
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enabling Flexibility of Business Processes by Compliance
Rules

A Case Study from the Insurance Industry

Thanh Tran Thi Kim1, Erhard Weiss1, Christoph Ruhsam1

Christoph Czepa2, Huy Tran2, Uwe Zdun2

1 ISIS Papyrus Europe AG, Maria Enzersdorf, Austria
{thanh.tran,erhard.weiss,christoph.ruhsam}@isis-papyrus.com

2 Research Group Software Architecture, University of Vienna, Austria
{christoph.czepa,huy.tran,uwe.zdun}@univie.ac.at

Abstract. The Swiss insurance company Die Mobiliar creates insurance docu-
ments with a wizard application utilizing the Papyrus Communication and Pro-
cess Platform. Based on predefined processes, wizards guide business users
through document generation processes. Although wizards can be amended by
business administrators to respond to changing requirements, a high degree of
process automation restricts adaption to the rapidly changing insurance market
due to rigidness and bureaucratic efforts. In our approach, the concept of com-
pliance rules in combination with process redesign has been applied to enable
flexibility for insurance processes. The original processes are split into prede-
fined reusable sub-processes and a set of individual ad hoc tasks which can be
added by the business users at runtime as they assess the current insurance cli-
ent situation. Compliance rules guarantee overall process execution compliance
whilst enabling the needed flexibility. The number of process templates can be
reduced considerably to a few predefined core processes in combination with a
set of ad hoc tasks. The flexibility achieved by this compliance-rule approach
enables the adaptability of insurance processes by business users, from which
the whole insurance industry can benefit.

Keywords: Compliance Rules, Wizard, Insurance processes, Adaptive Case
Management, Papyrus Communication and Process Platform, Consistency
checking, Knowledge intensive processes, Process Collaboration

1 Introduction

The Swiss insurance company Die Mobiliar1 is the oldest private insurance organiza-
tion in Switzerland. As a multiline insurer, offering a full range of insurance and pen-
sion products and services, Die Mobiliar needs to handle a huge amount of docu-

1 https://www.mobi.ch/

30

ments, exchanged with approximately 1.7 million customers [1]. An insurance docu-
ment issued by Die Mobiliar is not only a piece of paper; it serves as a business card,
representing the company to their customers. Moreover, Die Mobiliar considers well-
designed and rich content documents as an opportunity to communicate and build a
strong relationship with customers.

1.1 The Business Context of Die Mobiliar

Insurance case work can follow established procedures only to a certain degree as it
usually demands for knowledge workers knowing their business very well in order to
decide the best solutions for their clients. This is what Adaptive Case Management
(ACM) is designed for: customer-oriented work driven by goals allowing the
knowledge workers to select from a context-sensitive set of ad hoc tasks rather than to
follow strictly predefined process flows. To produce quality documents in such a
knowledge intensive environment, business users of Die Mobiliar, i.e. clerks, acting
as knowledge workers, are guided by a wizard application to compose insurance doc-
uments from predefined building blocks. Typically several actions are composed by
the wizard, interacting between clerks and IT systems to retrieve data for the genera-
tion of documents. Usually such wizard steps and processes are hardcoded in most of
the wizard systems. Thus, the processes cannot be changed quickly to adapt to the
requirements of a new insurance product and related document types.

1.2 Application Solution Overview

In order to overcome this problem, Die Mobiliar uses the Papyrus Communication
and Process Platform2 as basis for their customized “Mobiliar Korrespondenz Sys-
tem” (MKS, Mobiliar Correspondence System), with full functionality for online
interactive business document production [2]. MKS assists several thousand business
users handling various types of documents in different insurance cases with wizard
processes. Hence, to ensure highest quality of the generated documents and processes,
they must be well-prepared and suitable for such a huge and complex working envi-
ronment. Instead of defining rigid process models by business analysts, which have to
be implemented by IT staff with long lasting change management and rollout cycles,
the processes can be directly defined by Die Mobiliar business administrators using a
process editor built in the Papyrus platform. It allows full control of the process defi-
nitions, document composition and process execution. A BPMN graph design tool,
which business people are usually not used to work with, is not needed but can be
used on demand to visualize the defined processes. At runtime, Clerks simply follow
the steps defined in the processes that are not editable while executing. The ACM
technology used to build the wizard processes supports the definition and adaptation
at design time by business staff so that Die Mobiliar can react short term on new
business requirements without IT involvements.

2 http://www.isis-papyrus.com/e15/pages/software/platform-concept.html

31

On the one hand, a rigid process configuration ensures the process execution is un-
der control and satisfies the compliance requirements identified and adhered to during
the process definition. Compliance requirements result from different sources related
to laws, contracts with business partners, general standards, best practices and com-
pany-internal regulations. A usually underestimated source is coming from tacit busi-
ness knowledge of the knowledge workers themselves [3]. Thus, process models im-
plicitly express compliance regulations for the execution of tasks. This has the disad-
vantage that business users may not be able to respond to exceptions and unforeseen
situations.

On the other hand, instead of mapping the whole process into predefined task se-
quences, the execution of individual tasks could also be controlled by compliance
rules, defined by business administrators. These rules loosely define task sequences
that have to be adhered to for compliance reasons but allow knowledge workers to
decide ad hoc which tasks shall be executed based on the assessment of the current
situation. This way, the case evolves over time to enable the necessary flexibility,
instead of being predefined by business administrators, who will never be able to
predict every knowledge-intensive scenario. Therefore, we aim to enhance the simpli-
fication of the wizard design and the flexibility of execution by a compliance rule and
consistency checking system. This approach will guard business users at runtime
when they select from ad hoc task templates, as well as business administrators during
design time defining new or amending existing sub-processes. The consistency check-
ing system continuously observes process actions to ensure that the execution produc-
es results in compliance with company regulations. We propose to restructure the
wizard process in order to enable such flexibility for business users during process
execution.

This paper is structured in four sections. Section 1 introduces Die Mobiliar and the
insurance industry business application MKS based on the Papyrus platform and the
current process situation as the motivation of our new approach. Section 2 describes a
typical document generation process in MKS. Section 3 discusses the consistency
checking methods using compliance rules and how to apply them in MKS. Section 4
elaborates on the results achieved and the benefits gained when our approach is ap-
plied to MKS. Section 5 discusses the lesson learnt.

2 Typical MKS Document Generation Process

MKS is built on the Adaptive Case Management (ACM) and Correspondence frame-
works of the Papyrus platform. While the correspondence solution handles the design
and content of documents, the ACM solution manages the processes for the document
generation. The process management in ACM is very flexible as processes can be
predefined and executed automatically, while ad hoc changes at runtime are also sup-
ported [4].

At Die Mobiliar, MKS supports clerks to interactively generate documents based
on wizard templates and to retrieve data from different sources. The wizard is defined
by ACM cases to define processes composed from interactive user steps entered by

32

the clerks as well as from service tasks like web service requests executed automati-
cally by the system for data retrieval. A document template is composed from prede-
fined text building blocks and data variables. Forms are an integral part of the wizard
definition and request the clerks to enter the document variable values for a document
template in a step-by-step approach. Fig. 1 shows a typical wizard input form and the
preview of the corresponding document at that stage of the document generation pro-
cess. The data is directly exchanged with the document. For instance, the value
“13579” for “Antrag-Nr.” (application number) is inserted in the form on the left side
and immediately displayed by the related building block in the document on the right
hand side.

Fig. 1. Wizard with data form and document preview

The wizard processes executed by clerks at runtime are prepared and defined by
business administrators at design time in form of templates stored in a template li-
brary as shown in Fig. 2. The processes are defined with an editor (1) that has full
functionality to edit (2), visualize (3) and simulate (4) the wizard execution before
being released into production. Transitions (5) connect the steps and each step has
actions (6) defined which select the text building block to be added dynamically to the
document.

The capability of MKS to edit wizard templates any time when new business re-
quirements demand for it, supports Die Mobiliar to define new document and wizard
templates within the boundaries imposed by the predefined processes. In order to
support process flexibility even at runtime, we address this challenge by applying
consistency checking methods in combination with compliance rules as discussed in
the next section.

33

Fig. 2. Wizard template composition editor

3 A Consistency Checking Method for Enhancing Flexible
Execution of Wizard Processes

This section introduces a generically applicable consistency checking method used in
our approach to enable the flexible execution of wizards for insurance document crea-
tion. The following subsections describe the overview of the approach, the modified
process design of the wizards, and how to guarantee the process compliance as de-
fined by a set of compliance rules.

3.1 Key Innovations

The original operating principle of MKS is shown in Fig. 3a. A wizard process tem-
plate is defined at design time and instantiated for execution at runtime. Clerks must
strictly follow the steps predefined in the wizard to create a document. The system is
not intended to allow clerks to adapt the process at runtime, thus they cannot react to
unforeseen situations of an insurance case.

The overview of MKS extended by the consistency checking system is provided in
Fig. 3b. At design time, a wizard ACM case template is assembled from goals, sub-
processes and individual tasks. Each sub-process is attached to a goal and combines
the necessary tasks in a given sequence. A goal is reached when all its tasks are com-
pleted and the relevant data was achieved. Consequently, a document is finished when
all goals of a wizard are reached.

34

Fig. 3. (a) MKS operating principle and (b) MKS with consistency checking

The enhanced structure of the ACM wizard case allows clerks to execute ad hoc
actions at runtime to achieve flexibility. Goal and task templates can be instantiated
manually by the clerks into the predefined wizard case for adding new actions during
the execution at runtime. An important component are compliance rules defined by
business administrators to enable process compliance. Compliance rules are expressed
by a constraint specification language, built upon temporal logic patterns [5, 6] allow-
ing to define rules like “A.finished leads to B.started” or “A occurs only one time” or
“C precedes D”. The rules are verified during ad hoc actions executed at runtime by
on-the-fly checking performed by the consistency checking system using Complex
Event Processing (CEP) [7]. Additionally, the compliance rules are also verified by
model checking [8] during design time when business administrators work on sub-
process templates. Model checking also allows to verify the structural consistency of
the predefined sub-processes. Thus, business administrators are guarded in the same
way as clerks against violating compliance requirements. Due to the compliance rule
definitions, the sequences of tasks are guaranteed in a similar way as with completely
predefined wizard processes. The major difference is that tasks can now be added by
the business users as needed for each specific situation. This way process compliance
is guaranteed by the definition of compliance rules observed at runtime as well as
during design time. Clerks and administrators have to stick to the boundaries defined
by the rule system and thus, the compliance of the overall case execution is guaran-
teed.

With the redesigned structure, the goal, process, and task templates can be reused
in various wizard cases. Moreover, the ad hoc tasks instantiated from task templates
can be added at runtime by clerks to adapt to an unforeseen situation requiring a new
document. We use this to reduce the predefined processes in the library. In particular,

35

a wizard case is predefined with goals and related sub-processes which reoccur re-
peatedly in several wizards. The variable tasks between the predefined processes can
be added by clerks at runtime. In other words, instead of designing a full-blown wiz-
ard case at design time, the case is partly defined at design time and completed with
ad hoc tasks at runtime.

3.2 Design of Compliance Rules Enabled Wizard Cases

The results of the analysis and design of the MKS processes are displayed in Fig. 4.
Tasks originally contained in MKS processes are anonymized with capital letters. A
typical wizard process can be divided into three parts: beginning, middle and ending.
The beginning part is for retrieving information of the insured person and the insur-
ance product selector. The ending part is the definition of the document delivery
channel whereas the middle part is dealing with steps necessary for the specific insur-
ance case. A significant amount of processes have the same beginning part (A, B, C)
and an ending part (X, Y, Z). The middle part of each process is quite distinct from the
others, such as (K, F, D) or (K, L, G, O), although they might have common tasks, for
example K and O.

Fig. 4. (a) Typical MKS processes and (b) Flexible MKS processes

In our approach, the typical wizard processes are transformed into flexible processes
using a goal-driven structure. The beginning and ending parts are modeled as prede-
fined sub-processes, which can be reused in various cases. The middle part is split
into several single ad hoc tasks. A case holding the restructured processes is driven by
the two goals: Goal 1 is linked to the beginning sub-process and Goal 2 to the ending
sub-process. The tasks of the middle part are either related to Goal 1 or Goal 2 or
could be assigned by the clerks to newly defined goals. If the tasks of the middle part

36

have to follow a certain execution sequence, they are controlled by the compliance
rules associated with the affected tasks. In other words, the rules express the middle
parts without rigidly predefining the processes. Based on these rules, during the exe-
cution of the middle part, the consistency checking system supports clerks adapting to
a specific situation by suggesting the tasks that temporarily violate a certain rule. If
certain tasks are optional and have to follow no specific sequence, they can be just
added by the business users when needed as no rules would be violated. The same
rules apply when business administrators define process templates and thus, enforce
compliance also during design time.

3.3 Constraint Definitions by Compliance Rules

In order to express the middle part of a wizard process, we support two kinds of rules:
state-based rules and data-based rules.

State-based rules. State-based rules define the sequences of tasks based on the states
of tasks. These states are “started”, “finished” and “running”. For example, the se-
quence from Task K to Task F can be described by a rule: “Task F can be started only
after Task K was finished”. This rule is expressed in the constraint language as

 Constraint No1 for MobiliarCase{
 K.finished leads to F.started
 }

In the above example the states are finished and started of tasks K and F, respec-
tively. The temporal pattern of type precedence is defined by the keyword leads to.

To define the temporal patterns in more detail, we use the following temporal ex-
pressions:

─ Existence: K.finished occurs
─ Absence: K.finished never occurs
─ Response: K.finished leads to F.started. It means, if K.finished happens, F.started

must follow eventually.
─ Precedence: K.finished precedes F.started. It means, if F.started shall happen, K

must happen first.

Data-based rules. Data-based rules allow business users to define task dependencies
related to data conditions. State-based and data-based rules can be combined to ex-
press a compliance requirement. E.g. Task F must be started only when Task K is
finished and the value of a certain data attribute, such as the birth year of a customer,
is less or greater than 1981.

 Constraint No2 for MobiliarCase{
 (K.finished and CustomerBirthyear >= 1981) leads to F.started
 }

37

Access to data might not always be available when business users have to deal with
unpredictable situations as the underlying data models might not yet support the
needed data. In order to support flexibility in such situations without the need for
explicit data definitions by IT, the checking of conditions can be done manually by
business users using voting tasks which will be guarded by compliance rules. Let us
assume a voting task called “Inquire additional customer interests” which must be
preceded before the final pricing can be finished:

 Constraint No3 for MobiliarCase{
InquireInterest.approved leads to Pricing.finished

 }

The voting task InquireInterest is used to quickly adapt to a new situation. The
business administrator can create the task template without the support of database
experts or IT people and specify with checklists which items have to be verified with
the customer. Alternatively the business user defines the checklist at runtime to even
more adapt to the current situation. Unstructured data is quite popular in real-life sys-
tems since data definitions cannot be amended short term in IT systems following
bureaucratic change management cycles. For example, in a car insurance case, the
result of the investigation on whether the car was damaged intentionally or by an
accident can return the value by a voting task decided by the clerk.

4 Results Achieved

To demonstrate the results achieved in our approach, we experimented with the MKS
wizard case for “Annahmebestaetigung Antrag” (“Acknowledgement of Applica-
tion”). In this insurance case, a clerk creates a document confirming the application
submitted by an insurance customer. First, some identification numbers, such as the
insurance ID, customer ID or case ID, are entered to the system by the clerk. The
customer’s data is retrieved by the predefined process through web service tasks from
different sources based on the entered IDs. After that, the clerk selects the matched
insurance holder and address. Specific information for this insurance case is inserted.
A document confirming the acceptance of the insurance application is generated and
sent to the customer, based on the output channel, determined by the clerk at the end
of the process.

The redesigned wizard process of the Acknowledgement of Application case is di-
vided into three parts as shown in Fig. 4. The first and last parts are linked to goals
owning predefined processes as no flexibility is needed and which are shared between
several wizards. The flexible part is contained in the middle where the sequence of the
tasks is determined by the compliance rules introduced by our approach.

As mentioned, the MKS is built based on the ISIS Papyrus ACM framework. Pro-
cesses and tasks are reusable components of the ACM system, to be shared with other
goals and cases. The sequence of the tasks in the sub-processes is modeled with tran-
sitions and gateways following BPMN standards. The tasks of the middle part are ad
hoc tasks selected by the clerks at runtime. Each of these tasks can be added to the

38

case, when the clerk sees the need, based on content or the context of the case. Their
order of execution is not predetermined, but controlled by rules.

Before the redesign an ACM wizard case was completely driven by a predefined
process containing all the steps of the wizard. On the contrary, in our enhanced ap-
proach the redesigned ACM wizard case is driven by goals. The wizard process of the
Acknowledgement of Application case is divided into three parts. The first and last
parts are linked with goals holding predefined sub-processes. The sequence of the
tasks of the middle part is determined by the rules introduced in our approach. Thus,
the redesigned Acknowledgement of Application ACM case contains goals, processes
and tasks as follows: First Core Goal holds the beginning part of the process that is
configured as a sub-process for retrieving insurance customer data from the database.
The Last Core Goal holds the ending part of the wizard process for choosing the de-
livery channel of the document to the customer, such as by post or by email. The tasks
of the middle part are not predefined in the wizard template, but will be added by the
business user at runtime among others that may be needed to satisfy the specific cus-
tomer situation. The ad hoc task templates are prepared as “100002 Produkt manuelle
Eingabe” (“manual input product”) and “104009 Annahmebestaetigung Antrag”
(“acknowledgement of application”).

The process model of the middle part is controlled by three compliance rules. The
first rule R0 expresses the need that Task acknowledgement of application must be
present at least one time. R1 defines the dependency of Task acknowledgement of
application from Task manual input product when the selection product is manual
input. The second rule expresses the dependency of Task acknowledgement of appli-
cation from Task selection output channel when the selection product is not manual
input.

Constraint R0 for MobiliarCase{
 acknowledgement_of_application.started occurs at least 1x

}
Constraint R1 for MobiliarCase{

(acknowledgement_of_application.finished and selection_product
equal to “manual_input”) leads to manual_input_product.started
}

 Constraint R2 for MobiliarCase{
(acknowledgment_of_application.finished and selection_product not
equal to “manual_input”) leads to selection_output_channel.started
}

The two data-based rules R1 and R2 can be alternatively expressed by using a voting
task to check whether the selection product is manual input. The voting task is named
check_selection_product_manual_input.

Constraint R3 for MobiliarCase{
(acknowledgment_of_application.finished leads to
check_selection_product_manual_input.started
}

39

Constraint R4 for MobiliarCase{
check_selection_product_manual_input.approved leads to manu-
al_input_product.started
}

Constraint R5 for MobiliarCase{
check_selection_product_manual_input.denied leads to selec-
tion_output_channel.started

 }

Compliance rules are composed by the Papyrus rule editor in natural language as
shown in Fig. 5. To facilitate the composition, the editor provides elements named by
business terms as used by the language of the business administrators and allows to
intuitively define the rule with auto-completion features as the users type.

Fig. 5. Compliance Rule Editor

At runtime, when a clerk needs to create a confirmation for a customer who sub-
mitted an application, an instance of the acknowledgement of application case is in-
stantiated as soon as the template was selected by the clerk.

The First Core Goal is processing offering a form to the clerk to enter the insur-
ance ID, customer ID or case ID. When all predefined tasks of the first core goal are
finished, the clerk adds Task acknowledgement of application as suggested by the
consistency checking system, which is used to create a confirmation for an applica-
tion, as shown in Fig. 6.

Although Task acknowledgement of application is suggested to the clerk because
of Constraint R0 being temporarily violated, the clerk can do other tasks as well.
However, as soon as an ad hoc task related to the compliance rule constraints is add-
ed, it will be controlled by the consistency checking system. The constraint defining
the occurrence of tasks, like Constraint R0, is used to ensure the task initiating the
variable middle parts, like the task acknowledgement of application, is not missing.
Therefore, to complete a case successfully, the clerk eventually needs to execute that
task.

When Task acknowledgement of application is finished, the constraints R1 and R2
are investigated by the consistency checking system. Since Task acknowledgement of
application is finished and if the selection product is chosen as manual input, Task
manual input product is suggested to the clerk by the consistency checking system. If
selection product is not chosen as manual input, Task selection output channel is
suggested to the clerk. This way, the execution of the ad hoc tasks is controlled by the

40

consistency checking system. When there are no more suggestions, the clerk can con-
tinue the steps defined in the Last Core Goal. When the goal is reached, a confirma-
tion document for the application is generated and the case is closed.

In conclusion, ad hoc tasks added at runtime can be controlled by compliance
rules. Some of them have to be executed in a certain order, which has to be defined by
the compliance rules. Others are controlled by rules, so they could be freely added by
clerks. For example, Task add additional information can be added by the clerk when
additional information is needed in the document. Therefore, our approach enables
clerks to add ad hoc tasks at runtime under the control of the compliance rule system
based on the current context, which could not be foreseen by an initial wizard design.

Fig. 6. Add an ad hoc task at runtime

5 Lessons Learnt

Wizard processes for generating insurance documents are predefined at design time
and executed sequentially at runtime. The configuration of wizard processes can en-
sure the compliance of insurance documents when compliance regulations are known
and being followed during the design process. However, rapidly changing insurance
markets require new types of documents day by day and demand business users to
react spontaneously to client requests.

41

Although predefined processes constructed are appropriate for automation where
sufficient process knowledge exists, they might hinder innovation and business agility
that is critical in insurance markets. The clerks who directly face specific insurance
situations should have flexibility to adapt the case at runtime. However, the operating
principle of the current wizards does not support adaptation at runtime to unpredicta-
ble circumstances. Instead, the clerks have to report change requests to business ad-
ministrators and wait for a short term business department release of a new wizard.

Enabling the flexibility at runtime of wizard cases along with compliance rules is a
challenge addressed by our approach. Existent rigid wizard processes of the Swiss
insurance company Die Mobiliar could be easily amended to enable such ad hoc
changes. Due to the introduction of compliance rules controlling the consistency of ad
hoc actions, Die Mobiliar is very interested in the possibility to change several of the
predefined process models into flexible ad hoc style processes as they see the benefits
of such an approach. However, as this involves a paradigm change, the adoption will
happen gradually and needs to cope with additional considerations for the integration
of the consistency checking solution into the production system of Die Mobliar. With
the flexibility supported at runtime, clerks can respond immediately to the require-
ment of their clients. Thus, the business strategy can reflect holistically customer
orientation focusing on quality services and customer experience.

Based on compliance rule definitions by business administrators, consistency
checking algorithms can be applied at runtime to verify process compliance. When
applied also during design time even the consistency of predefined processes includ-
ing their structural correctness can be verified, which is a big benefit for the change
management and release process, reducing test and error correction efforts.

The process redesign can enhance the simplification of the wizard processes.
Moreover, this approach can decrease the number of process templates and support
flexibility while handling unpredictable insurance cases. Thus, the maintenance effort
can be reduced with a smaller amount of templates in the library.

Acknowledgement. This work was supported by the FFG project CACAO, no.
843461 and the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF),
Grant No. ICT12-001.

References

1. Mobiliar: Die Mobiliar, Versicherungen und Vorsorge.
https://www.mobi.ch/

2. ISIS, Papyrus: ISIS Papyrus solution catalog - Swiss Mobiliar.
http://www.isis-
papyrus.com/e14/pages/solutionscatalog/2/solutionscata
log_mobiliar.html

3. Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling.
Semantic Web Rules - International Symposium, RuleML 2010, Washington, DC,
USA, October 21-23, 2010. Proceedings. pp. 194–209 (2010).

42

4. Tran, T.T.K., Pucher, M.J., Mendling, J., Ruhsam, C.: Setup and Maintenance
Factors of ACM Systems. In: Demey, Y.T. and Panetto, H. (eds.) OTM
Workshops. pp. 172–177. Springer (2013).

5. Aalst, W.M.P. van der, Pesic, M.: DecSerFlow: Towards a Truly Declarative
Service Flow Language. Web Services and Formal Methods, Third International
Workshop, WS-FM 2006 Vienna, Austria, September 8-9, 2006, Proceedings. pp.
1–23 (2006).

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-state Verification. Proceedings of the 21st International Conference on
Software Engineering. pp. 411–420. ACM, Los Angeles, California, USA (1999).

7. Esper Tech.: Complex Event Processing (CEP).
http://www.espertech.com/products/esper.php.

8. Clarke, E.: The Birth of Model Checking. In: Grumberg, O. and Veith, H. (eds.)
25 Years of Model Checking. pp. 1–26. Springer Berlin Heidelberg (2008).

43

