
Explaining contextual recommendations: Interaction
design study and prototype implementation

Joanna Misztal
Jagiellonian University

Cracow, Poland
joanna.misztal@uj.edu.pl

Bipin Indurkhya
Jagiellonian University

Cracow, Poland
bipin.indurkhya@uj.edu.pl

ABSTRACT
We describe an architecture for generating context-aware
recommendations along with detailed textual explanations
to support the user in the decision-making process. CARE
(Context-Aware Recommender with Explanation) incorpo-
rates a hierarchical structure, in which independent mod-
ules embodying different aspects of the context cooperate
together to generate recommendations for the user with ac-
companying rationales. We follow the Interaction Design
principles to develop personas, goals and user scenarios,
based on which a prototype system is developed. We present
here two examples of its performance when processing movie-
ratings data set with contextual information. We argue that
our architecture is extensible in that more modules can be
added as needed, and the approach can be applied to other
domains as well.

Keywords
context-aware recommender system, recommendations ex-
planations, interaction design

1. INTRODUCTION
An increasing number of available resources, and easy on-

line access to diverse goods has resulted in data overload,
making it difficult for many users to decide what items to
select, which often slows down their decision-making pro-
cess. A growing number of choices is leading to an emerging
interest in the development of decision-support systems to
help users in finding the most interesting or suitable items
for their personal needs. Most of the research in this domain
is focused on improving the accuracy and precision of rec-
ommendations. However, it is equally important to provide
the user with some rationale for why a particular item is be-
ing recommended to them. Moreover, in some domains such
as legal decision-making or moral and ethical reasoning, the
justifications for recommendations are very crucial. Hence,
the main focus of our work is to design a system that can
explain why the user should select particular items.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Joint Workshop on Interfaces and Human Decision Making for Recom-
mender Systems, RecSys 2015, Vienna, Austria
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

As observed in [3], the user’s preferences may be influ-
enced by factors as diverse as time of the day, day of the
week, the season or the weather at the moment, and so on.
In our system, we incorporate different independent modules
such that each module implements a particular approach to
generating a recommendation based on a single contextual
feature. This architecture allows generating a number of
diverse recommendations, as each piece of contextual infor-
mation is analyzed separately and the most approporiate
items are recommended by choosing from among the vari-
ous recommendations generated by different modules.

As the main focus of our research is to improve user’s
experience and understanding during the interaction with
the system, we designed a Context-Aware Recommender
with Explanation (CARE) system, following the Interaction
Design paradigm [10]. Personas, user goals and scenarios
are developed after interviewing potential recommendation-
system users and a domain expert, based on which the pro-
totype of the system is designed.

We motivate here our approach in the context of the cur-
rent state of the art, summarize the interaction design pro-
cess, and present examples of persona and scenarios. Then
we describe the system architecture and present some results
generated by our prototype implementation.

2. BACKGROUND
As defined in [20], the main goal of a recommender system

is to support the user in a decision-making process by sug-
gesting items that they might find interesting. Since infor-
mation overload is a growing problem for Web users, because
of an exponential increase in the amount of web content that
is being generated, development of such tools has become a
thriving research area in recent years. Consequently, several
techniques have been developed for predicting users’ prefer-
ences.

2.1 Content-based recommender systems
Content-based recommenders try to find items similar to

what the user previously liked [17]. These work by identify-
ing key features of the items highly rated by the user in the
past, and by building a user-preference model from those
characteristics [5].

A significant problem in many recommendation techniques
is the cold-start problem, which occurs when a new user or a
new item is presented to the system and there is not enough
data to perform a reliable prediction - the user has not rated
enough products to define his or her preferences, or an item
has not been rated by a sufficient number of users.

pasquale.lops
Rectangle

Content-based recommenders deal well with situations when
a new item is added to the system. It also maintains inde-
pendence among the users as a particular user’s ratings are
sufficient to perform the recommendation process for that
user. For our research, a major advantage of content-based
recommenders is their transparency — the features that trig-
gered the recommendation results may be listed along with
the output.

However, content-based recommenders suffer from over-
specialization: i.e. they recommend items similar to those
seen in the past, preventing a serendipity of recommenda-
tions. Also, when a new user, who does not have a previous
history with the system and so lacks any ratings, enters the
system, the cold-start problem may occur.

Content-based analysis operates on vectors representing
features of each object. Two basic techniques for filtering
similar items are similarity calculation (such as cosine sim-
ilarity) and distance measurement (such as Euclidean dis-
tance).

2.2 Collaborative filtering recommender sys-
tems

In collaborative filtering (CF), a user’s preferences are pre-
dicted based on modelling other users behaviors [24, 16].
The basic idea behind this approach is that the rating of a
user for a new item should be close to the ratings of users
who have similar tastes.

This approach suffers from the data-sparsity and new-
item problems. Another disadvantage is that collaborative-
filtering recommenders mostly work as black-box systems,
therefore they lack transparency and cannot explain why
certain items are being recommended. However, this ap-
proach is proving to be an effective technique for making
recommendations and is widely used in commercial appli-
cations. It has an advantage of being able to recommend
items with unknown content. CF also supports serendip-
ity in recommendations, for recommended items may differ
significantly from the previous ones.

Common approaches to CF for recommendations use neigh-
bourhood-based or model-based methods. Neighbourhood-
based methods try to find the most similar items (item-based
approaches) or most similar users (user-based approaches)
when predicting the rating of an item for a particular user.
Basic technique may incorporate correlation measures (such
as Pearson’s similarity) when comparing the vector of rat-
ings for users or items [14]. Model-based methods work
by finding the latent features that characterize the user’s
ratings, and build a predictive model of their preferences.
Such methods may employ Matrix Factorization algorithms,
Bayesian models, Support Vector Machines or other such
techniques.

2.3 Context-aware recommender systems
As observed in [3], a person’s preferences may be influ-

enced by factors as diverse as time of the day, day of the
week, the season, the weather at the moment, and so on.
Context-aware recommender systems (CARS) try to model
user’s preferences considering changing contexts that may
affect user’s moods and tastes [4]. Contextual data may be
collected explicitly by asking the user some questions, or im-
plicitly from the environment (information such as time, day
of week, season or location). Some information may also be
statistically inferred from the other data (such as the com-

panion or mood). In CARS, the input data from the stan-
dard recommendation approach in the form < user, item, rating >
is extended by an additional parameter of context. Some
standard approaches to recommendations have been adapted
to model the additional dimension of context. In [15], the au-
thors present a Tensor Factorization model-based technique
using N-dimensional tensor of User-Item-Context instead of
the 2D User-Item matrix.

Standard approaches for CARS implementation incorpo-
rate contextual pre-filtering (items filtered by context before
recommendation), post-filtering (context applied to recom-
mendation results) and contextual modeling (context as a
part of ratings prediction). Common approaches based on
standard pre-filtering techniques represent item and user-
splitting algorithms [28, 6]. In these methods, items (or
users) in different contexts are treated as separate objects
for the recommendation algorithm. Context-aware systems
are known to increase the accuracy of recommendations [4].
However, they face the data sparsity problem, as the num-
ber of ratings is restricted to given context. As discussed in
[7], the most efficient approach to context-splitting is single
split, where objects are split considering a single contextual
feature.

2.4 Other approaches
Some recommenders are implemented as knowledge-based

systems [8], where the recommendation algorithm is per-
formed by a set of constraints representing the knowledge
about the domain. Such systems may be applicable to the
domains for which historical data is not available, or when
the user does not perform the action often enough, so there
is little data to make a prediction (e.g. buying a car).

Another approach is to use demographic information about
the users to predict their tastes based on their social group.
Such recommendations may depend on user’s age, gender,
nationality, and so on.

2.5 Hybrid solutions
Each of the techniques mentioned above has some advan-

tages as well as some drawbacks, and each may be effective
for a certain domain or a certain type of problem [13, 9].
In order to build a more general recommender system, or
to improve the quality of recommendations, hybrid systems
combine diverse recommendation algorithms. There are dif-
ferent ways to combine outputs of various recommendation
strategies, which are classified by Burke [9] as follows:

Weighted: the scores from several recommenders are weighted
into one result.

Switching: the most appropriate technique is selected de-
pending on the input data.

Mixed: outputs from diverse algorithms are presented si-
multaneously.

Feature combination: features of different algorithms are
combined into a new feature.

Cascade: the recommendation is performed hierarchically
and the outputs are refined by the subsequent recommenders.

Feature augmentation: output from one system is the in-
put to the following one.

Meta-level: the model created by one system is used by
another.

2.6 Multi-agent approaches
Hybrid recommender systems are often implemented based

on diverse multi-agent system (MAS) architectures. Dis-
tributed approaches to recommendations have been previ-
ously studied in [27], where a collaborative recommendation
algorithm is implemented using cloud computing. Sabater,
Singh and Vidal [22] proposed a protocol in which a group
of selfish agents can decide how to share their recommen-
dations with the others. In [26], the authors introduce rec-
ommender agents to enable the user’s interaction with the
system and to combine the outputs of the recommendation
algorithms with other techniques such as other users book-
marks and tags.

Another example of MAS architecture that may be used
for implementing a recommender system is the blackboard
architecture. This architecture may be visualized by the
metaphor [11] of a group of independent experts with di-
verse knowledge who are sharing a common workspace (the
blackboard). They work on the solution together and each
of them adds some contribution to the blackboard, whenever
possible, until the problem is solved.

The blackboard model provides an efficient platform for
problems that require many diverse sources of knowledge.
It allows a range of different experts represented as diverse
computational agents, and provides an integration frame-
work for them. It seems a promising platform for recom-
mendation tasks, and has already been incorporated in [12,
21].

3. OVERVIEW OF CARE SYSTEM

3.1 Architecture
CARE (Context-Aware Recommender with Explanation)

is built as a hybrid architecture that adapts a mixed ap-
proach to recommendations, and incorporates some features
of the multi-agent blackboard architecture. We implemented
each module as an independent subsystem that uses some
particular approach to generating a recommendation by in-
corporating a particular contextual feature. As some of
those factors may be non-deterministic, we present the fi-
nal result as an array of alternate choices and allow the user
to choose from the recommendations generated by analyzing
diverse contextual factors. Hence the diversity of final rec-
ommendation outputs is ensured by presenting the analysis
from multiple points of view. This approach also incorpo-
rates serendipity, and gives the users a choice of possible
actions. The users actions can be noted and used for order-
ing future recommendations.

Our solution also embodies some aspects of the feature
augmentation approach — we perform the recommendations
hierarchically on different levels of abstraction. We intro-
duce some inter-level recommenders that are responsible for
defining the features of items that are most liked by the
users in a given context. Their outputs are used to filter the
data with identified characteristics, which is then sent as an
input to the higher layer of recommendations.

3.2 Evaluation
Most of the solutions for automatic recommendations are

focused on development of techniques improving the over-
all performance and accuracy of ratings prediction. Ac-
cordingly, most popular evaluation approaches incorporate
precision metrics for the estimations. However, there are
other factors that impact the effectiveness of recommenda-
tions and influence the user experience.

A major limitation of the existing recommendation sys-
tems is overspecialization and a lack of diversity in recom-
mender outputs [29, 19]. As described in [23], during the
challenge on Context-Aware Movie Recommendation (CAMRa
2010), competing systems were evaluated according to di-
verse factors divided into two groups. The first set of cri-
teria consisted of precision metrics while the other set con-
tained the following Subjective Evaluation Criteria: Con-
text, Contextualization of recommendations, Extensibility,
Serendipity, Creativity, Scalability, Sparsity, Domain depen-
dence, and Adoptability

In our research, we aim to address some of these subjec-
tive criteria to improve user experience, and also develop
an architecture that is easily adaptable to other domains.
We use contextual filtering to model user preferences. Our
architecture enables one to implement flexible and generic
recommender systems that can easily be extended with new
independent modules in a hierarchical structure. Our ap-
proach promotes diversity and serendipity among the rec-
ommendation outputs as each module processes information
from a different point of view.

3.3 Explaining recommendations
We mentioned above that aspects such as user satisfac-

tion play an important role in the evaluation of a recom-
mender system. As noted by [25], a limitation of many rec-
ommenders is that they work as black-box systems and do
not provide the users with any reasons for providing a partic-
ular recommendation. Some of the commercial systems are
striving to overcome this limitation by producing a rationale
accompanying each recommendation. A number of diverse
styles have emerged to provide this rationale [25]: Case-
Based (... because you highly rated Item A..., used in Netflix
[2]), Collaborative (Customers who bought this Item were
also interested in... used by Amazon), Content-Based (We
are playing this music because it has a slow tempo by Pan-
dora [1]). In [26], the authors use information visualization
techniques to improve interaction with their recommender
system. Such system transparency not only increases the
user satisfaction, but also helps the users in making easier
and faster decision in selecting an item.

In CARE, each module is provided with an explanation-
generating function, which produces a description of the fea-
tures that determined the recommendation. The style of this
message is dependent on the module’s implementation. The
final explanation may combine different styles of messages
produced independently by separate modules. We incorpo-
rate modules that process information on different levels of
abstraction, hence the final description contains rationales
at multiple granularity levels. Our goal is to generate a
rationale explaining to the user why she or he should find
certain items interesting (contextual reason, e.g. because it
is rainy and what features make this particular item a rel-
evant choice (e.g. because you like rock music when it is
rainy).

4. GOAL-DIRECTED DESIGN
In designing the CARE system, we follow the principles of

Interaction Design [10], according to which the design of a
system is developed iteratively through continuous interac-
tion with the user. In the subsequent sections, we summarize
the conclusions from the interviews with three users and a
movie-domain expert.

4.1 Domain expert’s opinion
Following the Interaction Design paradigm, we consulted a

film analysis academic to find out what factors may influence
the popularity of a movie among the users.

The expert noted that the genre is not the only feature
that the users consider when deciding which movie to watch.
Other factors which may determine their preferences are nar-
rative description, its tempo, atmosphere and tension.

Moreover, the users often want to watch the same kind of
movies that they have already watched. Thus, they select
well-known names, plots or recognizable brands. Such a
brand may be defined by the director, movie star or award
such as Oscar or some Film Festival.

Considering all these factors, our system design should
embody modules that analyze relevant movie features such
as genre, cast, director, awards won as well as information
about the atmosphere of the movie. The prototype imple-
mentation incorporates the genre filtering modules, and we
plan to extend it with modules that will analyze other fac-
tors as well.

Another major factor that influences a user’s choice is the
current trend or fashion. There are some must-see movies
that many users desire to watch. Moreover, some people
rely on the public opinion more than on their own impres-
sions. In our design, the public opinion is modelled by a
collaborative filtering recommendation algorithm.

4.2 Defining User Goals
We interviewed three potential users to determine their

expectations from a recommender system. The volunteers
were technical faculty graduates who are familiar with using
recommender systems to find items of their interest. Each
of them was interviewed separately, in their natural environ-
ment. They were asked to describe their experiences in one
of the three domains of recommendations: books, movies
and music. First, each person was asked to describe his or
her general preferences in the given area and if they could
identify some factors that may influence it. Then they were
asked to describe some particular situations in which they
use recommendations, considering the context details. The
final question was about the expected recommendation out-
put in these situations. We are planning to extend this re-
search by incorporating interviews with a broader group of
users with more diverse backgrounds.

It was observed that every person has some general tastes,
but particular preferences change according to the time and
the mood. Thus, the system should consider some contex-
tual information in generating the recommendations. How-
ever, some of these factors, such as the user’s mood, who
they are with, and so on, may be difficult to predict. Hence
the approach we chose is to give the user a choice of possible
actions considering different contextual or affective states so
that the user can decide what she or he needs at the moment.

Finally, we found that the users like to know why any
particular item is recommended to them. Hence the sys-
tem should aggregate information from different levels of
abstraction, and present it to the user in an intuitively un-
derstandable way. We plan to present a rationale for each
recommendation as an accompanying text message.

4.3 User scenarios
Persona: Mark
Goals: getting movies recommendations; finding uncom-

mon yet interesting movies when alone; finding lights come-
dies to watch with his girlfriend

Scenario 1
It is a cold winter Friday and Mark and his girlfriend want

to spend the evening with a light movie and a glass of wine.
Mark opens CARE and a message pops out:

Hi Mark! Finally, it’s the weekend! It’s freezing, isn’t
it? Are you dreaming of little holidays? What about Woody
Allen’s ”Vicky Cristina Barcelona” to warm you up a little?
I know you like this director. Or maybe you had a tough
week and feel like watching something to cheer you up with
a bit of dark humor, like ”Grand Budapest Hotel”?

Scenario 2
On Monday, Mark’s girlfriend is off for a ladies night with

her friends so finally he can choose a movie on his own.
CARE greets him:

Hi Mark! Maybe something positive for the new week?
How about ”Intouchables”? Or maybe you’re fed up with the
city life in Krakow and want to watch the story of a man in
the heart of nature, like ”Into the wild”? You like non-fiction
movies!

5. SYSTEM ARCHITECTURE OF CARE
General architecture of the CARE system is presented in

Figure 1. Modules in our prototype system work on different
levels of abstraction.

First group of modules perform contextual features filter-
ing based on the input with current context, user informa-
tion and ratings history with context. The goal of this pro-
cessing phase is to determine the most relevant item features
for a given context. Each component on this level analyzes
the information about a single contextual information. To
address the problem of sparsity, we also incorporate a mod-
ule that considers all users’ ratings without any contextual
filtering. The output of each filter is a list of items charac-
terized by the identified features. This architecture is exten-
sible with different types of filters that analyze other aspects
of recommendations (such as demographic data). In this pa-
per we focus only on the contextual information processing.

In the next stage of recommendation process, we incorpo-
rate recommender algorithms that select items that should
be most liked by the user, considering each of the item
groups received from the former stage as a separate rec-
ommendation problem. The modules on this stage may rep-
resent diverse recommendation techniques and algorithms,
however our prototype implementation includes collabora-
tive filtering algorithms. The result of recommendation is
the best choice of items for each set of items.

Each component generates a short description of its re-
sults and the reason of recommendation. The messages are
finally composed by the explanation templates module and
presented to the user along with the recommended items.

The hierarchical structure of the system and the inter-level
filtering of item features enables a more thorough explana-
tion of the process in generated outputs. Hence the output
does not only provide the user with the information Item A
was recommended because it is summer, but also emphasizes
the feature that was crucial for this choice (Item A was rec-
ommended because you seem to like this type of items during
summer.).

The system is being developed using Django, a Web frame-
work for Python. The system interface will be provided as
a web application, however at present the system output is

Figure 1: General architecture of the CARE system.

in plain textual form as presented in the results section.

6. EXPERIMENT
We present phases of the recommendation algorithm along

with an illustrative example of recommendations for user
John.

6.1 Testing data
CARE system architecture is applicable to many recom-

mendation domains where the context may influence user
preferences. Possible domains of application include books,
music or movies as well as restaurants recommendations
as user’s choice may depend on aspects such as changing
weather or time. Here we present the results from testing
our prototype on the LDOS-CoMoDa dataset [18] that con-
tains movie ratings along with contextual information, and
user and item characteristics. Contextual data contain in-
formation about the season, type of day (weekend, working
day or holiday), time of day (morning, afternoon, evening),
companion, and so on.

The dataset also contains information about the mood of
the movie and it could be interesting to consider this data
as well. However, the dataset only provides the dominant
and end emotional values, without any information about
the user’s mood before watching the movie. Since we treat
contextual factors as facts known at the moment of recom-
mendation (as the initial data), we cannot make a recom-
mendation considering user’s mood after or during watch-
ing the movie. In future work, we plan to add a feature to
query user’s mood at the moment of recommendation, and
consider this information as a contextual parameter.

Table 2 contains a part of John’s ratings for the analyzed
example along with contextual information.

6.2 Recommendation process
We present below a brief description of the different stages

of our algorithm along with illustrative examples. The main
steps of algorithm are listed below and described in the sub-

sequent sections:

1. Initialization with contextual input data.

2. Contextual type-splitting - identifying significant con-
textual factors and relevant data types.

3. Collaborative filtering items recommendation for each
of the types defined in 2.

4. Explanation generation for each of the recommended
types and a corresponding contextual factor.

6.2.1 Input data
Input for the recommendation is the user data and the in-

formation about the context in which the recommendation
takes place. This data may contain information explicitly
provided by the user (such as whether they are alone or
with a companion) or implicit information extracted auto-
matically from the date and location data (such as day of
week, time of the day, weather, and so on).

Example:

Context:
Season: Summer
Day type: working day
Time: evening
Weather: sunny
Companion: alone

6.2.2 Contextual type-splitting
For the context-aware recommendation process, we intro-

duced contextual type-splitting algorithm which is an adap-
tation of the standard contextual item-splitting approach.
We incorporated an additional abstraction level and treated
the item features as the recommendation objectives. Table
2 illustrates the difference between approaches.

• Contextual item-splitting

In the first phase of the basic algorithm, each item is
associated with the most relevant contextual feature
that diversifies its ratings. Then the ratings for this
item are split according to this division. The mean rat-
ing values for each item are compared for the situation
where particular circumstance occurs and otherwise.

For example, we could compare ratings for a particular
movie that were given during the weekend with ratings
from all other days. If they are significantly different,
we can infer that the user preferences for this item are
influenced by the day of the week.

• Contextual type-splitting

In our approach, we perform analogical computations,
but instead of comparing the contexts for each movie,
we analyze each context for a group of movies with a
common feature (such as a genre). As a result we can,
for example, find out that the user prefers to watch
horror movies during the weekends than on other days.
This step may be generalized to recommend items grouped
by other features, such as the director, country of ori-
gin, etc.

movie id genre rating daytype time weather season companion
23 action movie 1 working day evening sunny autumn alone
160 action movie 2 working day evening sunny autumn alone
2755 action movie 4 working day evening rainy winter alone
3898 action movie 5 weekend night cloudy spring with family
3942 action movie 3 working day evening sunny spring alone
4020 action movie 5 weekend night rainy summer alone
3992 action movie 5 working day afternoon sunny summer with family
3962 animated movie 4 weekend evening rainy spring alone
65 comedy 3 working day evening sunny autumn alone
101 comedy 2 working day afternoon cloudy autumn alone
4025 comedy 5 working day evening sunny summer alone
4054 comedy 5 holiday night cloudy summer alone
30 crime movie 4 weekend evening rainy autumn alone
227 crime movie 2 working day night cloudy autumn alone
3715 crime movie 1 working day evening cloudy winter alone
248 crime movie 5 weekend night sunny winter with family
149 drama 5 weekend evening sunny autumn alone
61 drama 2 weekend afternoon sunny autumn alone
239 drama 3 holiday night rainy autumn in public
242 drama 4 holiday evening cloudy autumn alone

Table 1: User’s ratings with contextual information.

Exemplary ratings with a context
User Item Item type Rating Context
U1 I1 T1 1 C1
U1 I3 T1 3 C1
U1 I2 T2 5 C2
U1 I3 T1 5 C2
U1 I2 T2 5 C1

Contextual items splitting
User Item Rating
U1 I3C1 3
U1 I3C2 5

Contextual types splitting
User Item type Rating
U1 T1C1 2
U1 T1C2 5

Table 2: Contextual splitting - basic approach and
proposed modification.

This approach allows us to give more transparent and
intuitive recommendations for the user by presenting
the features that lead to the final recommendation.
It also addresses a major drawback of the context pre-
filtering approaches, namely the data sparsity after ap-
plying the filter. As the number of recommendations
for a particular type of movies is significantly higher
than for each movie separately, we expect the results
to be more accurate. Reducing number of compar-
isons to groups of items also contributes to decreasing
complexity of computations and speeds up the recom-
mendation process. In subsequent steps, the recom-
mendations are performed for selected groups only.

We verify the significance of each contextual feature using
the two-tailed Student’s t-test, assuming the p-value thresh-
old of 10%. Additionally, we consider the significance of
only those features where the mean rating is higher when
a particular context occurs. The t-test is a basic approach

(as presented in [28]), however its use is limited for normally
distributed data. In other cases, it may be replaced by other
statistical methods such as Wilcoxon signed-rank test.

The features significance testing in a context is performed
as follows:

• For each type ti of items (eg. for each of the genres) we
compare the mean rating for items of this type when
each of the input contextual circumstances ci occurs
and otherwise (eg. ratings for comedies in summer
and other seasons).
significance(ci, tj) = ttest(Ratingstj |ci), Ratingstj |¬ci)

• If the statistical test for both groups of ratings split
by the contextual feature ci indicates a significant dif-
ference in mean ratings, and the mean rating for type
when ci occurs (Ratingstj |ci) is higher then otherwise
(Ratingstj |¬ci), we conclude that the type ti is a rele-
vant recommendation in given context ci.

Example:

Contexts significance testing:
Input context: summer, working day, evening, sunny, alone
Ratings in summer vs other seasons: mean ratings for

comedies are significantly higher during summer.
Ratings on working days vs other days: no relation found.
Ratings in the evening vs other time: mean ratings for

comedies are significantly higher in the evening.
Ratings on sunny days vs other weather: no relation found.
Ratings for movies watched alone and other companion:

no relation found.

6.2.3 Types pre-filtering
After identifying the types of movies that are most rele-

vant for a given context, we filter the set of ratings for each
type separately. For example, if we consider a recommen-
dation for Saturday morning and we find out that horror
movies are the most preferred genre during the weekend,
and comedies get the highest ratings in the mornings, we

first consider recommendations for horror movies and then
for comedies separately.

We also calculate general recommendations considering
the user preferences of all the items, without any pre-filtering.
This addresses the sparsity problem for context recommen-
dations and deals with the situation when no relevant con-
textual information is provided.

6.2.4 Items recommendation
After filtering the items by their types, we perform a

standard collaborative-filtering recommendation algorithm
to find the most suitable choices considering a particular
user’s taste. We calculate the similarity between users using
Pearson’s correlation measure. Then we consider the ratings
of the most similar users with the K-Nearest-Neighbours al-
gorithm. In further research we plan to address the problem
of scalability by users clustering.

For each of the identified categories we perform a sepa-
rate recommendation process, hence the final output con-
tains the recommendation results from diverse perspectives.
For the current implementation, we incorporated the stan-
dard user-based CF algorithm. However the system may be
easily extend by other modules performing different recom-
mendation algorithms since the calculations are performed
independently.

Example:

Performing user-based collaborative filtering algorithm to
find expected highest-rated movies for each category and
general user’s preferences without any context:

crime story: ”The Usual Suspects”
action movie: ”Pirates of the Caribbean: At World’s End”
all movies: ”Le Concert”

6.2.5 Explanations generation
A major goal of our research is to develop a recommen-

dation system that can present the recommendations along
with accompanying explanations. Hence, we incorporated
modules responsible for generating textual messages to give
rationales for recommendations. Each sentence of the ac-
companying message consists of the following information:
item type; recommended item; context.

The message is generated in the form of a textual tem-
plate. Future improvements of CARE will consider increas-
ing the serendipity aspect of the recommendations by gen-
erating more advanced and surprising commentaries for the
outputs.

The messages generated by all the modules that analyzed
the situation from different perspectives are aggregated in
one template and presented to the user as a message.

Example:

Producing a textual explanation containing descriptions
from all former steps of algorithm:

Hi John! You might like a comedy ”Le Concert” as it
is something in your taste. You might like a drama like
”Shutter Island” because it is evening. Maybe you feel like
watching a comedy like ”Intouchables” because it is summer?

7. CONCLUSIONS AND FUTURE WORK
We proposed an architecture to generate context-aware

recommendations along with accompanying rationales to help
the user choose the most interesting item. In CARE (Context-
Aware Recommender with Explanation), the recommenda-
tion process is performed hierarchically, and with trans-
parency at each abstraction level so as to produce detailed
explanations for the suggested choices. Our approach pro-
motes a diversity of recommendation results since each piece
of contextual information is analyzed separately, and the
most appropriate items are recommended with a rationale
accompanying each suggestion.

Our architecture enables one to implement a flexible and
generic recommender systems that can easily be extended
with new independent modules in a hierarchical structure.
In the current stage of our research, we have tested the
performance of the CARE prototype on a movie-ratings
dataset. Following the suggestions of a domain expert, we
plan to extend the system with modules that incorporate
other diverse movie features such as the director, cast, at-
mosphere and so on. We also plan to follow the Interaction
Design principles during the evaluation of our system and
will perform user testing with a working system. In future
work, we will also address the evaluation of results quality
with standard methods such as RMSE or nDCG.

Our approach is applicable to other domains as well. Cur-
rently we are working on adapting this architecture for sup-
porting legal decision making, and moral and ethical reason-
ing.

8. REFERENCES
[1] Pandora. http://www.pandora.com, 2006.

[2] Netflix dataset. http://www.netflixprize.com/, 2009.

[3] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Proceedings of the 2008
ACM Conference on Recommender Systems, RecSys
’08, pages 335–336, New York, NY, USA, 2008. ACM.

[4] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Recommender Systems
Handbook, pages 217–253. 2011.

[5] M. Balabanović and Y. Shoham. Fab: Content-based,
collaborative recommendation. Commun. ACM,
40(3):66–72, Mar. 1997.

[6] L. Baltrunas and F. Ricci. Context-based splitting of
item ratings in collaborative filtering. In Proceedings
of the Third ACM Conference on Recommender
Systems, RecSys ’09, pages 245–248, New York, NY,
USA, 2009. ACM.

[7] L. Baltrunas and F. Ricci. Experimental evaluation of
context-dependent collaborative filtering using item
splitting. 24(1-2):7–34, 2014.

[8] D. Bridge, M. H. G oker, L. McGinty, and B. Smyth.
Case-based recommender systems. The Knowledge
Engineering Review, 20:315–320, 9 2005.

[9] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, Nov. 2002.

[10] A. Cooper, R. Reimann, and D. Cronin. About Face:
The Essentials of Interaction Design. John Wiley &
Sons, Inc., New York, NY, USA, 2014.

[11] D. D. Corkill. Blackboard systems. AI Expert, 6, 1991.

[12] A. H. Dong, D. Shan, Z. Ruan, L. Zhou, and F. Zuo.
The design and implementation of an intelligent
apparel recommend expert system.

[13] B. S. Francesco Ricci, Lior Rokach. Introduction to
recommender systems handbook. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors,
Recommender Systems Handbook, pages 1–35.
Springer US, 2011.

[14] G. Guo, J. Zhang, and N. Yorke-Smith. A novel
bayesian similarity measure for recommender systems.
In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI ’13,
pages 2619–2625. AAAI Press, 2013.

[15] A. Karatzoglou, X. Amatriain, L. Baltrunas, and
N. Oliver. Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative
filtering. In Proceedings of the fourth ACM conference
on Recommender systems, pages 79–86. ACM, 2010.

[16] Y. Koren and R. Bell. Advances in collaborative
filtering. In F. Ricci, L. Rokach, B. Shapira, and P. B.
Kantor, editors, Recommender Systems Handbook,
pages 145–186. Springer US, 2011.

[17] P. Lops, M. De Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art
and trends. In Recommender systems handbook, pages
73–105. Springer US, 2011.

[18] A. Odić, M. Tkalčič, J. F. Tasič, and A. Košir. In
G. Adomavicius, editor, Proceedings of the 4th
Workshop on Context-Aware Recommender Systems
in conjunction with the 6th ACM Conference on
Recommender Systems (RecSys 2012), volume 889,
2012.

[19] L. Qin and X. Zhu. Promoting diversity in
recommendation by entropy regularizer. In
Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13, pages
2698–2704. AAAI Press, 2013.

[20] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors. Recommender Systems Handbook. Springer,
2011.

[21] A. Ruiz-Iniesta, G. Jiménez-Dı́az,
M. Gómez-Albarrán, et al. A framework for the rapid
prototyping of knowledgebased recommender systems
in the learning domain. Journal of Research and
Practice in Information Technology, 44(2):167, 2012.

[22] J. Sabater, M. Singh, and J. M. Vidal. A Protocol for
a Distributed Recommender System, 2005.

[23] A. Said, S. Berkovsky, and E. W. De Luca.
Introduction to special section on camra2010: Movie
recommendation in context. ACM Trans. Intell. Syst.
Technol., 4(1):13:1–13:9, Feb. 2013.

[24] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The
Adaptive Web, volume 4321 of Lecture Notes in
Computer Science, pages 291–324. Springer Berlin
Heidelberg, 2007.

[25] N. Tintarev and J. Masthoff. Designing and evaluating
explanations for recommender systems. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors,
Recommender Systems Handbook, pages 479–510.
Springer US, 2011.

[26] K. Verbert, D. Parra-Santander, P. Brusilovsky, and
E. Duval. Visualizing recommendations to support
exploration, transparency and controllability. In

Proceedings of the 2013 international conference on
Intelligent user interfaces - IUI ’13, page 351. ACM
Press, 2013.

[27] Y. ZHANG, H. Liu, and S. Li. A Distributed
Collaborative Filtering Recommendation Mechanism
for Mobile Commerce Based on Cloud Computing.
2011.

[28] Y. Zheng, B. Mobasher, and R. D. Burke. The role of
emotions in context-aware recommendation. In
L. Chen, M. de Gemmis, A. Felfernig, P. Lops,
F. Ricci, G. Semeraro, and M. C. Willemsen, editors,
Decisions@RecSys, volume 1050 of CEUR Workshop
Proceedings, pages 21–28. CEUR-WS.org, 2013.

[29] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the 14th
International Conference on World Wide Web, WWW
’05, pages 22–32, New York, NY, USA, 2005. ACM.

