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ABSTRACT
In this paper, we describe the IRIT’s approach used for the
MediaEval 2015 ”Emotion in Music” task. The goal was to
predict two real-valued emotion dimensions, namely valence
and arousal, in a time-continuous fashion. We chose to use
recurrent neural networks (RNN) for their sequence mod-
eling capabilities. Hyperparameter tuning was performed
through a 10-fold cross-validation setup on the 431 songs of
the development subset. With the baseline set of 260 acous-
tic features, our best system achieved averaged root mean
squared errors of 0.250 and 0.238, and Pearson’s correla-
tion coefficients of 0.703 and 0.692, for valence and arousal,
respectively. These results were obtained by first making
predictions with an RNN comprised of only 10 hidden units,
smoothed by a moving average filter, and used as input to
a second RNN to generate the final predictions. This sys-
tem gave our best results on the official test data subset for
arousal (RMSE=0.247, r=0.588), but not for Valence. Va-
lence predictions were much worse (RMSE=0.365, r=0.029).
This may be explained by the fact that in the develop-
ment subset, valence and arousal values were very correlated
(r=0.626), and this was not the case with the test data. Fi-
nally, slight improvements over these figures were obtained
by adding spectral flatness and spectral valley features to
the baseline set.

1. INTRODUCTION
Music Emotion Recognition still is a hot topic in Music In-

formation Retrieval. In [15], the authors list four main issues
that explain why MER is a challenging and very interesting
scientific task: 1) ambiguity and granularity of emotion de-
scription, 2) heavy cognitive load of emotion annotation, 3)
subjectivity of emotional perception, 4) semantic gap be-
tween low-level acoustic features and high-level human per-
ception. It consists of either labeling songs and music pieces
as a whole, thus involving a classification task, or estimating
emotion dimensions in continuous time and space domains,
being then a regression task applied to time series. This last
case is the objective of the current challenge. For a complete
description of the task and corpus involved in challenge, the
reader may refer to [4].

For continuous-space MER, many machine learning (ML)
techniques were reported in the literature [11]. In the Me-
diaEval 2014 challenge edition, a variety of techniques were
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used: simple and multi-level linear regression models [12],
Support Vector machines for regression (SVR) [9], condi-
tional random fields [14], Long Short-Term Memory and
Recurrent Neural Networks (LSTM-RNN) [7]. This last ap-
proach was the one that achieved the best results. Following
these results, we chose to use RNNs. All the ML models were
developed using the Theano toolbox [5].

2. METHODOLOGY
In order to tune and test prediction models, we ran 10-

fold cross-validation (CV) experiments on the development
data subset. Once the best model was selected and tuned
within this setup, a single model was trained on the whole
development subset, and used to generate predictions on the
official evaluation data subset.

The input data were zero-mean and unit-variance nor-
malized. Standard PCA, PCA with a Gaussian kernel and
denoising autoencoders with Gaussian noise were tested to
further process the data, but no improvement was achieved
with any of these techniques.

We chose to use recurrent neural networks (RNN) for their
time sequence modeling capabilities. We used the Elman [8]
model type, in which recurrent connections feed the hidden
layer. The activations of the hidden layer at time t − 1 are
stored and fed back to the same layer at time t together
with the data input. A tanh activation function and a soft-
max function were used for the hidden layer and the final
layer with two outputs (for arousal and valence), respec-
tively. The layer weights were trained with the standard
mean-root-squared cost function. Weights were updated af-
ter each forward pass on a single song via the momentum
update rule.

The hyperparameters were tuned with the 10-fold CV
setup. The best model was comprised of 10 hidden units,
trained with a 1.0×10−3 learning rate and a 1.0×10−2 regu-
larization coefficient with both L1 and L2 norms. To further
limit overfitting, an early stopping strategy was used: the
models were all trained with 50 iterations only. This number
of iterations was set empirically.

A moving average filter was used to smooth the predic-
tions. Its size was tuned in the 10-fold CV setup, and the
best one was a window of 13 points. To avoid unwanted
border effects, the first and last 6 points, corresponding to
the filter delay, were equaled to the unfiltered predictions.

Another post-processing step was tested. It consisted of
feeding another RNN with the predictions of the first RNN.
By looking at the output, one can see that the second RNN
further smoothed the predictions.



Table 1: 10-fold cross-validation (CV) and official evaluation test (Eval) results. lr : linear regression model,
BSL: baseline results provided by the organizers, rnn: RNN, rnn2 : RNN fed with the predictions of the first
RNN.

System CV Eval
Valence Arousal Valence Arousal

RMSE r RMSE r RMSE r RMSE r

lr, 260 feat. .275 .637 .254 .646 N/A N/A N/A N/A
BSL, 260 feat. N/A N/A N/A N/A .366 ± .18 .01 ± .38 .27 ± .11 .36 ± .26

rnn, 260 feat. .261 .675 .246 .670 .377 ± .181 .017 ± .420 .259 ± .112 .518 ± .238
+ smoothing .254 .694 .239 .689 .365 ± .188 .029 ± .476 .247 ± .116 .588 ± .235
+ rnn2 .250 .703 .238 .692 N/A N/A N/A N/A

rnn, 268 feat. .259 .678 .245 .673 .373 ± .180 .023 ± .422 .254 ± .106 .532 ± .224
+ smoothing .252 .697 .238 .692 .361 ± .187 .044 ± .487 .243 ± .111 .612 ± .216
+ rnn2 .249 .706 .238 .694 .371 ± .194 .044 ± .525 .244 ± .115 .635 ± .222

The challenge rules also allowed to use our own acoustic
features. To complete the 260 baseline features, a set of
29 acoustic feature types were extracted with the ESSEN-
TIA toolbox [6], which is a toolbox specifically designed for
Music Information Retrieval. The 29 feature types such as
Bark and Erb bands that use several frequency bands re-
sulted in a total of 196 real values per audio frame. The
same frame rate as the baseline feature one was used (0.5s
window duration and hop size). We chose the feature types
among a large list, from the spectral domain mainly, such as
the so-called spectral ”contrast”, ”valley”, ”complexity”, but
also a few features from the time domain, such as ”dance-
ability”. For a complete list and description of the available
feature extraction algorithms, the reader may refer to the
ESSENTIA API documentation Web page [2].

In order to select useful features, we tested each feature
type by adding them one at a time to the baseline feature
set. Only three feature types were found to improve the
baseline CV performance: two variants of spectral flatness
and a feature called ”spectral valley”. The two spectral flat-
ness features use two different frequency scales: the Bark
and the Equivalent Rectangular Bandwidth (ERB) scales.
25 Bark bands were used, as computed in ESSENTIA [1, 3].
The ERB scale consists of applying a frequency domain fil-
terbank using gammatone filters [13]. Spectral flatness pro-
vides a way to quantify how noise-like a sound is, as opposed
to being tone-like. Spectral valley is a feature derived from
the so-called spectral contrast feature, which represents the
relative spectral distribution [10]. This feature was shown
to perform better than Mel frequency cepstral coefficients in
the task of music type classification [10].

3. RESULTS
Results are shown in Table 1, for both the cross-validation

experiments and the runs on the official evaluation test data
subset, referred to as ’CV’ and ’Eval’, respectively. The
results are reported in terms of root-mean-squared error
(RMSE) and Pearson’s correlation coefficient (r).

Generally speaking, valence predictions were less accurate
than the arousal ones, unlike the performance results re-
ported in the 2014’s edition, as reported in [7], for exam-
ple. Concerning the CV results, the simple linear regres-
sion model (lr) was outperformed by the RNN model with
the baseline 260 features, with 0.275 and 0.261 RMSE val-

ues for valence, 0.254 and 0.246 for arousal, respectively.
Since the number of runs was limited, we did not submit
predictions with lr on Eval. As expected, this shows that
the sequential modeling capabilities of the RNN are useful
for this task. Adding the extra 8 features brought slight
improvement (rnn, 268feat.). Smoothing the network pre-
dictions brought further improvement, using either 260 or
268 features as input. Finally, using the predictions as in-
put to a second RNN brought slight improvement too. The
best system achieved averaged RMSE of 0.250 and 0.238,
and Pearson’s correlation coefficients of 0.703 and 0.692, for
valence and arousal, respectively.

Concerning the Eval results, this system also gave the
best results on the official test data subset but for arousal
(RMSE=0.247, r=0.588) only. Valence predictions were much
worse (RMSE=0.365, r=0.029). This may be explained by
the fact that in the development subset, valence and arousal
values were very correlated (r=.626), and this was not the
case with the test data, as hypothesized by the challenge
organizers. This performance discrepancy was also observed
by the organizers that provided baseline results (’BSL’) us-
ing a linear regression model [4]. Only our best three arousal
predictions outperformed the BSL results significantly.

4. CONCLUSIONS
In this paper, we described our experiments using RNNs

for the 2015 MediaEval Emotion in Music task. As expected,
the sequence modeling capabilities revealed useful for this
task since basic linear regression models were outperformed
in our cross-validation experiments. Prediction smoothing
also revealed useful. The best results were obtained when
using smoothed predictions fed into a second RNN for both
valence and arousal in our CV experiments, and only for
arousal on the official test set. The observed performance
discrepancy between the valence and arousal variables may
be due to the differences between the development and test
data: valence and arousal values were very much correlated
in the development dataset, and much less in the test data
set. Concerning the acoustic feature set, slight improve-
ments were obtained by adding spectral flatness and spectral
valley features to the baseline feature set. As future work,
we plan to further explore denoising encoders, LSTM-RNNs,
since our first experiments with these models did not show
improvement compared to the use of basic RNNs.
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