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Abstract: 

 

In order to successfully ablate moving tumours in robotic radiosurgery, respiratory motion prediction is needed to 

compensate time delays. In this context, recent studies revealed a high potential of support vector regression (SVR). 

However, high computational cost is one major drawback, particularly caused by batch mode training. We evaluate two 

approaches to reduce the update rate as well as computation time, while keeping a low prediction error. The update 

rules are either based on information about the respiratory phase or based on the current prediction error. An 

evaluation on patient data sets revealed that the second approach on average decreases computation time by 88.53% 

compared to a batch mode implementation. The prediction error increased by 0.3%, hence indicating enhanced 

efficiency. 
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1 Problem 

In modern robot-based radiation surgery, precisely radiating moving tumours has become more and more feasible, 

while sparing surrounding critical structures. One state-of-the-art system is the CyberKnife® (Accuray Systems, 

Sunnyvale, CA). Apart from radiating the tumour from multiple locations, the system can compensate internal tumour 

motion that is caused by respiration.  For compensation optical markers, attached to the patient's chest, are continuously 

tracked. Their position is correlated with internal landmarks by stereoscopic X-ray images [1]. However, due to 

kinematic limitations, data acquisition and processing, time latencies have to be taken into account. In case of 

CyberKnife® Synchrony this latency is 115ms. Thus, to reduce this systematic error, the position of the optical markers 

has to be predicted.  

Several studies have shown that support vector regression (SVR) can precisely predict respiratory motion and is capable 

of competing with state-of-the-art motion prediction algorithms [2–5]. Implemented in usual batch mode (BM) the SVR 

model is recomputed at every incoming sample point. This leads to high computational cost and is therefore unpractical 

for real-time applications. To resolve this, Ernst et al. [2] suggested a global update factor τglobal, that reduces the 

update rate, but also increases the prediction error.  

In this study, we investigate two SVR update methods to decrease the computation time while maintaining a low 

prediction error. First, we analyzed the occurrence of resulting Support Vectors (SV) over time to obtain an update 

factor depending on the respiratory phase. Second, the current prediction error at time t is used as an update criterion. If 

the prediction error exceeds a certain threshold, the SVR is recomputed. 

2 Methods 

For simplicity, all further explanations are reduced to a one dimensional signal. The algorithms can easily be expanded 

to three dimensions. It is assumed that the respiratory signal is equidistantly sampled with a sampling rate fs and that the 

resulting sequence has length N. Let yt be the signal amplitude at time point t and yt+δ the amplitude of the predicted 

point. Here, δ represents the prediction horizon. The predicted value is denoted by  ̂    and depends on           . 

2.1 Support Vector Regression (SVR) 

 Given a training set 
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where again ui    
  represents the training data and yi+δ     the training labels, the SVR fits a functional relationship 

y = f(u) to this data. Here, L is the amount of training samples and M the number of past observations used to predict a 

new label. The ɛ-SVR does not penalize a fitting error up to ɛ per sample and optimizes f(u) to be as smooth as possible. 

In the linear case with slope vector w and offset b,  f(u) can then be used to predict a point  ̂     (  )  〈    〉  

 , where 〈   〉 denotes the dot product. As smoothness is equivalent to minimizing the l2-norm of w, a convex 

optimization problem, that is regularized by violations of the mentioned ɛ constraint, can be formulated and solved to 

finally derive f(u). A full account of the underlying principles and mathematics is given in [6]. Training samples 

exceeding an absolute error of ɛ after performing the optimization are called Support Vectors (SV). Essentially, only 

these samples will contribute to the final definition of f(u) and are hence most important for the training or updating 

process. 

The SV machine can be extended to nonlinear cases by using kernel functions used to implicitly transform the linear 

case above to higher dimensions. The SVR was implemented with a Gaussian radial basis kernel (width parameter ɣ = 

2) using LIBSVM Toolbox [7]. Further, we set the regularization constant C for prediction errors on the training data to 

30, while L = 1000 and M = 5. The tube size ɛ was set to the standard deviation of the first á trous wavelet scale [2]. 

2.2 Updating of SVR model 

Phase factor update rule (PFUR) 

In contrast to general BM training, Ernst et al. [2] introduced a global update factor τglobal, updating the model if 

   (           )    is true, which happens at frequent intervals. Thus, an update factor         = 1 is equivalent to 

the BM implementation. We will refer to this method as constant factor update rule (CFUR). Here, this idea is extended 

to a phase specific update factor. Therefore, we assume that the occurrence of the SVs is not homogenously distributed 

over time and that the sets of SVs used by the SVR model at time t and t-1 are similar. Note again, that only SVs will 

contribute information to the SVR model after training. Consequently, the effective update rate of SVR adapts to the 

phase of the respiration period, e.g. maximum in- and expiration. We define two phases: maximum in- and expiration 

with τmax = 1 and in- as well as exhalation phase with τslope < 1. The length of the first phase is determined by a 

proportion parameter θ given in percent of the mean period duration per maximum. These phases are centered on the 

maxima. 

Error update rule (EUR)  

The second update algorithm depends on the current prediction error. If at time t a value yt is measured, the algorithm 

computes  ̂ based on the current SVR model and input ut-δ. If | ̂    | exceeds a threshold eth, the SVR model is 

updated. This aims at updating the model once it becomes too inaccurate. In order to estimate a general threshold 

independent of the signal, eth is set to a multiple f of the chosen tube size ɛ. 

3 Results 

To investigate the PFUR and the EUR, we carried out three experiments on real patient data. First, we experimentally 

verified the assumptions being the basis of PFUR. Second, by varying τslope, θ and f, the potential of these two update 

algorithms is evaluated and compared to CFUR for the same signal. Third, EUR is further explored on 33 patient files.  

According to the latencies of the CyberKnife system, the prediction horizon δ was set to 3 samples (≈115ms). All 

signals have been globally scaled to a range of [0, 1] and reduced to the first principle component for simplicity. 

Investigations were done on an i7-2600 CPU@3.40 GHz with 16GB RAM and all algorithms were implemented in 

Matlab. 

The performance was evaluated using computation time tcalc and number of SVR model updates nupdate. Whereas tcalc 

depends on the specific hardware of the computer and software implementation of the algorithm, nupdate only depends on 

the algorithm and is approximately governed by a linear relationship to tcalc.  Prediction accuracy was measured in terms 

of relative root mean square error RMSrel
 
[2]: 
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3.1 Support Vector distribution over time 

In the first experiment, 20000 data points (≈770s) of a respiratory signal were processed by ɛ-SVR using a batch mode 

implementation (part of the signal is shown in fig. 1.a). At each time point, the number and location of the SVs were 

extracted from the SVR model. Fig. 1.c shows training labels and SVs for a certain time point t. The SVs are mainly 

distributed around the maxima in- and expiration. Over time the SVR model used an average amount of 446 from 1000 

possible training samples as SVs. Per model update 3.3 elements from the SV set changed on anverage. Finally, a mean 

respiratory period was calculated from the signal (fig. 1.b) and divided into 20 bins. Depending on their location within 

the whole signal, each SV was assigned to one of the bins. Fig. 1.d shows a histogram of the accumulated number of 

SVs per bin normalized by the maximum number of training samples among all bins.  

3.2 Comparing performance and efficiency of PFUR and EUR 

We further analyzed the signal used in experiment one with PFUR and EUR. For PFUR, τslope was varied between 0 and 

1 in steps of 0.1 and θ was incremented in steps of 5% between 5-20%. The impact of the multiplication factor f for 

EUR was tested by grid search using f = {0.05, 0.1, 0.25, 0.5, 0.667, 0.8, 1, 1.25, 1.5, 2, 4, 10, 20}. The results were 

compared with CFUR using a global update factor τglobal varied between 0 and 1 in steps of 0.1 and assessed using 

RMSrel, tcalc and nupdate (Fig.2.a-f).  

3.3 Analysis of multiple patients with error update rule (EUR) 

Based on the promising results of EUR, 33 patient files were evaluated only with this method. These signals were ran 

domly selected from a pool of 304 signals (31 patients) using 20000 data points for each analysis. As in section 3.2, the 

multiplication factor f was varied to find the optimal fopt. To compare the results for different patients i, the average 

RMSrel, tcalc and nupdate were calculated relative to CFUR τglobal =1:  

      ̅̅ ̅̅ ̅̅ ̅̅ ̅      (
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Figures 3.a - c show the results averaged across 33 patients. In addition the results of CFUR with τglobal = 0.1, 0.5 and 1 

Figure 1: Analysis of the SV location; a) part of the analysed real signal; b) mean shape of the respiration period; c) 

number and location of SVs within a training batch for one time step t; d) number of SVs sorted into 20 bins relative to 

the maximum number of SVs among all bins 
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Figure 2: Evaluation of the relative RMS error RMSrel, computation time tcalc and number of model updates 

nupdate for one patient; (a-c) PFUR for different update factors τslope and size parameters θ; (d-f) EUR for different 

multiplication factor f compared to a CFUR with different τglobal  
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are illustrated. On average, EUR (f = 2) reduces tcalc by 88.53 %, and increases RMSrel by 0.3%, compared to batch 

mode training. The mean computation time to predict approximately 770s of respiratory signal was 534.4s. 

4 Discussion 

In this work, we presented two updating methods to decrease computation time of an ɛ-SVR for respiratory motion 

prediction – one based on the current respiratory phase (PFUR) and one on the prediction error (EUR). In an initial 

analysis, we showed that the location of the SVs strongly depends on the phase in the respiratory period. We found that 

training samples at the maximum in- or expiration are likely to comprise more SVs than other periods. This result 

supports the initial assumption of PFUR, i.e. that the update rate can be reduced during in- and exhalation. The concept 

of this approach was studied for various τslope and θ on one data set. For τslope = 0.3 and θ = 15%, tcalc was reduced by 

317. 4s compared to BM (nupdate,PFUR = 15159 instead of 20000 model updates), while the relative RMS error only 

increased by 0.34%. However, one drawback of this method is that the respiration phases, especially maximum in- and 

expiration, have to be known in advance or have to be identified online. This restricts the use of the PFUR for practical 

applications and makes it dependent on the accuracy with which the location of such extrema can be estimated. In 

contrast, EUR is independent of prior information and reduced tcalc by 1278.7s compared to an equivalent BM 

implementation, while yielding the same RMSrel increase as for the PFUR (nupdate,EUR = 111 for f  = 4). The result was 

confirmed in an evaluation of 33 patients. The average computation time was reduced by 88.53 % from tcalc,BM = 

4292.2s (BM) to tcalc,EUR = 534.4s, while the average RMSrel was increased by 0.3% only. With this method, respiratory 

motion prediction with SVR is performed more efficiently compared to the BM implementation. Even though it is still 

not possible to perform online motion prediction with SVR on an ordinary office computer, because the computation 

time for updating the model is larger than the sample time. But knowing when to update the model can be useful for 

implementing efficient multi-thread, online SVR predictors in the future. An example could be a dual-thread predictor, 

where one thread performs online predictions, while the second thread updates the SVR model. To reduce the 

calculation time even further, the algorithms could be implemented in C/C++ for instance or on dedicated hardware. 

Finally, it should be pointed out that EUR is not restricted to respiratory motion signals and can be applied to other 

applications.  
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Figure 3: Evaluation of 33 patients (≈770s per patient) with EUR, a-c) shows the avg. relative RMS error, avg. 

computation time and avg. number of model updates with respect to the results for a batch mode implementation for 

different multiplication factor f 
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