
Comparing SVM, Gaussian Process and Random Forest
Surrogate Models for the CMA-ES
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Abstract: In practical optimization tasks, it is more and
more frequent that the objective function is black-box
which means that it cannot be described mathematically.
Such functions can be evaluated only empirically, usually
through some costly or time-consuming measurement, nu-
merical simulation or experimental testing. Therefore, an
important direction of research is the approximation of
these objective functions with a suitable regression model,
also called surrogate model of the objective functions.
This paper evaluates two different approaches to the con-
tinuous black-box optimization which both integrates sur-
rogate models with the state-of-the-art optimizer CMA-
ES. The first Ranking SVM surrogate model estimates the
ordering of the sampled points as the CMA-ES utilizes
only the ranking of the fitness values. However, we show
that continuous Gaussian processes model provides in the
early states of the optimization comparable results.

1 Introduction

Optimization of an expensive objective or fitness function
plays an important role in many engineering and research
tasks. For such functions, it is sometimes difficult to find
an exact analytical formula, or to obtain any derivatives or
information about smoothness. Instead, values for a given
input are possible to be obtained only through expen-
sive and time-consuming measurements and experiments.
Those functions are called black-box, and because of the
evaluation costs, the primary criterion for assessment of
the black-box optimizers is the number of fitness function
evaluations necessary to achieve the optimal value.

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [5] is considered to be the state-of-the-art of
the black-box continuous optimization. The important
property of the CMA-ES is that it advances through the
search space only according to the ordering of the function
values in current population. Hence, the search of the algo-
rithm is rather local which predisposes it to premature con-
vergence in local optima if not used with sufficiently large

population size. This issue resulted in development of sev-
eral restart strategies [12], such as IPOP-CMA-ES [1] and
BIPOP-CMA-ES [6] performing restarts with population
size successively increased, or aCMA-ES [9] using also
unsuccessful individuals for covariance matrix adaptation.

Furthermore, the CMA-ES often requires more fitness
function evaluations to find the optimum than many real-
world experiments can offer. In order to decrease the num-
ber of evaluations in evolutionary algorithms, it is conve-
nient to periodically train a surrogate model of the fitness
function and use it for evaluation of new points instead
of the original function. The second option is to use the
model for selection of the most promising points to be
evaluated by the original fitness.

Loshchilov’s surrogate-model-based algorithm
s∗ACM-ES [13] utilizes the former approach: it esti-
mates the ordering of the fitness values required by the
CMA-ES using Ranking Support Vector Machines (SVM)
as an ordinal regression model. Moreover, it has been
shown [13] that model parameters (hyperparametres)
used to construct Ranking SVM model can be optimized
during the search by the pure CMA-ES algorithm.
Later proposed s∗ACM-ES extensions, referred to as
s∗ACM-ES-k [15] and BIPOP-s∗ACM-ES-k [14], use
a more intensive exploitation of the surrogate model by
increasing population size in generations evaluated by the
model.

More recently, a similar algorithm based on regres-
sion surrogate model called S-CMA-ES [3] has been pre-
sented. As opposed to the former algorithm, S-CMA-
ES is performing continuous regression by Gaussian pro-
cesses (GP) [17] and random forests (RF) [4].

This paper compares the two mentioned surrogate
CMA-ES algorithms, s∗ACM-ES-k and S-CMA-ES, and
the original CMA-ES itself. We benchmark these al-
gorithms on the BBOB/COCO testing set [7, 8] not
only in their one population IPOP-CMA-ES version,
but also in combination with the two-population-size
BIPOP-CMA-ES.
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The remainder of the paper is organized as follows.
The next chapter briefly describes tested algorithms: the
CMA-ES, the BIPOP-CMA-ES, the s∗ACM-ES-k, and the
S-CMA-ES. Section 3 contains experimental setup and
results, and Section 4 concludes the paper and suggests
further research directions.

2 Algorithms

2.1 The CMA-ES

In each generation g, the CMA-ES [5] generates λ new
candidate solutions xk ∈ RD, where k = 1, . . . ,λ , from
a multivariate normal distribution N(m(g),σ2(g)C(g)),
where m(g) is the mean interpretable as the current best
estimate of the optimum, σ2(g) the step size, representing
the overall standard deviation, and C(g) the D×D covari-
ance matrix. The algorithm selects the µ points with the
lowest function value from λ generated candidates to ad-
just distribution parameters for the next generation.

The CMA-ES uses restart strategies to deal with mul-
timodal fitness landscapes and to avoid being trapped
in local optima. A multi-start strategy where the pop-
ulation size is doubled in each restart is referred to as
IPOP-CMA-ES [1].

2.2 BIPOP-CMA-ES

The BIPOP-CMA-ES [6], unlike IPOP-CMA-ES, consid-
ers two different restart strategies. In the first one, cor-
responding to the IPOP-CMA-ES, the population size is
doubled in each restart irestart using a constant initial step-
size σ0

large = σ0
default:

λlarge = 2irestartλdefault . (1)

In the second one, the smaller population size λsmall is
computed as

λsmall =
⎢⎢⎢⎢⎢⎢⎣
λdefault(1

2
λlarge

λdefault
)U[0,1]2⎥⎥⎥⎥⎥⎥⎦

, (2)

where U[0,1] denotes the uniform distribution in [0,1].
The initial step-size is also randomly drawn as

σ0
small = σ0

default×10−2U[0,1] . (3)

The BIPOP-CMA-ES performs the first run using
the default population size λdefault and the initial step-
size σ0

default. In the following restarts, the strategy with
less function evaluations summed over all algorithm runs
is selected.

2.3 s∗ACM-ES-k

Loshchilov’s version of the CMA-ES using the ordinal re-
gression by Ranking SVM as surrogate model in specific
generations instead of the original function is referred to as
s∗ACM-ES [13], and its extension using a more intensive
exploitation is called s∗ACM-ES-k [15].

Before the main loop starts, the s∗ACM-ES-k evalu-
ates gstart generations by the original function, then it
repeats the following steps: First, the surrogate model
is constructed using hyperparameters θ , and the original
function-evaluated points from previous generations. Sec-
ond, the surrogate model is optimized by the CMA-ES
for gm generations with population size λ = kλ λdefault and
the number of best points µ = kµ µdefault, where kλ ,kµ ≥ 1.
Third, the following generation is evaluated by the origi-
nal function using λ = λdefault and µ = µdefault. To avoid a
potential divergence when gm fluctuate between 0 and 1,
kλ > 1 is used only in the case of gm ≥ gmλ , where gmλ de-
notes the number of generations suitable for effective ex-
ploitation using the model. Then the model error is calcu-
lated according to the comparison of ranking between the
original and model evaluation of the last generation. After
that, the gm is adjusted in accordance with the model error.
As the last step, the s∗ACM-ES-k searches a hyperparam-
eter space by one generation of the CMA-ES minimizing
the model error to find the most suitable hyperparameter
settings θnew for the next model-evaluated generations.

The s∗ACM-ES-k version using BIPOP-CMA-ES pro-
posed in [14] is called BIPOP-s∗ACM-ES-k.

2.4 S-CMA-ES

As opposed to the former algorithms, a different ap-
proach to surrogate model usage is incorporated in the
S-CMA-ES [3]. The algorithm is a modification of
CMA-ES where the original evaluating and sampling
phases are substituted by the Algorithm 1 at the beginning
of each CMA-ES generation.

In order to avoid the false convergence of the algorithm
in the BBOB benchmarking toolbox, the model-predicted
values are adapted to never be lower then the so far mini-
mum of the original function (see the step 17 in the pseu-
docode).

The main difference between the S-CMA-ES and the
s∗ACM-ES-k is in the manner how the CMA-ES is uti-
lized. Considering S-CMA-ES, the model prediction
or training is performed within each generation of the
CMA-ES. On the contrary in the s∗ACM-ES-k, individual
generations of the CMA-ES are started to optimize either
original fitness, surrogate fitness, or model itself.
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3 Experimental Evaluation

The core of this paper lies in a systematic comparison of
the two mentioned approaches to using surrogate mod-
els with the CMA-ES and the original CMA-ES algo-
rithm itself. The first group of surrogate-based algo-
rithms is formed by the S-CMA-ES algorithms using
Gaussian processes and random forests models, and the
other group is formed by the s∗ACM-ES algorithm. These
four algorithms (CMA-ES, GP-CMA-ES, RF-CMA-ES,
s∗ACM-ES) are tested in their IPOP version (based on
IPOP-CMA-ES) [1] and in the bi-population restart strat-
egy version (based on BIPOP-CMA-ES and its deriva-
tives) [6].

3.1 Experimental Setup

The experimental evaluation is performed through the
noiseless part of the COCO/BBOB framework (COm-
paring Continuous Optimizers / Black-Box Optimization
Benchmarking) [7, 8]. It is a collection of 24 benchmark
functions with different degree of smoothness, uni-/multi-
modality, separability, conditionality etc. Each function is

Algorithm 1 Surrogate CMA-ES Algorithm [3]
Input: g (generation), gm (number of model generations),

σ , λ , m, C (CMA-ES internal variables),
r (maximal distance between training points and m),
nREQ (minimal number of points for model training),
nMAX (maximal number of points for model training),
A (archive), fM (model), f (original fitness function)

1: xk ∼N(m,σ2C) k = 1, . . . ,λ {CMA-ES sampling}
2: if g is original-evaluated then
3: yk ← f (xk) k = 1, . . . ,λ {fitness evaluation}
4: A =A∪{(xk,yk)}λ

k=1
5: (Xtr,ytr)← {(x,y)∈A ∣(m−x)⊺σC−1/2(m−x) ≤ r}
6: if ∣Xtr∣ ≥ nREQ then
7: (Xtr,ytr)← choose nMAX points if ∣Xtr∣ > nMAX
8: {transformation to the eigenvector basis:}

Xtr← {(σC−1/2)⊺xtr for each xtr ∈Xtr}
9: fM← trainModel(Xtr,ytr)

10: mark (g+1) as model-evaluated
11: else
12: mark (g+1) as original-evaluated
13: end if
14: else
15: xk ← (σC−1/2)⊺xk k = 1, . . . ,λ
16: yk ← fM(xk) k = 1, . . . ,λ {model evaluation}
17: {shift yk values if (minyk) < best y from A}

yk = yk +max{0, minA y−minyk} k = 1, . . . ,λ
18: if gm model generations passed then
19: mark (g+1) as original-evaluated
20: end if
21: end if
Output: fM, A, (yk)λ

k=1

defined for any dimension D ≥ 2; the dimensions used for
our tests are 2, 5, 10, and 20. The set of functions com-
prises, among others, well-known continuous optimiza-
tion benchmarks like ellipsoid, Rosenbrock’s, Rastrigin’s,
Schweffel’s or Weierstrass’ function.

The framework calls the optimizers on 15 different in-
stances for each function and dimension, meaning that
1440 optimization runs were called for each of the eight
considered algorithms. The graphs at the end of the pa-
per show detailed results in a per-function and per-group-
of-function manner. The following paragraphs summarize
the parameters of the algorithms.

The CMA-ES. The original CMA-ES was used in its
IPOP-CMA-ES version (Matlab code v. 3.61) with num-
ber of restarts = 4, IncPopSize = 2, σstart = 8

3 , λ = 4+⌊3logD⌋. The remainder settings were left default.

s∗ACM-ES. We have used Loshchilov’s GECCO 2013
Matlab code xacmes.m [14] in its s∗ACM-ES version, set-
ting the parameters CMAactive = 1, newRestartRules = 0
and withSurr = 1, modelType = 1, withModelEnsembles =
0, withModelOptimization = 1, hyper_lambda = 20, λMult
= 1, µMult = 1 and ΛminIter = 4.

S-CMA-ES: GP5-CMA-ES and RF5-CMA-ES. The num-
ber after the GP/RF in the names of the algorithms denotes
the number of model-evaluated generations gm, which are
evaluated by the model in row. All considered S-CMA-ES
versions use the distance r = 8 (see algorithm 1). For the
GP model, Kν=5/2

Matérn covariance function with starting val-
ues (σ2

n , l,σ2
f ) = log(0.01,2,0.5) has been used (see [3]

for the details). We have tested RF comprising 100 regres-
sion trees, each containing at least two training points in
each leaf. The CMA-ES parameters (IPOP version, σstart ,
λ , IncPopSize etc.) were used the same as in the pure
CMA-ES experiments. All S-CMA-ES parameter values
were chosen according to preliminary testing on several
functions from the COCO/BBOB framework.

BIPOP version of the algorithms. The bi-population ver-
sions BIPOP-CMA-ES and BIPOP-s∗ACM-ES use the
same Loshchilov’s Matlab code xacmes.m with the pa-
rameter BIPOP = 1. The BIPOP-GP5-CMA-ES and
BIPOP-RF5-CMA-ES algorithms are constructed in the
same manner as the S-CMA-ES was transformed from the
CMA-ES – by integration of the Algorithm 1 into every
generation of the BIPOP-s∗ACM-ES.

3.2 Results

The performance of the algorithms is compared in the
graphs placed in Figures 1–3. The graphs in Figure 1 de-
pict the expected running time (ERT), which depends on
a given target function value ft = fopt +∆ f – the true opti-
mum fopt of the respective benchmark function raised by
a small value ∆ f . The ERT is computed over all relevant
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Figure 1: Expected running time (ERT in number of f -evaluations as log10 value) divided by dimension versus dimension.
The target function value is chosen such that the bestGECCO2009 artificial algorithm just failed to achieve an ERT of
10×DIM. Different symbols correspond to different algorithms given in the legend of f1 and f24. Light symbols give the
maximum number of function evaluations from the longest trial divided by dimension. Black stars indicate a statistically
better result compared to all other algorithms with p<0.01 and Bonferroni correction number of dimensions (six). Legend:○:BIPOP-CMAES, ▽:BIPOP-GP5, ⋆:BIPOP-RF5, ◻:BIPOP-saACMES, △:CMA-ES, ♢:GP5-CMAES, 9:RF5-CMAES,
D:saACMES
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Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by
dimension (FEvals/DIM) for all functions and subgroups in 5-D. The targets are chosen from 10[−8..2] such that the
bestGECCO2009 artificial algorithm just not reached them within a given budget of k × DIM, with k ∈ {0.5,1.2,3,10,50}.
The “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each selected target.
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Figure 3: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by
dimension (FEvals/DIM) for all functions and subgroups in 20-D. The targets are chosen from 10[−8..2] such that the
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The “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each selected target.
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trials as the number of the original function evaluations
(FEs) executed during each trial until the best function
value reached ft, summed over all trials and divided by
the number of trials that actually reached ft [7].

As we can see in Figure 1, the 24 functions can be
roughly divided into two groups according to the algo-
rithm which performed the best (at least in 10D and 20D).
The first group of functions where the CMA-ES performed
best consists of functions 1, 3, 4, 6, and 20 while on func-
tions 2, 5, 7, 10, 11, 13–16, 18, 21, 23, and 24, GP5-CMA-
ES is usually better. The usage of the BIPOP versions
generally leads to no improvement or even to performance
decrease.

The graphs in Figures 2 and 3 summarize the perfor-
mance over subgroups of the benchmark functions and
show the proportion of algorithm runs that reached the
target value ft ∈ 10[−8..2] indeed ( ft was actually differ-
ent for each respective function, see the figures captions).
Roughly speaking, the higher the colored line, the better
the performance of the algorithm is for the number of the
original evaluations given on the horizontal axis.

Thus we can see that our GP5-CMA-ES usually out-
performs the other algorithms when we consider the eval-
uations budget FEs ≤ 101.5D, i.e. FEs ≤ 150 for 5D and
FEs ≤ 600 for 20D. However, as the number of the consid-
ered original evaluations rises, the original CMA-ES or the
s∗ACM-ES usually performs better. This fact can be sum-
marized that our GP5-CMA-ES is convenient especially
for the applications where a very low number of function
evaluations is available, such as in [2].

4 Conclusions & Future Work

In this paper, we have compared the surrogate-assisted S-
CMA-ES, which uses GP and RF continuous regression
models, with s∗ACM-ES-k algorithm based on ordinal re-
gression by Ranking SVM, and the original CMA-ES, all
in their IPOP and BIPOP versions. The comparison shows
that Gaussian process S-CMA-ES usually outperforms the
ordinal-based s∗ACM-ES-k in early stages of the algo-
rithm search, especially on multimodal functions (BBOB
functions 15–24). However, the algorithms and surrogate
models should be further analyzed and compared since,
for example, the NEWUOA [16] or SMAC [10, 11] al-
gorithms spend a considerably lower number of function
evaluations than the CMA-ES in these early optimization
phases. The BIPOP versions of the algorithms did not in-
creased performances of appropriate IPOP versions except
BBOB function 5.

A natural perspective of improving S-CMA-ES is to
make the number of model-evaluated generations self-
adaptive. We will additionally investigate different prop-
erties of continuous and ordinal regression in view of their
applicability as regression models. Different cases and
benchmarks where the ordinal regression is clearly supe-
rior to continuous regression will be further identified. For

example, hybrid surrogate models combining both kinds
of regression will be attempted.
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