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Abstract. Since model driven engineering (MDE) is applied to larger and
more complex system, the memory and execution time performance of model
processing tools and frameworks has become important. Benchmarks are
a valuable tool to evaluate performance and hence assess scalability. But,
benchmarks rely on reasonably large models that are unbiased, can be shaped
to distinct use-case scenarios, and are ”real” enough (e.g. non-uniform) to
cause real-world behavior (especially when mechanisms that exploit repetitive
patterns like caching, compression, JIT-compilation, etc. are involved). Cre-
ating large models is expensive and erroneous, and neither existing models
nor uniform synthetic models cover all three of the wanted properties.
In this paper, we use randomness to generate unbiased, non-uniform models.
Furthermore, we use distributions and parametrization to shape these models
to simulate different use-case scenarios. We present a meta-model-based
framework that allows us to describe and create randomly generated models
based on a meta-model and a description written in a specifically developed
generator DSL. We use a random code generator for an object-oriented pro-
gramming language as case study and compare our result to non-randomly
and synthetically created code, as well as to existing Java-code.

1 Introduction

In traditional model driven software engineering, we are not concerned about how
much memory our editors consume or how long it takes to transform a model;
models are small and execution is instantaneous. But when models become bigger,
their processing requires substantial resources. Up to the point, where we began
to conceive technology that is specifically designed to deal with large models. In
this context, memory consumption and execution times are of central concern and
BigMDE technology is valued by its performance. Consequently, benchmarks that
enable sound comparison of a method’s, framework’s, or tool’s performance are
valuable and necessary tools in evaluating our work.

In computer science, we define a software benchmark as the measurement of a
certain performance property taken in a well defined process under a well defined
workload in a well defined environment. Where the benchmark mimics certain ap-
plication scenarios. In MDSE scenarios, workloads comprise input models and tasks
that are performed on these models.



Input models characteristics have an influence on the quality of the benchmark.
First, input models need to be unbiased, i.e. they must not deliberately or accidentally
ease the processing by one technology and burden another. Secondly, they need to
be real enough to invoke behavior that is similar to behavior caused by actual input
models. Non random synthetic models for example are often overly uniform and can
therefore fool compression, caching, or runtime optimization components (often con-
tained in BigMDE technology) into unrealistic behavior. Thirdly, benchmarks mimic
different application scenarios. Different scenarios require input models with different
shapes. Here, the concrete form of possible shapes depends on the meta-model. E.g.
shapes can be expressed as sets of model metrics. Fourthly and finally, input models
need to scale, i.e. we need to find input models of arbitrary size. Only with scalable
input, we can use benchmarks to access the scalability of MDSE technology.

It is common practice to either use existing models (e.g. the infamous Grabats
09 models) or non random synthetically generated models. Where the former yields
in realistic, somewhat unbiased, but only given shapes and scale, the later results in
arbitrary large, but utterly unrealistic models. Our approach is to use randomness as a
tool to achieve both scalability and configurability as well as a certain degree of realism
and reduced bias. We present a generator description language and corresponding
tools that allows us to describe and perform the generation of random models with
parameterizable generator rules.

The paper is structured as follows. We start with a discussion of related work in
the next section. After that, we introduce our generator language. The next section,
demonstrates our approach with a generator for object-oriented program code models.
The paper closes with conclusions and suggestions for further work.

2 Related Work

Benchmarking with Existing Models

The idea to generate large models for benchmarking large model processing technolo-
gies is new and to our knowledge there is no work specifically targeting this domain.
However, benchmarking of large model processing technologies has been done before;
mostly by authors of such technologies. Common practice is the use of a specific set
of large existing models. If we look at benchmarking model persistence technology
for NoSQL databases, which is our original motivation for this work, the set of the
Grabats 09 graph transformation contest example models are exclusivly used by all
work known to us [7,1,8,2].

This benchmarking practice has itself established as a quasi standard to evaluate
and compare model persistence technology, even though it exhibits all of the previ-
ously stated flaws of using existing models for benchmarks. First, the Grabats models
aren’t exactly large (<107 objects), at least when compared to the target scale of the
benchmarked technology. Secondly, there is no meaningful mathematical relationship
between size metrics of the models in the set, e.g. there is no usable ramp-up in model-
size. Even though the models show an increasing size, the models have internally
different structure, which makes them non-comparable. Some models represent Java



code in full detail, others only cover declarations. This makes it impossible establish
a meaningful formal relationship between size-metric and performance measurements.
Thirdly, we have a very small set of 4 models and all models are models of the same
meta-model. This makes the example set biased (towards reverse-engineered Java
code models) and again makes it difficult to establish relationships between metrics
and performance. Forthly, the internal structure of the models makes it impossible to
import all the models into CDO. At least no publication presented any measurements
for CDO and the biggest two of the four Grabats models. This is especially bad,
since CDO as most popular SQL-based persistence technology, presents the most
reasonable (and only used) baseline.

More concrete benchmarks including the precise definition of tasks exist for model
queries and transformations [11]. The Grabats 09 contents actually formulates such
benchmarks. In [11,5] the authors define frameworks to precisely define tasks for
model transformation and query benchmarks and provide the means to evaluate the
created benchmarks in that domain.

Model Generation for Test

Before benchmarking became an issue for MDSE, models were generated to provide
test subjects for MDSE technology. We can identify three distinct approaches.

SAT-solver For most test scenarios, not only syntactically but also static semantically
correct models are needed. Brottier et al. [3] and Sen et al. [9] propose the use of SAT-
solvers to derive meta-model instances from the meta-model and it’s static semantic
constraint. Meta-model and constraints are translated into logical formula, solutions
that satisfy these are translated back to corresponding meta-model instances. Since
each solution ”solves” the meta-model and it’s constraints, the solution represents a
semantically correct instance of the given meta-model. The non-polynomial complexity
of SAT problems and the consequently involved heuristics do not scale well.

Existing graph generators Mougenot et al. [6] use existing graph generators and
map nodes and edges of generated graphs to meta-model classes and associations.
While this approach scales well, it does not allow to shape the generated model.
The used algorithms provide uniform looking random graphs and result in uniform
models. In reality, most models cover different aspects of a system with completely
different structural properties. E.g. the graph that represents package,class,method
declarations has different properties/metrics as a graph that describes the internals
of a method implementation.

Constructive formalisms Models can be generated with constructive formalisms like
formal grammars or graph grammars. Ehrig et al. [4] propose to use graph grammars
and random application of appropriate graph grammar rules to generate models. Our
own approach (which is very similar to context-free grammars) fits this category as
well. In comparison it lacks the formal properties of the graph grammar approach
and is limited to context-free constructs (e.g. no static semantic constraints), but
scales better due to the simpler formalism. In practice graph-grammars introduce



further restrictions, since graph grammars become inherently complex, especially if
one tries to map static semantic constraints into the rules.

3 Generator Language
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Fig. 1: Meta-model of the proposed model generators description language.

We developed the model generator description language rcore1 as an external
domain specific language based on EMF, xText, and xBase with the consequent
eclipse-based tool support. Fig. 1 depicts the underlying meta-model of our generator
language. RCore follows a declarative approach and uses production rules to describe

1 The source code and examples can be obtained here:
http://github.com/markus1978/RandomEMF



possible models. Similar to a formal grammar that can be used to generate strings
over an alphabet, we generate models over a meta-model. In contrast to grammars,
rcore rules govern rule application via expressions that present concrete choices (i.e.
concrete multiplicities or chosen alternatives). These expressions can either use fix-
values (e.g. to generate synthetic models) or call random number generators following
different distribution functions (i.e. to generate random models). Build in variables
(e.g. the generated model in progress, or depth of rule application) and custom rule
parameters can also be used within expressions.

Generally, we distinguish between ObjectRules that can generate model ele-
ments (i.e. EMF objects) and FeatureValueRules that assign values to an object’s
structural features (i.e. EMF attributes and references). Cascading application of
ObjectRule-FeatureValueRule-ObjectRule-Fea... allows clients to generate con-
tainment hierarchies, i.e. the spine of each EMF model.

Each rcore description comprises an instance of Generator and is associated
with an ecore-package that represents the meta-model that this generator is written for.
Each Generator consist of a set of ObjectRules, where the first ObjectRule is the
start rule. Each of these ObjectRules is associated with a EClass that determines
the meta-type of the objects generated by this rule. There are two concrete types of
ObjectRules: CreateObjectRules that describe the direct creation of objects (i.e.
meta-class instances, a.k.a model-elements) and AternativesRules that can be used
to randomly refer object creation to several alternative rules. Further, ObjectRules
can have parameters.

While ObjectRules are used to describe object generation, ValueRules are used
to determine values that can be used within ObjectRules. ValueRules determine
concrete values via an xBase XExpression that can evaluate to a primitive value (e.g.
to be assigned to an attribute, PrimitiveValueRule), or that calls an ObjectRule

(e.g. to create a value for a containment reference, ContainedObjectValueRule),
or that queries the generated model for a reference target (e.g. to be assigned to
a non-containment reference, ReferencedObjectValue), or that refers object cre-
ation to an ObjectRule (e.g. to create an alternative for an AlternativesRule,
AlternativeValueRule).

Concrete FeatureValueRules are associated with a EStructuralFeature and
are used to assign values to the according feature of the object created by the con-
taining CreateObjectRule. Each FeatureValueRule also has an expression that
determines the multiplicity of the feature, i.e. that determines how many values
are assigned to the feature, i.e. how many times the value expression is evaluated.
ObjectValueRules are associated with EReference and are used to assign values
to references, and PrimitiveValueRules are associated with EAttribute and are
used to assign value to attributes.

AlternativeValueRules have an additional expression that determines the pri-
ority of the alternative within the containing AlternativesRule. When applied the
AlternativesRule will uniformly choose an alternative with priorities as weights.
Only the chosen alternative is evaluated to provide an object.

Further static semantic constraints have to be fulfilled for a correct rcore descrip-
tion. (1) the value expressions of AlternativeValueRules must have compatible



type with the EClass associated with the containing AlternativesRule. The types
of all value expressions in FeatureValueRules must be compatible with the associated
structural feature’s type. The associated features of FeatureValueRule’s must be
features of the EClass associated with the containing CreateObjectRule. All used
EClasses must be contained in the meta-model that is associated with the Generator.

1. package de.hub.rcore.example

3. import org.eclipse.emf.ecore.EDataType
4. import org.eclipse.emf.ecore.EcorePackage
5. import static de.hub.randomemf.runtime.Random.*

7. generator RandomEcore for ecore in "platform:/resource/org.eclipse.emf.ecore/model/Ecore.ecore" {
8. Package: EPackage ->
9. name := LatinCamel(Normal(3,2)).toLowerCase
10. nsPrefix := RandomID(Normal(2.5,1))
11. nsURI := "http://hub.de/rcore/examples/" + self.name
12. eClassifiers += Class#NegBinomial(5,0.5);
13.
14. Class: EClass ->
15. name := LatinCamel(Normal(4,2))
16. abstract := UniformBool(0.2)
17. eStructuralFeatures += Feature#NegBinomial(2,0.5);
18.
19. alter Feature: EStructuralFeature ->
20. Reference(true) | Reference(false) | Attribute#2;
21.
22. Reference(boolean composite):EReference ->
23. name := LatinCamel(Normal(3,1)).toFirstLower
24. upperBound := if (UniformBool(0.5)) -1 else 1
25. ordered := UniformBool(0.2)
26. containment := composite
27. eType:EClass := Uniform(model.EClassifiers.filter[it instanceof org.eclipse.emf.ecore.EClass]);
28.
29.  Attribute:EAttribute ->
30. name := LatinCamel(Normal(3,1)).toFirstLower
31. upperBound := if (UniformBool(0.1)) -1 else 1
32. eType:EDataType := Uniform(EcorePackage.eINSTANCE.EClassifiers.filter[it instanceof DataType]);
33. }

Fig. 2: Example generator description for Ecore models.

Fig. 2 presents an example rcore description. The described generator produces
randomly generated Ecore models. Some of the expressions use predefined random
number generator based method to create random ids, strings, numbers (based
on different distributions such as normal, neg. binomial, etc.)). The method Uni-

form(List<EObject>) for example, is used to uniformly draw reference targets from
a collection of given possible target objects. Another example is LatinCamel(int)

that generates a camel case identifier with the given number of syllables. The two
methods Normal(double,double) and NegBinomial(double,double) are exam-



ples for the use of random number generators to create normal and negative binomial
distributed random numbers.

4 Example Results

1. package dabobobues;

3. class Dues {
4.
5. DuBoBuTus begubicus;
6. ELius brauguslus;
7.
8. void Dues(Alius donus, FanulAudaCio aubetin) {
9. }
10.
11. void baGusFritus() {
12. eudaguslius = "";
13. bigusdaGubolius();
14. if ("") {
15. annulAugusaugusfrigustin("");
16. albucio = Dues()<=++12;
17. bi();
18. eBoTor();
19. } else {
20. brauguslus = 9;
21. baGusFritus();
22. duLus = ""=="";
23. }
24. }
25.
26. void aufribonulAubufrinus(Dues e) {
27. dobubogutor();
28. aubiguTus = 9;
29. }
30. }

Fig. 3: Example of randomly generated code for an object-oriented programming language.

In this section, we want to demonstrate the use rcore for meta-models that are
more complex than the Ecore example in the previous section. Based on their popu-
larity, overall complexity, and well understood properties, we chose an object-oriented
Java-like programming language with packages, classes, fields, methods, statements,
expressions (incl. operators and literals). We omitted details that are either repet-
itive (template parameters, interfaces, anonymous classes) or not interesting from
a randomized generation point of view (most flags and enums like abstract, overrides,
visibility, etc.). We developed the model generator based on a ecore meta-model for
the described example language, but we use a simple code generator to pretty print
the generated models in a Java-like syntax for better human comprehension. Fig. 3
depicts a sample of the generated models in the serialized form.

Similar to our Ecore generator in Fig. 2, we use probability distributions to pro-
duce randomized models that exhibit certain characteristics such as average number



of methods per class and similar metrics. We compare the generated results to non
synthetic instances of the same meta-model and to program code models of a real-life
Java project. We look at two aspects: first the overall containment hierarchy and
secondly the use of non-containment references exemplified by method calls (i.e.
references between method call and respective method declarations).

Containment Hierarchies

Fig. 4 shows a sunburst chart representation of three packages of object-oriented code.
One is synthetically generated, one is actual Java code taken from our EMF-fragments
project, and one is randomly generated. The synthetically generated program com-
prises a fixed number of classes, each of which contains a fixed number of inner classes,
fixed number of methods, etc. Multiplicity and choice of contained elements are de-
termined by constants or values in a repetitive pattern. The result is a homogeneous
repetitive non random structure. The actual Java code shows that containment in
real code is varying: there are classes with more or less methods, methods can be
short or longer. Tamai et al [10] suggest that multiplicities of containment references
can be modeled with negative binomial distributed random variables. Our generator
for random code uses such negative binomial distributed random variables. We chose
parameters that yield in expected values that represent reasonable metrics for classes
per package, methods per class, statements per methods, depth of expressions, etc.
We chose metrics that resemble the empirically determined corresponding metric in
the reference Java code of the prior example.

References and Dependencies

Fig. 5 show chord chart representations of method calls in three different object-
oriented programs. In this chart each line represents a method call and the line end
points represent calling and called method. Methods are clustered in blocks that
represent the classes that contain them. The first program was randomly generated.
We chose the called method for each method call uniformly from the set of all methods
within the program. Hence, each class has a similar relative number of expected depen-
dencies to each other class, including the calling class. The code taken from an actual
program (again, the same EMF-fragments code as before) shows a different distribu-
tion. Calls of methods within the containing class are more likely and furthermore calls
of methods within in certain other depending classes are more likely than calls of meth-
ods of other less depending classes. The last chart shows generated code gain. Now, we
changed our generator to emulate the reference distribution of actual Java code. We do
not chose methods uniformly from all methods, but put higher probability on methods
of the calling class and of depending classes.We pseudo randomly chose pairs of depend-
ing classes based on the similarity of the hash code of their corresponding EMF objects.

5 Conclusions

We presented the domain specific language rcore and a corresponding compiler that
aids clients in the development of generators that automatically create instances of
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Fig. 5: Chord chart visualization of calling-
called-method dependencies in generated
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given Ecore meta-models based on a set of generator rules. These parameterizable
rules can be used to control the generation of model elements with random variables of
certain probabilistic distributions. This gives clients randomness and configurability as
means in their efforts to create instances of their ecore meta-models that are potentially
unbiased, have a certain shape, and yet mimic real world models. Furthermore, rcore
allows to describe arbitrary large models with a small set of generator rules. Rcore’s
simple operational semantics of one executed element generating rule calling other ele-
ment generating rule should lead to linear time complexity in the number of generated
elements, unless the user defined functions used to determine the concrete feature
values for the generated elements introduce higher complexities. Therefore, the actual
amount of achieved bias, real world mimicry, configurability, and scalability depends
on concrete generator descriptions. As future work, we need to create a larger set of
case study generators and evaluate these generators for the proposed characteristics.
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4. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta models.
Software & Systems Modeling 8(4), 479–500 (2009)

5. Izso, B., Szatmari, Z., Bergmann, G., Horvath, A., Rath, I.: Towards precise metrics for
predicting graph query performance. 2013 28th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2013 - Proceedings pp. 421–431 (2013)

6. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation of huge
metamodel instances. In: Model Driven Architecture-Foundations and Applications.
pp. 130–145. Springer (2009)

7. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: Morsa: a scalable approach for persisting
and accessing large models. In: Proceedings of the 14th international conference on
Model driven engineering languages and systems. pp. 77–92. Springer-Verlag (2011)

8. Scheidgen, M., Zubow, A., Fischer, J., Kolbe, T.H.: Automated and transparent model
fragmentation for persisting large models. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). vol. 7590 LNCS, pp. 102–118 (2012)

9. Sen, S., Baudry, B., Mottu, J.M.: Automatic model generation strategies for model
transformation testing. In: Theory and Practice of Model Transformations, pp. 148–164.
Springer (2009)

10. Tamai, T., Nakatani, T.: Analysis of software evolution processes using statistical distribu-
tion Models. Proceedings of the international workshop on Principles of software evolution
- IWPSE ’02 p. 120 (2002), http://portal.acm.org/citation.cfm?doid=512035.512063
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