SOAP. The Choreography
Engine has to provide a means to store and retrieve choreography interface
definitions, to initiate the communication between the requester and the
provider in direct correlation with the results returned by the Process
Mediator, and to keep track of the communication state on both the provider
and the requester sides. In addition, it has to provide grounding information
to the communication manager to enable any ordinary Web service
invocation. Even if the Reasoner it is not part of the WSMX development
effort, a WSML compliant reasoner is required by various components such
as Data Mediator, Process Mediator and Discovery. The Web services
Modeling Toolkit (WSMT) is a framework for rapid creation and
deployment of homogenous tools for Semantic Web services. An initial set
of tolls includes a WSML Editor for editing WSML and publishing it to
WSMO repositories, a WSMX Monitor for monitoring the state of the

 Kunal Verma, Adrian Mochan, Michal Zaremba, Amit Sheth, John
Miller, Christoph Bussler

WSMX environment, a WSMX Data Mediation tool for creating mappings
between ontologies, and a WSMX Management tool for managing the
WSMX environment.

WSMX external behavior is described in terms of so-called entry
points which represent standard interfaces that enable communication with
external entities. There are four mandatory entry points that have to be
available in each working instance of the system. Each of these entry points
triggers a particular execution semantics which on its turn, selects the set of
components to be used for that particular scenario. More details about
WSMX Execution Semantics can be found in [Zaremba and Oren, 2005]. As
described in [Zaremba et al., 2005] the four possible execution semantics:
• One-way goal execution. This entry point allows the realization of a

goal without any back and forth interactions. In this simplistic
scenario, the requester has to provide a formal description of its goal
in WSML and the data required for the invocation and the system will
select and execute the service on behalf of the requester. The
requester might receive a final confirmation, but this step is optional.

• Web service Discovery. A more complex (and realistic) scenario is to
consult WSMX about the set of Web services that satisfy a given
goal. This entry point implies a synchronous call; the requester
provides a goal and WSMX return a set of matching Web services.

• Send Message. After the decision on which service to use was
already made, a conversation involving back and forth messages
between the requester and WSMX has to start. The input parameter is
a WSML message that contains a set of ontology instances and
references to the Web service to be invoked and to the targeted
Choreography (if it is available).

• Store Entity in the Registry. This entry point provides an interface
for storing the WSMO related entities described in WSML in the
repository.

To summarize, WSMX architecture [Zaremba et al., 2005] consists of a
set of loosely coupled components. Having various loosely coupled
components as part of a software system is one of the fundamental principles
of a Service Oriented Architecture (SOA). Self-contained components with
well defined functionalities can be easily plugged-in and plugged-out at any
time, allowing them to use each others functionalities. Even if WSMX
provides a default implementation for all the components in the architecture,
following these principles allows third-party component offering the same
functionality (or an enhanced functionality) to be easily plugged-in. The
WSMX architecture aims to provide descriptions of the external interface
and behavior for all the components and for the system as a whole. By this,

Linking Semantics Web service Efforts

the system overall functionality is separated from the implementation of
particular components. For more details about the WSMX infomodel, the
reader can check the WSMX code base at Sourceforge1. In the future,
WSMX intends to support dynamic execution semantics, which means it will
become possible to dynamically load during runtime the intended behavior
of the system.

3. METEOR-S

Figure 1. METEOR-S Architecture

The METEOR (Managing End-To-End OpeRations) project at the
LSDIS lab addressed the issues related to workflow process management for
large-scale, complex workflow process applications in real-world multi-
enterprise heterogeneous computing environments [METEOR]. The follow-
on project, called METEOR-S endeavors to define and support the complete

1 WSMX code base at Sourceforge http://sourceforge.net/projects/wsmx

http://sourceforge.net/projects/wsmx

 Kunal Verma, Adrian Mochan, Michal Zaremba, Amit Sheth, John
Miller, Christoph Bussler

lifecycle of Semantic Web processes [METEOR-S] using four kinds of
semantics – data, functional, non-functional and execution semantics. The
data semantics describe the data (inputs/outputs) of the Web services. The
functional semantics describe the functionality of a Web services (what it
does), the non-functional semantics describes the non-functional aspects like
quality of service and business rules and the execution semantics models the
behavior of Web services and processes.

An architectural overview of METEOR-S is presented in figure 1. The
key steps in a life cycle of a Web process are:
• Development of Semantic Web services [Sivashanmugam et al., 2003;

Rajasekaran et al., 2004]
• Publication and Discovery of services [Verma et al., 2005]
• Composition of Web processes [Sivashanmugam et al., 2004]
• Optimization and Constraint analysis [Aggarwal et al., 2004]
• Runtime Environment for Semantic Web Processes [Verma et al.,

2004]

The development module provides a GUI based tool for creating
Semantic Web services representing using WSDL-S. The tool provides
support for semi-automatic and manual annotation of existing Web services
or source code with domain ontologies. WSDL-S is a joint specification with
IBM and LSDIS Lab for adding semantic annotation to WSDL. The
publication and discovery (MWSDI) module provides support for semantic
publication and discovery of Web services. It provides support for discovery
in a federation of registries as well as a semantic publication and discovery
layer over UDDI. The composition module consists of two main sub-
modules – the constraint analysis and optimization sub-module and the
execution environment. The constraint analysis and optimization sub-
modules deal with correctness and optimization of the process on the basis
of quality service constraints. The execution environment provides proxy
based dynamic binding support to BPWS4J execution engine for BPEL4WS.
A number of METEOR-S tools, including the process designer and Web
service developer, are available as open source software at
http://lsdis.cs.uga.edu/Projects/METEOR-S/Downloads/.

4. USING WSDL-S FOR INTEROPERABILITY –
WSMX PERSPECTIVE

One of the most important aspects in this context is how to link the
emerging semantic-related approaches with the already existing standards

http://lsdis.cs.uga.edu/Projects/METEOR-S/Downloads/

Linking Semantics Web service Efforts

and technologies. That is, WSMO and METEOR-S propose solutions
towards Semantic Web services, but it is important to keep in mind that
(most of) the existing Web services have to be invoked using SOAP and
their interfaces are described using WSDL. Therefore, grounding is about
filling the gap between the WSMO semantic descriptions of Web services
and the classical technologies used today. Basically, two main tasks can be
distinguished: first to determine which WSDL operation corresponds to the
piece of functionality to be consumed (semantically described in the WSMO
Web service’s capability); second to prepare the data to be used in the
invocation as required by the type’s definition of inputs in the invoked
operation.

WSMX has been confronted with this problem even from the first release
when a hard-coded solution was adopted to map semantic descriptions of the
Web services with specific WSDL operations. As WSMX became more
mature, dynamic and coherent solution were required to enable the full
integration of classical Web services in this framework for semantic Web
services. The solution envisioned implies the creation of a set of
transformations between a given source XML Schema (or even directly
between XML data) and a target WSMO ontology. These transformations
could take place either on the XML level, by using XSLT [XSLT] for
example, or at ontological level by using an ontology mapping language (for
example as the one proposed by [de Bruijn et al., 2004]). In the first case, an
XML serialization for the ontology mapping language is required (i.e.
WSML/XML [WSML, 2005]) while in the second case a “lifting” operation
is applied to the XML Schema to create a corresponding WSMO ontology.
The first approach, even if it can suffice for some application requirements,
seems unnatural in a context where all the efforts are concentrated towards
Semantic Web and Semantic Web services. At the same time, the second
approach acts on a semantic level, but its effectiveness depends on the
techniques used in the lifting and ontology mapping processes which might
represent two sensitive points to errors and loss of information. As a
consequence, the solution proposed by LSDIS-IBM group as part of the
METEOR-S project could represent a good alternative to either of the
approaches presented above.

WSDL-S is a lightweight approach for adding semantics to Web services
[WSDL-S]. It allows semantic representation of inputs, outputs,
preconditions and effects of Web service operations, by adding extension to
WSDL, which is a well accepted standard in the industry. In principle,
WSDL-S allows semantic annotations using domain models, which are
agnostic to the domain representation language. It means that WSMO
ontologies can be used in the annotation process and directly link the
WSMO semantic description of Semantic Web services with WSDL

 Kunal Verma, Adrian Mochan, Michal Zaremba, Amit Sheth, John
Miller, Christoph Bussler

descriptions. In this way, the annotations of the inputs and outputs in WSDL
will represent concepts in a WSMO ontology and the preconditions and
effects associated with WSDL operations will point to preconditions and
effects from the definition of a WSMO Web service. As Web service
specifications in WSMO refer to assumptions and post-conditions as well,
additional extensions to the WSDL operations are required to accommodate
these features too - the new extensions would be similar with the existing
ones for preconditions and effects. By this, one Web service operation will
correspond to a Semantic Web service as described in WSMO; if it is desired
that more than one operations to be associated to a Semantic Web service
than additional annotations are required to link a specific operation with
elements described in the choreography of the Web service (for more details
about WSMO choreography see [Roman et al., 2005]).

5. USING WSDL-S FOR INTEROPERABILITY –
METEOR-S PERSPECTIVE

 So far METEOR-S has been limited to the use of OWL ontologies and
SWRL rules for modeling all types of semantics. While OWL ontologies are
ideal for representing the data semantics of Web services (inputs/outputs),
they are limited in representing preconditions and effects, which is critical
for representation of the functional semantics (what a Web service does) of a
Web service. WSMO represents the functionality of Web services using pre
and post conditions specified using F-logic [Keller et al., 2004]. They have
recently been working on the WSML [WSML, 2005] family of languages:

• WSML-Core (intersection of Description Logic and Horn Logic)
• WSML-DL (extends WSML-Core to an expressive Description

Logic)
• WSML-Flight (extends WSML-Core in the direction of Logic

Programming)
• WSML-Rule (extends WSML-Flight to a fully-fledged Logic

Programming language)
• WSML-Full (unifies all WSML variants under a common First-

Order umbrella)
These languages with their varying computability and expressivity properties
provide interesting alternatives to OWL. Concretely, we will investigate
creating use cases with WSML annotations in the WSDL-S specification
[WSDL-S] and use WSML reasoners for discovery in MWSDI.

Linking Semantics Web service Efforts

6. OTHER POINTS OF INTEROPERABILITY

6.1 Semantic Registry for Publication and Discovery of Web
services

The main purpose of the service discovery in WSMX infrastructure is to
provide functionality on matching of usable SWS from service providers
with the goals of service requesters. When matching SWS, a number of
possible services could be discovered whose capabilities satisfy criteria
specified in a goal of a requester. Normally, several SWS could be returned
from this step. Additionally, WSMX system provides negotiation component
allowing refinement the list of services based on their functional properties,
and with Selector component enabling to select a service based on its non-
functional properties. In the current approach, WSMX publishes services to
a Resource Manager together with all the WSMO and non WSMO related
entities (non WSMO related entities are the one required by the run
environment). Peer-to-peer infrastructure of semantically enhanced registries
provided by METEOR-S [Verma at al., 2005] seems to be a promising
solution to address WSMX requirements for the distributed persistent
storage.

The current infrastructure of WSMX defines a Resource Manager to be
responsible for management of repositories to store definitions of any
WSMO (Semantic Web services, goals, ontologies and mediators) and non-
WSMO related objects (e.g. mappings, messages, WSDL definitions, etc.).
Depending on the scope of information stored in the underlying registries,
WSMX distinguishes registries to be local or global. Information stored in
the local registry is relevant for domain-specific operations (e.g., most of the
system run time information will be available to particular components, not
to everybody) whereas, the global registry could be shared across several
domains (e.g. registries of SWS or Goals descriptions). While both stores
data, the accessibility to this data might considerably differ between
registries. The Resource Manager remains the only entry point for them (it is
not possible to access any of the registries directly, but only through the
Resource Manager). In our current approach, the Resource Manager is just a
placeholder for the future peer-to-peer infrastructure of global registries and
the implementation so far is simply limited to a single relational database. To
build the peer-to-peer infrastructure for global registries, we might either
assume replication of WSMO entities across all registries and data stores or
some sophisticated storage mechanism allowing us to find WSMO entities
without replicating them. If we choose the first option, the large growth in

 Kunal Verma, Adrian Mochan, Michal Zaremba, Amit Sheth, John
Miller, Christoph Bussler

number of global registries for WSMO description would make this
replication impractical. The second option must allow organizing registries
to support semantic publication and discovery of services. Such an
infrastructure called METEOR-S Web services Discovery Infrastructure
(MWSDI) has been already proposed by METEOR-S and with some
modification would suit WSMX requirements.

METEOR-S proposes a specialized ontology called a Registries
Ontology at the registries level. This ontology aims to map each registry to a
specific domain. By simply providing an obligatory property describing the
type of the registry we should easily classify WSMX registries as Web
services, Ontologies, Goal and Mediators registries. Additionally to it, we
could use the METEOR-S mechanism to provide a richer semantic
description to distinguish the types of entities stored in the registry, e.g., we
could have Ontology registries with EDI related ontologies, or Goal
registries with goals from travel industry.

The Web services Repository in WSMX deals with semantic description
of Web services, such as their capabilities (pre-conditions, post-conditions,
assumptions and effects), interfaces (choreography and orchestration) and
non-functional properties including both general as well as Web service
specific. All information stored in the Web services Repository is related to
case scenarios in which this information is to be used, such as discovery of
services or monitoring of services. To filter Web services before returning
them to WSMX discovery component, we could use the Registry Ontology
from MWSDI.

The goals repository deals with semantic description of general goals. A
WSMO Goal in most cases expresses the “wish” that a user wants to
achieve. Some of the goals may be reusable and provided as templates and
therefore should be published using the repository. Non reusable or
frequently updated goals should be stored at the service requester side or
other locations. The goal repository can thus contain predefined goals
constructed by domain experts as well as user specific goals.

The ontology repository deals with ontologies to be stored in the registry
describing semantics of particular domains. Any components might wish to
consult ontology, but in most of the cases ontologies will be used by
mediator related components to overcome data and process heterogeneity
problems. Ontologies stored by WSMX are expressed in terms of WSML,
but we consider also the case that the syntactical adaptation from any
ontology syntax is possible, before storing them. WSDI Registry Ontology
would be used to classify ontologies before storing them.

The mediator repository deals with mediators to be stored in the registry.
WSMO mediator has become a standard proposal covering various

Linking Semantics Web service Efforts

approaches for data and process mediation. While mediators in WSMO are
still underspecified, we already consider storing them in repository for
possible use of the data and process mediation components.

During run-time of the system a lot of system specific data is produced.
Also components might generate data, which should be persistent. The data
repository allows us to store any system data and any component specific
data required for correct system execution. We consider that the Data
repository should remain outside WSDI infrastructure.

Another addition to current WSDI infrastructure would be the possibility
to extend it towards non UDDI registries. Although UDDI is considered a
standard for Web services registries, its application is very limited and the
current WSMO entities could not be simply stored there. More practical
from WSMO perspective would be ebXML registries allowing persisting
any arbitrary objects. We might also want to continue with our current
approach to Resource Manager and base our registries on relational
databases, while still providing a peer-to-peer infrastructure to access the
data.

6.2 Collaboration on Quality of Service Ontology

 Quality of service of Web processes and processes has been an area of
active research for the METEOR-S project. Our initial work was on QoS
aggregation [Cardoso, 2004] based on quantitative models. Our current work
focuses on optimization of Web processes using Integer Linear
Programming (ILP)[Aggarwal et al., 2004] and semantic representation of
quality of service using OWL ontologies. The initial version of the
METEOR-S quality of service ontology has been limited to quantitative
criteria like time, cost, and reliability. As the METEOR-S and WSMX
teams work with their industrial partners (IBM, HP, etc.) on creating real
world use cases for Semantic Web services and processes, they can work on
jointly building a more comprehensive QoS ontology, which represents not
quantitative criteria but also qualitative criteria and business rules.

7. CONCLUSIONS AND FUTURE WORK

A key focus of Semantic Web services projects is on interoperability of
different Web services with the help of ontologies. Hence, it is important for
different projects in this space to be able identify points of interoperability.
We consider this work as a concrete approach of collaboration in this
community. We will continue to explore the points discussed in this paper
and invite other projects to also work with us.

 Kunal Verma, Adrian Mochan, Michal Zaremba, Amit Sheth, John
Miller, Christoph Bussler

REFERENCES
[Aggarwal et al., 2004] Aggarwal R., Verma K., Miller J., and Milnor W.,

"Constraint Driven Web service Composition in METEOR-S," Proceedings of the
2004 IEEE International Conference on Services Computing (SCC 2004),
Shanghai, China (September 2004) pp. 23-32.

[Cardoso et al., 2004] Cardoso J., Sheth A., et. al., "Quality of Service for
Workflows and Web service Processes",Journal of Web Semantics, 2004

[Cimpian et al., 2005] E. Cimpian, M Moran, E. Oren, T. Vitvar, and M.
Zaremba. Overview and Scope of WSMX. Technical report, WSMX Working
Draft, http://www.wsmo.org/TR/d13/d13.0/v0.2/,February2005.

[de Bruijn et al., 2004] J. de Bruijn, D. Foxvog, K. Zimmerman: Ontology
mediation patterns. SEKT Project Deliverable D4.3.1,Digital Enterprise Research
Institute, University of Innsbruck, 2004.

[Keller et al., 2004] U. Keller, R. Lara, and A. Polleres, editors. WSMO Web
service Discovery. WSMO Deliverable D5.1, WSMO Working Draft, 2004, latest
version available at http://www.wsmo.org/2004/d5/d5.1/.

[METEOR] http://lsdis.cs.uga.edu/projects/past/meteor/
[METEOR-S] http://lsdis.cs.uga.edu/projects/METEOR-S/
[Rajasekaran et al., 2004] Rajasekaran P., Miller J., Verma K., Sheth A.,

"Enhancing Web services Description and Discovery to Facilitate Composition,"
Proceedings of the 1st International Workshop on Semantic Web services and Web
Process Composition, July 2004

[Roman et al., 2005] D. Roman, J. Scicluna, Cristina Feier (eds.): Ontology-
based Choreography and Orchestration of WSMO Services, WSMO deliverable D14
v0.1. available at http://www.wsmo.org/TR/d14/v0.1/, 2005.

[Sivashanmugam et al., 2003] Sivashanmugam K., Verma K., Sheth A., and
Miller J., "Adding Semantics to Web services Standards", 1st International
Conference on Web services, June 2003

[Sivashanmugam et al., 2004] Sivashanmugam K., Miller J., Sheth A., and
Verma K., "Framework for Semantic Web Process Composition," International
Journal of Electronic Commerce (IJEC), Special Issue on Semantic Web services
and Their Role in Enterprise Application Integration and E-Commerce, Vol. 9, No.
2 (Winter 2004-5) pp. 71-106. M.E. Sharpe, Inc.

[SOA-RM]http://www.oasis-pen.org/committees/tc_home.php?wg_abbrev=soa-
rm
[Verma et al., 2004] Verma K., Akkiraju R., Goodwin R., Doshi P., and Lee J.,

"On Accommodating Inter Service Dependencies in Web Process Flow
Composition", 2004 AAAI Spring Symposium Series, March, 2004

[Verma et al., 2005] Verma K., Sivashanmugam K., Sheth A., Patil A.,
Oundhakar S., and Miller J., "METEOR-S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of Web services", Journal of

http://lsdis.cs.uga.edu/lib/download/aggarwal_ieee_scc_2004.pdf
http://lsdis.cs.uga.edu/lib/download/CSM+QoS-WebSemantics.pdf
http://lsdis.cs.uga.edu/lib/download/CSM+QoS-WebSemantics.pdf
http://lsdis.cs.uga.edu/projects/past/meteor/
http://lsdis.cs.uga.edu/projects/METEOR-S/
http://lsdis.cs.uga.edu/lib/download/SVSM03-ICWS-final.pdf
http://lsdis.cs.uga.edu/library/download/SMSV_05_MWSCF_IJEC.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://lsdis.cs.uga.edu/lib/download/SemanticBPEL-AAAI04.pdf
http://lsdis.cs.uga.edu/lib/download/SemanticBPEL-AAAI04.pdf
http://lsdis.cs.uga.edu/library/download/VSSPOM_05-MWSDI-JITM.pdf
http://lsdis.cs.uga.edu/library/download/VSSPOM_05-MWSDI-JITM.pdf

Linking Semantics Web service Efforts

Information Technology and Management, Special Issue on Universal Global
Integration, Vol. 6, No. 1 (2005) pp. 17-39. Kluwer Academic Publishers.

[Zaremba and Oren , 2005] Maciej Zaremba and E. Oren. WSMX Execution
Semantics. Technical report, WSMX Working Draft, available at
http://www.wsmo.org/TR/d13/d13.2/v0.2/, April 2005.

[Zaremba et al., 2005] Michal Zaremba, M. Moran, and T. Haselwanter.
WSMXArchitecture. Technical report, WSMX Working Draft,
http://www.wsmo.org/TR/d13/d13.4/v0.2/, April 2005.

[WS-CHOR] http://www.w3.org/2002/ws/chor/
[WSDL-S] Web service Semantics -- WSDL-S," A joint UGA-IBM Technical
Note, version 1.0, April 18, 2005.
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf
[WSML, 2005] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L.

Predoiu, D. Fensel: The WSML Family of Representation Languages, WSML
Working Draft v0.2, 2005, available at http://www.wsmo.org/TR/d16/d16.1/v0.2/

[XSLT] J. Clark (editor): XSL Transformations (XSLT), W3C Recommendation,
1999, available at http://www.w3.org/TR/1999/REC-xslt-19991116

http://www.wsmo.org/TR/d13/d13.2/v0.2/
http://www.wsmo.org/TR/d13/d13.4/v0.2/
http://www.w3.org/2002/ws/chor/
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf

	1. INTRODUCTION
	2. WEB SERVICES EXECUTION ENVIRONMENT – WSMX
	3. METEOR-S
	4. USING WSDL-S FOR INTEROPERABILITY – WSMX PERSPECTIVE
	5. USING WSDL-S FOR INTEROPERABILITY – METEOR-S PERSPECTIVE
	6. OTHER POINTS OF INTEROPERABILITY
	6.1 Semantic Registry for Publication and Discovery of Web services
	6.2 Collaboration on Quality of Service Ontology
	7. CONCLUSIONS AND FUTURE WORK

