
A Hybrid Approach to Inference in Probabilistic
Non-Monotonic Logic Programming

Matthias Nickles and Alessandra Mileo

Insight Centre for Data Analytics
National University of Ireland, Galway

{matthias.nickles,alessandra.mileo}@deri.org

Abstract. We present a probabilistic inductive logic programming frame-
work which integrates non-monotonic reasoning, probabilistic inference
and parameter learning. In contrast to traditional approaches to prob-
abilistic Answer Set Programming (ASP), our framework imposes only
comparatively little restrictions on probabilistic logic programs - in par-
ticular, it allows for ASP as well as FOL syntax, and for precise as well as
imprecise (interval valued) probabilities. User-configurable sampling and
inference algorithms, which can be combined in a pipeline-like fashion,
provide for general as well as specialized, more scalable approaches to
uncertainty reasoning, allowing for adaptability with regard to different
reasoning and learning tasks.

1 Introduction

With this paper, we present the probabilistic logic framework PrASP. PrASP
is both a probabilistic logic programming language and a software system for
probabilistic inference and inductive weight learning based on Answer Set Pro-
gramming (ASP). Compared to previous works on this framework [11, 10], we
introduce another inference algorithm and additional evaluation results.
Reasoning in the presence of uncertainty and relational structures such as social
networks or Linked Data is an important aspect of knowledge discovery and
representation for the Web, the Internet Of Things, and other heterogeneous
and complex domains. Probabilistic logic programing, and the ability to learn
probabilistic logic programs from data, can provide an attractive approach to
uncertainty reasoning and statistical relational learning, since it combines the
deduction power and declarative nature of logic programming with probabilistic
inference abilities traditionally known from graphical models, such as Bayesian
and Markov networks. We build upon existing approaches in the area of prob-
abilistic (inductive) logic programming in order to provide a new ASP-based
probabilistic logic programming language and inference tool which combines
the benefits of non-monotonic reasoning using state-of-the-art ASP solvers with
probabilistic inference and machine learning. The main enhancement provided by
PrASP over (non-probabilistic) ASP as well as existing probabilistic approaches
to ASP is the possibility to annotate any formula with point or interval (i.e.,
imprecise) probabilities (including formulas in full FOL syntax, albeit over finite

57

domains of discourse only), while providing a hybrid set of inference approaches:
in addition to general inference algorithms, this includes specialized, more scal-
able inference algorithms for cases where certain optional assumptions hold (in
particular mutual independence of probabilistic events). As we will show later,
it can even make sense to combine different such algorithms (which can each on
its own obtain valid results if its specific prerequisites are fulfilled).
The remainder of this paper is organized as follows: the next section presents
related work. Section 3 describes the syntax and semantics of the formal frame-
work. Section 4 describes approximate inference algorithms, and Section 5 pro-
vided initial evaluation results. Section 6 concludes.

2 Related Work

Approaches related to PrASP include [18, 8, 3–6, 14, 13, 15] which support prob-
abilistic inference based on monotonic reasoning and [9, 1, 17, 2] which are based
on non-monotonic logic programming. Like P-log [1], our approach computes
probability distributions over answer sets (that is, possible worlds are identified
with answer sets). However, P-log as well as [17] do not allow for annotating
arbitrary formulas (including FOL formulas) with probabilities. [2] allows to
associate probabilities with abducibles (only) and to learn both rules and prob-
abilistic weights from given data (in form of literals). Again, PrASP does not
impose such restrictions on probabilistic annotations or example data. On the
other hand, PrASP cannot make use of abduction for learning. Various less
closely related approaches to probabilistic reasoning exist (either not based on
logic programming at all, or not in the realm of non-monotonic logic program-
ming): Stochastic Logic Programs (SLP) [8] are an influential approach where
sets of rules in form of range-restricted clauses can be labeled with probabilities.
Parameter learning for SLPs is approached in [3] using the EM-algorithm. Ap-
proaches which combine concepts from Bayesian network theory with relational
modeling and learning are, e.g., [4–6]. Probabilistic Relational Models (PRM)
[4] can be seen as relational counterparts to Bayesian networks. In contrast to
these, our approach does not directly relate to graphical models such as Bayesian
or Markov Networks but works on arbitrary possible worlds which are generated
by ASP solvers in form of stable models (answer sets). ProbLog [14] allows for
probabilistic facts, annotated disjunctions and definite clauses, and approaches
to probabilistic rule and parameter learning (from interpretations) also exist for
ProbLog. ProbLog builds upon the Distribution Semantics approach introduced
for PRISM [18], which is also used by other influential approaches, such as In-
dependent Choice Logic (ICL) [13]. Another important approach outside the
area of ASP are Markov Logic Networks (MLN) [15]. A Markov Logic Network
consists of first-order formulas annotated with weights (which are, in contrast to
PrASP, not in general probabilities). MLNs are used as templates for the con-
struction of Markov networks. The (ground) Markov network generated from the
MLN then determines a probability distribution over possible worlds, with in-
ference performed using weighted SAT solving (which is related to but different

A Hybrid Approach to Inference

58

from ASP). MLNs are syntactically roughly similar to the logic programs in our
framework (where weighted formulas can also be seen as soft or hard constraints
for possible worlds).

3 Syntax and Semantics

In this section, we briefly describe the formal language and its semantics. Com-
pared to [10], the syntax of PrASP programs has been extended (in particular
by allowing interval and non-ground weights) and a variety of approximate in-
ference algorithms have been added (see next section) to the default inference
approach which is described below and which still underlies the formal semantics
of PrASP programs.
PrASP is a Nilsson-style [12] probabilistic logic language. Let Φ be a set of
function, predicate and object symbols and L(Φ) a first-order language over
Φ with the usual connectives (including both strong negation “-” and default
negation “not”) and first-order quantifiers. It can be assumed that this lan-
guage covers both ASP and FOL syntax (ASP “specialties” such as choice con-
structs can be seen as syntactic sugar which we omit here in order to keep
things simple). A PrASP program (background knowledge) is a non-empty fi-
nite set Λ = {[li;ui]fi} ∪ {[li;ui|ci]fi} ∪ {indep({f i1, ..., f in})} of annotated for-
mulas (each concluded by a dot) and optional independence constraints (PrASP
does not require an independence assumption but makes optionally use of de-
clared or automatically discovered independence). [l;u]f asserts that the impre-
cise probability of f is within interval [l, u] (i.e., l ≤ Pr(f) ≤ u) whereas [l;u|c]f
states that the probability of f conditioned on formula c is within interval [l, u]
(l ≤ Pr(f |c) ≤ u).
Formulas can be non-ground (including existentially or universally quantified
variables in FOL formulas). For the purpose of this paper, weights need to be
ground (real numbers), however, the prototype implementation also allows for
certain non-ground weights. An independence constraint indep({f i1, ..., f in}) spec-
ifies that the set of formulas {f i1, ..., f in} is mutually independent in the proba-
bilistic sense (independence can also be discovered by PrASP by analyzing the
background knowledge, but this is computationally more costly).
If the weight of a formula is omitted, [1; 1] is assumed. Point probability weights
[p] are translated into weights of the form [p; p] (analogously for conditional
probabilities). Weighted formulas can intuitively be seen as constraints which
specify which possible worlds (in the form of answer sets) are indeed possi-
ble, and with which probability. w(f) denotes the weight of formula f . The
fi and ci are formulas either in FOL syntax and supported by means of a
transformation into ASP syntax described in [7]) or plain AnsProlog syntax,
e.g., [0.5] win :- coin(heads). Informally, every FOL formula or program with
FOL formulas results in a set of ASP formulas. The precise AnsProlog syntax
depends on the external ASP grounder being employed by PrASP - in principle,
any grounder could be used. The current prototype implementation has been
tested with Gringo/Clingo 3 and 4 (http://potassco.sourceforge.net).

A Hybrid Approach to Inference

59

The semantics of PrASP is defined in terms of probability distributions over
possible worlds which are identified with answer sets (models) - an assumption
inspired by P-Log [1]. Let M = (D,Θ, π, µ) be a probability structure where D
is a finite discrete domain of objects, Θ is a non-empty set of possible worlds, π
is a function which assigns to the symbols in Φ predicates, functions and objects
over/from D, and µ = (µl, µu) is a discrete probability function over Θ, a PrASP
program and a query formula, as defined further below.
Each possible world is a Herbrand interpretation over Φ. Since we will use an-
swer sets (i.e., stable models of a (disjunctive) answer set program) as possible
worlds, defining Γ (a) to be the set of all answer sets of answer set program a
will become handy.

We define a (non-probabilistic) satisfaction relation of possible worlds and
unannotated programs as follows: let Λ− be is an unannotated program and
lp a transformation which transforms such a program (which might contain
formulas in first-order logic syntax in addition to formulas in ASP syntax) into
a disjunctive program. The details of this transformation are outside the scope
of this paper and can be found in [7].

Then (M, θ) �Θ Λ− iff θ ∈ Γ (lp(Λ−)) and θ ∈ Θ. For a disjunctive program
ψ, we define (M, θ) �Θ ψ iff θ ∈ Γ (ψ) and θ ∈ Θ.

To do groundwork for the computation of a probability distribution over
possible worlds Θ from a given PrASP program, we define a (non-probabilistic)
satisfaction relation of possible worlds and unannotated formulas:
Let φ be a PrASP formula (without weight) and θ be a possible world. Fur-
thermore, let (M, θ) �Λ φ iff (M, θ) �Θ ρ(Λ) ∪ lp(φ) and Θ = Γ (ρ(Λ)) (we say
formula φ is true in possible world θ). Sometimes we will just write θ |=Λ φ if
M is given by the context. We abbreviate (M, θ) �Λ φ as θ �Λ φ. At this, the
spanning program ρ(Λ) of PrASP program Λ is a non-probabilistic disjunctive
program (without independence constraints) generated by removing all weights
and transforming each formerly weighted formula f or ¬f into a disjunction
f |¬ f , where ¬ stands for default negation. Informally, the spanning program
represents the uncertain but unweighted beliefs of the knowledge engineer or
agent. With Γ (a) as defined above, the set of possible worlds deemed possible
according to existing belief ρ(Λ) is denoted as Γ (ρ(Λ)).
We define the minimizing parameterized probability distribution µl(Λ,Θ, q) over
a set Θ = {θ1, ..., θm} = Γ (ρ(Λ)) of answer sets (possible worlds), a PrASP
program Λ = {([pi]fi, i = 1..n)} ∪ {([pi|ci]f ci)} ∪ {indep({f i1, ..., f ik})} and a
query formula q as {θi 7→ Pr(θi) : θi ∈ Θ} where (Pr(θ1), ..., P r(θm)) is
any solution of the following system of inequalities (constraints) such that 1)
Prl(q) =

∑
θi∈Θ:θi�Λq Pr(θi) is minimized and 2) the distribution has maximum

entropy [19] among any other solutions which minimize the said sum. Anal-
ogously, µu denotes a maximum entropy probability distribution so that the
Pr(θ1), ..., P r(θm) maximize Pru(q) =

∑
θi∈Θ:θi�Λq Pr(θi).

l(f1) ≤
∑

θi∈Θ:θi�Λf1
Pr(θi) ≤ u(f1) · · · l(fn) ≤

∑

θi∈Θ:θi�Λfn
Pr(θi) ≤ u(fn) (1)

A Hybrid Approach to Inference

60

∑

θi∈Θ
θi = 1 (2)

∀θi ∈ Θ : 0 ≤ Pr(θi) ≤ 1 (3)

At this, l(fi) and u(fi) denote the lower and upper endpoints of the probability
interval (imprecise probability) of unconditional formula fi (analogous for inter-
val endpoints l(f ci |ci) and u(f ci |ci) of conditional probabilities).
In addition, any indep-declaration indep(F i) in the program induces for every
subset {f i1, ..., f ir} ⊆ F i, r > 1 constraints of the following form:∏
fik=1..r

l(f ik) ≤ ∑
θj∈Θ:θj�Λ

∧
fik=1..r

Pr(θj) ≤
∏
fi
k={1..r}

u(f ik). In the case of

point (i.e., precise) probabilities, these encode Pr(
∧
k=1..r f

i
k) =

∏
k=1..r Pr(f

i
k).

Furthermore, any conditional probability formula [pi|ci]f ci) in the program in-
duces constraints for ensuring l(f ci |ci) ≤ Pr(f ci |ci) ≤ u(f ci |ci)
(with pi = [l(f ci |ci);u(f ci |ci)]), namely∑
θj∈Θ Pr(θj)ν(θj , f

c
i ∧ ci) +

∑
θj∈Θ −l(f ci |ci)Pr(θj)ν(θj , ci) > 0∑

θj∈Θ Pr(θj)ν(θj , f
c
i ∧ ci) +

∑
θj∈Θ −u(f ci |ci)Pr(θj)ν(θj , ci) < 0

At this, we define ν(θ, f) =

{
1, if θ �Λ f
0, otherwise

For small systems, PrASP can compute minimizing and maximizing probability
distributions directly using the inequalities above with linear programming, and
a maximum entropy solution amongst a number of candidate distributions (so-
lutions of an underdetermined system) can be discovered using gradient descent.
However, to make distribution finding tractable, we need to use different algo-
rithms, as described in the next section. That is, the inequalities system above
serves mainly as a means to define the semantics of PrASP formulas.
Finally, marginal inference results are obtained as follows: the result of a query
of form [?] q is defined as the interval [Prl(q), P ru(q)] and the result of con-
ditional queries of form [?|c] f (which stands for Pr(f |c), where c is some
evidence) is computed using Pr(f ∧ c)/Pr(c). An example PrASP program:

coin(1..10).

[0.4;0.6] coin_out(1,heads).

[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

1{coin_out(N,heads), coin_out(N,tails)}1 :- coin(N).

n_win :- coin_out(N,tails), coin(N).

win :- not n_win.

[0.8|win] happy.

:- happy, not win.

The line starting with [[0.5]]... is syntactic sugar for a set of weighted rules
where variable N is instantiated with all its possible values (i.e.,
[0.5] coin_out(2,heads) :- coin(2), 2 != 1 and
[0.5] coin_out(3,heads) :- coin(3), 3 != 1). It would also be possible to use
[0.5] as annotation of this rule, in which case the weight 0.5 would specify the
probability of the entire non-ground formula instead.
1{coin_out(N,heads), coin_out(N,tails)}1 (Gringo AnsProlog syntax) denotes
that a coin comes up with either heads or tails but not both.

A Hybrid Approach to Inference

61

Our system accepts query formulas in format [?] a, which asks PrASP for
the marginal probability of a and [?|b] a which computes the conditional
probability Pr(a|b). E.g., query [?|coin_out(2,tails)] happy results in [0;0].

4 Sampling and Inference Algorithms

PrASP (as a software system) contains a variety of exact and approximate in-
ference algorithms which can be partially combined in a hybrid fashion. Using
command line options, the user selects a pipeline of alternative pruning (simpli-
fication), sampling and inference steps (depending on the nature and complexity
of the respective problem). E.g., the user might chose to sample possible worlds
from a near-uniform distribution and to pass on the resulting models to a sim-
ulated annealing algorithm which computes a probability distribution over the
sampled possible worlds. Finally, this distribution is used to compute the condi-
tional or marginal probabilities of the query formulas. The inference algorithms
available in the current prototype (version 0.7) of PrASP are:
Linear programming Direct solution for the linear inequalities system de-
scribed before. Precise and very fast for very small systems, intractable other-
wise.
Various answer set sampling algorithms for so-called initial sampling
These can in some cases be used directly for inference, by computing a distri-
bution which complies with the constraints (linear system) described before. An
exemplary such algorithm is Algorithm 1. Alternatively, they can be followed
by another inference algorithm (simulated annealing or iterative refinement, see
below) which corrects the initial distribution computed by initial sampling.
Parallel simulated annealing This approach (Algorithm 2) performs simu-
lated annealing for inference problems where no assumptions can be made about
independence or other properties of the program (except consistency). It can be
used either stand-alone or in a hybrid combination with an initial sampling stage
(e.g., Algorithm 1).
Iterative refinement An adaptation of the inference algorithm described in
[16] with guaranteed minimal Kullback−Leibler divergence to the uniform dis-
tribution (i.e., maximum entropy).
Direct counting Weights are transformed into unweighted formulas and queries
are then solved by mere counting of models (see [10] for details).

Most of our algorithms rely heavily on near-uniform sampling, either using
randomization provided by the respective external ASP solver (fast but typically
rather low quality, i.e., weakly uniform) or using so-called XOR-constraints as
described in [10] (which provides higher sampling quality at expense of speed).
From PrASP’s inference algorithms, we describe one of the initial sampling al-
gorithms (Algorithm 1) and parallel simulated annealing (Algorithm 2).
An interesting property of the first algorithm is its ability to provide a suitable
distribution over possible worlds directly if all weighted formulas in the PrASP
program are mutually independent (analogously to the independence assump-
tion typically made by distribution semantics-based approaches). Algo. 2 can be

A Hybrid Approach to Inference

62

used stand-alone or subsequently to Algo. 1: in that case, the probability dis-
tribution computer by initial sampling (with replacement) is used as the initial
distribution which is then refined by simulated annealing until all constraints
(given probabilities) are fulfilled. The benefit of this pipelined approach to in-
ference is that the user (knowledge engineer) doesn’t need to know about event
independence - if the uncertain formulas in the program are independent, ini-
tial sampling already provides a valid distribution and the subsequent simulated
annealing stage almost immediately completes. Otherwise, simulated annealing
“repairs” the insufficient distribution computed by the initial sampling stage.
Concretely, Algo. 1 samples answer sets and computes a probability distribution
over these models which reflects the weights provided in the PrASP program,
provided that all uncertain formulas in the program describe a mutually in-
dependent set of events. Other user-provided constraints (such as conditional
probabilities in the PrASP program) are ignored here. Also, Algo. 1 does not
guarantee that the solution has maximum entropy.

Algorithm 1 Sampling from models of spanning program (point probabilities
only)

Require: max number of samples n, set of uncertain formulas uf =
{[w(uf i)]uf i with 0 < w(uf i) < 1}, set of certain formulas cf = {cf i : w(uf i) = 1}
(i.e., with probability 1)

1: i ← 1
2: for i ≤ |uf | do
3: ri ← random element of Sym({1, ..., n}) (permutations of {1, ..., n})
4: i ← i+ 1
5: end for
6: m← ∅, j ← 1
7: parfor j ∈ {1, ..., n} do
8: p← ∅, k ← 1
9: for k ≤ |uf | do

10: if rkj ≤ n · w(uf k) then p← p ∪ {uf k} else p← p ∪ {¬uf k} endif
11: k ← k + 1
12: end for
13: s ← model sampled uniformly from models of program cf ∪ p (∅ if UNSAT)
14: m ← m] {s}
15: end parfor
Ensure: Multiset m contains samples from all answer sets of spanning program such

that

16: ∀uf i : w(uf i) ≈
|{s∈m:s|=uf i}|

|m| iff set uf mutually independent.

Algorithm 2 presents the approach PrASP uses for approximate inference
using a parallel form of simulated annealing (which does not require event in-
dependence). The initial list of samples initSamples are computed according to
an initial sampling approach such as Algo. 1.

A Hybrid Approach to Inference

63

Algorithm 2 Inference by parallel simulated annealing Part 1.
We show only the basic variant for non-conditional formulas with point weights.
The extension for conditional probabilities and interval probabilities (imprecise
probabilities) is straightforward.

Require: maxTime, maxEnergy, initTemp, initSamples (from, e.g., Algo. 1).
initSamples is a multiset which encodes a probability distribution via frequen-
cies of models), frozen, degreeOfParallelization, α, F (set of weighted formulas), Λ
(PrASP program)

1: s← initSamples, k ← 0, temp ← initTemp
2: e ← energy(s)
3: while k ≤ maxTime ∧ temp ≥ frozen do
4: parfor i← 1, degreeOfParallelization do
5: s′′i ← s′′] sampleStep(samplingMethod)
6: end parfor
7: s′ ← argmins′′(energy(s′′1), ..., energy(s′′n))
8: e′ ← energy(s′)

9: if e′ < e ∨ random1
0 < e−(e′−e)/temp) then

10: s ← s′

11: e ← e′

12: end if
13: temp ← temp · α
14: k ← k + 1
15: end while

Ensure: Multiset s = (pw, frq) = µapprox(Λ) approximates the probability distribu-
tion µ(Λ) = Pr(Γ (ρ(Λ))) over the set pw = {pwi} = Γ (ρ(Λ)) of possible worlds

by {Pr(pwi) ≈ frq(pw)
|s| }.

16: function energy(s)
17: parfor fi ∈ |F | do

18: freqfi ←
|{{s′∈s:s′|=Λfi}}|

|s|
19: end parfor

return
√∑

fi∈F (freqfi − weightfi)
2

20: end function
21: . (Continued in Part 2 below)

In addition to the actual inference algorithms, it is often beneficial to let
PrASP remove (prune) all parts of the spanning program which cannot influence
the probabilities of the query formulas. The approach to this is straightforward
(program dependency analysis) and therefore omitted here. We will show in the
evaluation section how such simplification affects inference performance.

A Hybrid Approach to Inference

64

Algorithm 2 Inference by parallel simulated annealing Part 2.

22: function stepSample(samplingMethod)
. The framework provides various configurable methods for the simulated

annealing sampling step, of which we show here only one.
23: F ′ ← ∅
24: for fi ∈ |F | do
25: if random1

0 < weightfi then
26: F ′ ← F ′ ∪ {fi}
27: else
28: F ′ ← F ′ ∪ {¬fi}
29: end if
30: end for

return answerSets(F ′) (might be ∅)
31: end function

While for space-related reasons this paper covers deductive inference only,
PrASP also supports induction (learning of weights of hypotheses from example
data). Please refer to [10] for details.

5 Experiments

The main goal of PrASP is not to outperform existing approaches in terms
of speed but to provide a flexible, scalable and highly configurable framework
which puts as few restrictions as possible on what users can express in terms
of (non-monotonic) certain and uncertain beliefs while being competitive with
more specialized inference approaches if the respective conditions (like event
independence) are met.
For our first experiment, we model a coin game (a slightly simplified variant of
the example code shown before): a number of coins are tossed and the game is
won if a certain subset of all coins comes up with “heads”. The inference task
is the approximation of the winning probability. In addition, another random
subset of coins are magically dependent from each other and one of the coins is
biased (probability of “heads” is 0.6). Despite its simplicity, this scenario shows
how inference copes with independent as well as dependent uncertain facts, and
how effective the pruning approach of the respective framework works (since
winning depends only on a subset of coins). Also, inference complexity clearly
scales with the number of coins. In PrASP syntax, such a partially randomly
generated program looks, e.g., as follows (adaptation to MLN or ProbLog syntax
is straightforward):

coin(1..8).

[0.6] coin_out(1,heads).

[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

1{coin_out(N,heads), coin_out(N,tails)}1 :- coin(N).

win :- 2{coin_out(3,heads),coin_out(4,heads)}2.

coin_out(4,heads) :- coin_out(6,heads).

A Hybrid Approach to Inference

65

The inference algorithm used is initial sampling (Algo. 1) followed by sim-
ulated annealing (Algo. 2). Using Algo. 1, we computed 100 random models
(number of samples n), which is sufficient to obtain a precision of +/-0.01 for
the query probabilities. The winning subset of coins and the subset of mutually
dependent coins (from which a rule of the form
coin_out(a,heads) :- coin_out(b,heads), coin_out(c,heads), ...

is generated) is each a random set with 25% of the size of the respective full set of
coins. “PrASP 0.7.2 simp” in Fig. 1 stands for results obtained with pruning (i.e.,
parts of the program on which the query result cannot depend have been auto-
matically removed). We also report the results obtained solely using (Algorithm
2) (“noinit” in Fig. 1), in order to see whether the initial sampling stage provides
any benefits here. Simulated annealing parameters have been maxEnergy = 0.15,
initTemp = 5, frozen = 10−150, α = 0.85.
We compared the performance (duration in dependency of the number of coins
(x-axis), minimum number of 18 coins) of the current prototype of PrASP with
that of Tuffy 0.3 (http://i.stanford.edu/hazy/hazy/tuffy/), a recent implemen-
tation of Markov Logic Networks which uses a database system in order to in-
crease scalability, and ProbLog2 2.1 (https://dtai.cs.kuleuven.be/problog/) (de-
spite random dependencies). Times are in milliseconds, obtained using an i7
4-cores processor with 3.4GHz over five trials.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300

Experiment Suite 'Coins'(Duration)

ProbLog2 2.1:Duration
MLN(Tuffy 0.3):Duration

(PrASP 0.7.2):Duration
(PrASP 0.7.2 simp):Duration

(PrASP 0.7.2 noinit):Duration

Fig. 1. Biased coins game

ProbLog2 and Tuffy scale
very well here, with some
additional time required by
Tuffy probably due to the
overhead introduced by ex-
ternal database operations.
With PrASP, we observe that
priming simulated annealing
with an initial sampling step
(which would give inaccurate
results if used standalone)
improves performance mas-
sively, whereas pruning ap-
pears to suffer from the addi-

tional overhead introduced by the required dependency analysis of the logic
program. Our hypothesis regarding this behavior is that the initial distribution
over possible worlds is, albeit not perfect, quite close to the accurate distribution
so that the subsequent simulated annealing task takes off a lot faster compared
to starting from scratch (i.e., from the uniform distribution).
The next experiment shows how PrASP copes with a more realistic benchmark
task - a form of the well-known friends-and-smokers problem [15] - which can
be tractably approached using Algorithm 1 alone since the independence as-
sumption is met (which also makes it suitable for ProbLog). On the other
hand, the rules are more complex. In this benchmark scenario, a randomly
chosen number of persons are friends, a randomly chosen subset of all people

A Hybrid Approach to Inference

66

smoke, there is a certain probability for being stressed ([[0.3]] stress(X)),
it is assumed that stress leads to smoking (smokes(X) :- stress(X)),
and that some friends influence each other with a certain probability
([[0.2]] influences(X,Y)), in particular with regard to their smoking behavior
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y). With a certain proba-
bility, smoking leads to asthma ([[0.4]] h(X). asthma(X) :- smokes(X), h(X)).
The query comprises of [?] asthma(X) for each person X.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250

Experiment Suite 'Smokers Network'(Duration)

ProbLog2:Duration
MLN(Tuffy 0.3):Duration

(PrASP 0.7.2 (10 models)):Duration
(PrASP 0.7.2 (100 models)):Duration

Fig. 2. Smokers social network

The results (Fig. 2) have
been averaged over five trials.
Again, ProbLog2 scores best
in this scenario. PrASP, using
Algorithm 1 (since all uncer-
tain facts in this scenario are
mutually independent), does
quite well for most of episodes
but looses on ProbLog2. Tuffy
does very well below 212 per-
sons, then performance mas-
sively breaks in for unknown
reasons (possibly due to some
internal cache overflow). For

technical reasons, we couldn’t get the smokers-scenario working with the pub-
licly available current implementation of P-Log (we received segmentation faults
which couldn’t be resolved), but experiments with examples coming with this
software seem to indicate that this approach also scales fine.

6 Conclusion

We have presented a new software framework for uncertainty reasoning and pa-
rameter estimation based on Answer Set Programming. In contrast to most other
approaches to probabilistic logic programming, the philosophy of PrASP is to
provide a very expressive formal language (ASP or full FOL syntax over finite
domains for formulas annotated with precise as well as imprecise probabilities)
on the one hand and a variety of inference algorithms which are able to take
advantage of certain problem domains which facilitate “fast track” reasoning
and learning (in particular inference in the presence of formula independence)
on the other. We see the main benefit of our framework, besides its support for
non-monotonic reasoning, thus in its semantically rich and configurable uncer-
tainty reasoning approach which allows to combine various sampling and infer-
ence approaches in a pipeline-like fashion. Ongoing work focuses on additional
experiments and the integration of further inference algorithms, and the direct
integration of an ASP solver into PrASP, in order to avoid expensive calls of ex-
ternal reasoning tools. Another area of ongoing work is the support for so-called
annotated disjunctions [20]. Sponsored by SFI grant n. SFI/12/RC/2289.

A Hybrid Approach to Inference

67

References

1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Theory Pract. Log. Program. 9(1), 57–144 (2009)

2. Corapi, D., Sykes, D., Inoue, K., Russo, A.: Probabilistic rule learning in nonmono-
tonic domains. In: Procs. 12th international conference on Computational logic in
multi-agent systems. pp. 243–258. CLIMA’11, Springer-Verlag, Berlin, Heidelberg
(2011), http://dl.acm.org/citation.cfm?id=2044543.2044565

3. Cussens, J.: Parameter estimation in stochastic logic programs. In: Mach. Learn.
p. 2001 (2000)

4. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: In IJCAI. pp. 1300–1309. Springer-Verlag (1999)

5. Kersting, K., Raedt, L.D.: Bayesian logic programs. In: Proceedings of the 10th
International Conference on Inductive Logic Programming (2000)

6. Laskey, K.B., Costa, P.C.: Of klingons and starships: Bayesian logic for the 23rd
century. In: Procs. of the 21st Conf. on Uncertainty in Artificial Intelligence (2005)

7. Lee, J., Palla, R.: System f2lp - computing answer sets of first-order formulas. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR. Lecture Notes in Computer Science,
vol. 5753, pp. 515–521. Springer (2009)

8. Muggleton, S.: Learning stochastic logic programs. Electron. Trans. Artif. Intell.
4(B), 141–153 (2000)

9. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive
databases. Inf. Comput. 110(1), 42–83 (1994)

10. Nickles, M., Mileo, A.: Probabilistic inductive logic programming based on answer
set programming. In: 15th Int’l Workshop on Non-Monotonic Reasoning (NMR’14)
(2014)

11. Nickles, M., Mileo, A.: A system for probabilistic inductive answer set program-
ming. In: 9th International Conference on Scalable Uncertainty Management
(SUM’15) (2015, to appear)

12. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)
13. Poole, D.: The independent choice logic for modelling multiple agents under un-

certainty. Artificial Intelligence 94, 7–56 (1997)
14. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its

application in link discovery. In: IJCAI. pp. 2462–2467 (2007)
15. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learning 62(1-2),

107–136 (February 2006), http://dx.doi.org/10.1007/s10994-006-5833-1
16. Rodder, W., Meyer, C.: Coherent knowledge processing at maximum entropy by

spirit. In: Proceedings of the Twelfth Conference on Uncertainty in Artificial In-
telligence (UAI’96), 1996 (1996)

17. Saad, E., Pontelli, E.: Hybrid probabilistic logic programming with non-monotoic
negation. In: In Twenty First International Conference on Logic Programming.
Springer Verlag (2005)

18. Sato, T., Kameya, Y.: Prism: a language for symbolic-statistical modeling. In: In
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI97. pp. 1330–1335 (1997)

19. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional
logics. Logic Journal of the IGPL 20(5), 872–908 (2012)

20. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated dis-
junctions. In: Demoen, B., Lifschitz, V. (eds.) Logic Programming, Lecture Notes
in Computer Science, vol. 3132, pp. 431–445. Springer Berlin Heidelberg (2004)

A Hybrid Approach to Inference

68

