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Abstract.  The  well  known  Aristotelian  syllogistic  system  consists  of  256
moods. We have found earlier that 136 moods are distinct in terms of equal
truth  ratios  that  range  in  τ=[0,1].  The  truth  ratio  of a  particular  mood  is
calculated by relating the number of true and false syllogistic cases the mood
matches. A mood with truth ratio is a fuzzy-syllogistic mood. The introduction
of  (n-1)  fuzzy existential  quantifiers  extends  the  system to  fuzzy-syllogistic
systems n�, 1<n, of which every fuzzy-syllogistic mood can be interpreted as a
vague inference with a generic truth ratio that is determined by its syllogistic
structure. We experimentally introduce the logic of a fuzzy-syllogistic ontology
reasoner that is based on the fuzzy-syllogistic systems n . We further introduce�
a new concept, the relative truth ratio  rτ=[0,1] that is calculated based on the
cardinalities of the syllogistic cases.
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1 INTRODUCTION

Multi-valued logics were initially introduced by Łukasiewicz [10], as an extension
to propositional logic. After Zadeh generalised multi-valued logics within fuzzy logic
[19], he discussed syllogistic reasoning with fuzzy quantifiers in the context of fuzzy
logic [20]. However, this initial fuzzification of syllogistic moods was experimentally
applied on only a few true moods and did not systematically cover all moods. The
first systematic application of multi-valued logics on syllogisms were intermediate
quantifiers and their reflection on the square of opposition  [14]. However only set-
theoretic representation of moods as syllogistic cases allow 64analysing the fuzzy-
syllogistic systems  n  � mathematically exactly, such as by calculating truth ratios of
moods  [6] and their algorithmic usage in fuzzy inferencing  [7]. Here we present a
sample application of n  for fuzzy-syllogistic ontology reasoning.�

Learning  from  scratch  can  be  modelled  probabilistically,  as  objects  and  their
relationships need to be first synthesised from a statistically significant number of
perceived instances of similar objects. This leads to probabilistic ontologies [4], [15],
[11], in which attributes of objects may be synthesised also as objects.

There are more probabilistic ontology reasoners than fuzzy or possibilistic ones
and most of them reason with probabilist ontologies [8]. Several ontology reasoners
employ  possibilistic  logic  and  reason  with  fuzzy  ontologies.  The  most  popular
reasoning logic being hyper-tableau, for instance in HermiT [12]. Other experimental
reasoning  logics  are  also  interesting  to  analyse,  such  as  fuzzy  rough  sets  and
Łukasiewicz logic [3] in FuzzyDL [1], Zadeh and Gödel fuzzy operators in DeLorean
[2], Mamdani inference in HyFOM [18] or possibilistic logic in KAON [15]. Fuzzy-
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syllogistic reasoning (FSR) can be seen as a generalisation of both, fuzzy-logical and
possibilistic reasoners.

A fuzzy-syllogistic  ontology  (FSO)  extends  the  concept  of  ontology with  the
quantities  that  led  to  the  ontological  concepts.  A  FSO  is  usually  generated
probabilistically, but does not preserve any probabilities like probabilistic ontologies
[11] or  probabilistic  logic  networks  [5] do.  A FSO can  be  a  fully  connected  and
bidirectional graph.

Several generic reasoning logics are discussed in the literature, like probabilistic,
non-monotonic or  non-axiomatic reasoning  [17].  Fuzzy-syllogistic  reasoning in  its
basic form [21] is possibilistic, monotonic and axiomatic.

Syllogistic  reasoning  reduced  to  the  proportional  inference  rules  deduction,
induction  and  abduction  are  employed  in  the  Non-Axiomatic  Reasoning  System
(NARS)  [16]. Whereas FSR uses the original syllogistic moods and their fuzzified
extensions [22].

There is one implementation mentioned in the literature that is close to the concept
of  syllogistic  cases:  Syllogistic  Epistemic  REAsoner  (SEREA)  implements  poly-
syllogisms  and  generalised  quantifiers  that  are  associated  with  combinations  of
distinct spaces, which are mapped onto some interval arithmetic. Reasoning is then
performed with concrete quantities, determined with the interval arithmetic [13].

First  the fuzzy-syllogistic systems  n  are discussed,�  thereafter  fuzzy-syllogistic
reasoning  is  introduced,  followed by its  sample  application  on  a  fuzzy-syllogistic
ontology and the introduction of relative truth ratios rτ.

2 FUZZY-SYLLOGISTIC SYSTEMS

The  fuzzy-syllogistic  systems  n ,  with  1<n  fuzzy  quantifiers,  extend  the  well�

known Aristotelian syllogisms with fuzzy-logical concepts, like truth ratio for every
mood and fuzzy quantifiers or in general fuzzy sets. We discuss first the systems n�

and introduce them further below as the basic reasoning logic of FSR.

2.1 Aristotelian Syllogistic System �
The Aristotelian syllogistic system � consists of inclusive existential quantifiers

ψ, ie I includes A and O includes E as one possible case:

Universal affirmative: All S are P: ψ=A: {x| x P-S  x∉ ∧ ∈P∩S}

Universal negative: All S are not P: ψ=E: {x| x∈S-P  ∧ x P-S}∉

Inclusive existential affirmative: Some S are P: ψ=I: A  {x| (x S-P  ∪ ∉ ∧ x P-S ∉ ∧
x∈P∩S)  (x S-P  x∨ ∉ ∧ ∈P∩S)}

Inclusive existential negative: Some S are not P: ψ=O: E  {x| (x∪ ∈S-P  ∧ x P-S∉
 x P∩S)  (x∧ ∉ ∨ ∈S-P  x P∩S)}∧ ∉

A  categorical  syllogism  ψ1ψ2ψ3F  is  an  inference  schema  that  concludes  a
quantified  proposition  Φ3=Sψ3P  from  the  transitive  relationship  of  two  given
quantified proportions Φ1={Mψ1P, Pψ1M} and Φ2={Sψ2M, Mψ2S}:

ψ1ψ2ψ3F = (Φ1={Mψ1P, Pψ1M}, Φ2={Sψ2M, Mψ2S}, Φ3=Sψ3P)
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where F={1,  2,  3,  4} identifies  the four possible combinations of  Φ1 with  Φ2,
namely  syllogistic  figures.  Every  figure  produces  43=64  moods  and  the  whole
syllogistic system  has 4x64=256 moods. �

2.2 Syllogistic­Cases
Syllogistic cases are an elementary concept of the fuzzy-syllogistic systems  n�,

for calculating truth ratios [6] of the moods algorithmically [7].
For  three  sets,  7  distinct  spaces  δ i,  i=[1,7]  are  possible,  which  can  be  easily

identified in a Venn diagram (Table 1). There are in total j=96 distinct combinations of
the  spaces  Δj=δ1δ2δ3δ4δ5δ6δ7,  j=[1,96]  [22],  which  constitute  the  universal  set  of
syllogistic moods. Out of this universe, we determine for every mood true and false
matching space combinations (Fig 1).

2.3 Fuzzy­Syllogistic Moods
We  extend  the  ancient  binary  truth  classification  of  moods,  to  a  fuzzy

classification with truth values in [0,1]. For this purpose, first the above set-theoretical
definitions of the quantifiers of a particular mood are compared against the set of all
syllogistic cases Δj, j=[1,96], in order to identify true and false matching cases:

True syllogistic cases: Λt = j=1∪
96Δj (Φ∈ Δ

1∩Φ
Δ

2) →Δj Φ∈
Δ

3

False syllogistic cases: Λf = j=1∪
96Δj (Φ∈ Δ

1∩Φ
Δ

2) → Δj∉Φ
Δ

3

where Λt and Λf is the set of all true and false matching cases of a particular mood,
respectively (Fig 1) and ΦΔ is a proposition in terms of syllogistic cases. For instance,
the two premisses Φ1 and Φ2 of the mood IAI4 of the syllogistic system �, match the
10 syllogistic cases Λt = {Δ4, Δ19, Δ67, Δ24, Δ43, Δ46, Δ68, Δ74, Δ48, Δ76}, which are all true
for the conclusion Φ3 as well. Thus the mood has no false cases Λf = Ø.

The truth ratio of a mood is then calculated by relating the amounts of the two sets
Λt and Λf with each other. Consequently the truth ratio becomes either more true or
more false τ ∈ {τf, τt}:

More true: τt ∈ {|Λf|<|Λt| → 1-|Λf|/(|Λt|+|Λf|)} = [0.545,1]

More false: τf ∈ {|Λt|<|Λf| → |Λt|/(|Λt|+|Λf|)} = [0,0.454]

Table 1: Binary coding of the 7 possible distinct spaces for three sets.

Syllogistic Case Δ95

Binary code Δj=
δ1δ2δ3δ4δ5δ6δ7

* Venn Diagram Space Diagram+

Δ96=1111110#

δ1         δ2         δ3         δ4        δ5         δ6         δ7

*Binary coding of all possible distinct space combinations Δj, j=[1,96] that can be generated for three sets.
#δi=0: space i is empty; δi=1: space i is not empty; i=[1,7].
+Every circle of a space diagram represents exactly one distinct sub-set of M  ∪ P  ∪ S.

P

M S S­M­P P­S­M M P­S∩M S­P∩ S P­M∩ M S P∩ ∩M­S­P
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where |Λt| and |Λf| are the numbers of true and false syllogistic cases, respectively.
A fuzzy-syllogistic mood is then defined by assigning an Aristotelian mood ψ1ψ2ψ3F
the structurally fixed truth ratio τ:

Fuzzy-syllogistic mood: (ψ1ψ2ψ3F, τ)

The truth ratio identifies the degree of truth of a particular mood, which we will
associate  further  below  in  fuzzy-syllogistic  reasoning  with  generic  vagueness  of
inferencing with that mood.

The analysis of the Aristotelian syllogistic system  with these concepts reveals�

several interesting properties, like  has 136 distinct moods, 25 true moods τ=1, of �

which 11 are distinct, and 25 false moods τ=0, of which 11 are distinct, and that  is �

almost point-symmetric on syllogistic cases and truth ratios of the moods [22], [9].

2.4 Fuzzy­Syllogistic System 2�

In the fuzzy-syllogistic system (FSS) 2 ,�  the universal cases A and E are excluded
from the existential quantifiers I and O, respectively:

Exclusive existential affirmative: Some S butNotAll are P: ψ=I: {x| (x S-P ∉ ∧
x P-S  x∉ ∧ ∈P∩S)  (x S-P  x∨ ∉ ∧ ∈P∩S)}

Exclusive existential negative: Some S butNotAll are not P: ψ=O: {x| (x∈S-P ∧
x P-S  x P∩S)  (x∉ ∧ ∉ ∨ ∈S-P  x P∩S)}∧ ∉

For instance the mood IAI4 of �, becomes 2/1IA1I4 in 2 . Because of � the exclusive
existential quantifier  2/1I, the case Δ46 is no more matched by of the first premiss Φ1

and the conclusion Φ3 becomes false for the case Δ19 (Fig 1).

true: Δ4
*=δ4δ6δ7         false: Δ19=δ2δ6δ7      true: Δ67=δ1δ2δ7

true: Δ24=δ2δ4δ6δ7          true: Δ43=δ1δ6δ7      true: Δ68=δ1δ2δ6δ7

true: Δ74=δ1δ2δ4δ7         true: Δ48=δ1δ4δ6δ7      true: Δ76=δ1δ2δ4δ6δ7
* A full list of all syllogistic cases Δj, j=[1,96], can be found elsewhere [22].

Fig 1. 9 syllogistic cases Δj of the mood 2/1IA1I4 of the fuzzy-syllogistic systems 2�.
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The analysis of the FSS 2  shows that  � 2  has 70 distinct moods, 11�  true moods
τ=1, of which 5 are distinct, and 40 false moods τ=0, of which 13 are distinct, and that
2  is not point-symmetric � [22], [9].

2.5 Fuzzy­Syllogistic System n�

By using (n-1) fuzzy-existential quantifiers, the total number of fuzzy-syllogistic
moods of the FSS  n  � increases to (2n)3. The sample mood IAI4 of  can now be �

generalised  to  n/k1IAk2I4,  1<n,  0<k1,k2<n  of  n .  � n/k1IAk2I4  consists  of  (n-1)2 fuzzy-
moods, all having the very same 9 syllogistic cases (Fig 1).

Same linguistic terms used in different FSSs do not necessarily equal each other.
For instance, "most" may have different value ranges in the FSSs 3 , � 4 , � 5 , � 6� and
therefore are in general not equal 3/2I≠4/3I≠5/3I≠6/4I, respectively. Likewise for "half" in
4  and � 6  the quantifiers may not exactly equal � 4/2I≠6/3I, respectively (Table 2).

3 FUZZY-SYLLOGISTIC ONTOLOGY

A fuzzy-syllogistic ontology (FSO) consists of concepts, their relationships and
assertions on them, whereby all quantities are given with fuzzy-quantifications:

Fuzzy-syllogistic ontology: FSO=k(C, R, A)

where C is the set of all concepts, R is the set of all directed relationships between
the concepts and A is the set of all assertions. A FSO may be specified top-down or
may  be  transformed  from  any  existing  ontology,  provided  that  all  quantities  are
determined systematically, in compliance with one of the FSSs k , � 1<k≤n, (Table 2).
In a bottom-up approach, a FSO may be learned from given domain data.

3.1 Learning Fuzzy Quantifiers
Although  existing  learning  approaches  generate  ontological  concepts  and  their

relationships through probabilistic analysis of the data  [4],  [15],  [11], the quantities
that actually imply the concepts and relationships, are not preserved in the ontology
[8]. Therefore we sketch here briefly how to learn such quantities of a FSO.

For any directly connected triple concept relationship of the FSO, seven distinct
relationships are possible (Table 1). The quantity of every such relationship has to be
stored with the FSO. Since the relationships may be bi-directional or a concept may

Table 2. Value ranges of affirmative quantifiers of various fuzzy-syllogistic systems n�

Syllogistic System Quantifier ψ*

Aristotelian � A=all I=some (including A)

Fuzzy

2� A=all 2/1I=some (excluding A)

3� A=all 3/2I=most 3/1I=several

4� A=all 4/3I=most 4/2I=half 4/1I=several

5� A=all 5/4I=many 5/3I=most 5/2I=several 5/1I=few

6� A=all 6/5I=many 6/4I=most 6/3I=half 6/2I=several 6/1I=few

n� A=all n/n-1I ... n/1I
* Column breadths are not drawn proportional to the overall value range and to the other quantifiers.
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be involved in multiple triple relationships (Fig 2), the quantities of all these cases
need to be stored too.

The objective of learning a FSO=k(C, R, A) is, to update the FSO against changing
domain data and to determined the most appropriate FSS k� out of n , 1<k� ≤n.

3.2 Relative truth ratio
Relative truth ratios are calculated from the exact quantities of all syllogistic cases

of a particular mood, rather than from just the amount of the cases:

Relative true: rτt = λf<λt → λf/(λf+λt)

Relative false: rτf = λt<λf → λt/(λt+λf)

where λt =  j=1∑|Λt| |Δt
j|  and λf =  j=1∑|Λf| |Δf

j|  is  the  total  number  of  elements
accumulated over all true and false syllogistic cases, respectively. Where |Λt| and |Λf|
is the number of true and false cases of the mood, respectively. Accordingly, we can
re-define a fuzzy-syllogistic mood with relative truth ratio rτ:

Fuzzy-syllogistic mood with relative truth ratio: (ψ1ψ2ψ3F, rτ)

The structural truth ratio τ of a particular mood represents the generic vagueness
of the mood and is constant, whereas the relative truth ratio rτ adjusts τ by weighting
every case of the mood with its actual quantity.

4 FUZZY-SYLLOGISTIC REASONING

The  fuzzy-syllogistic  systems  ,  � 2  and  � 6� are  currently  implemented
experimentally as  the  reasoning  logic  of  the fuzzy-syllogistic  reasoner  (FSR),  for
reasoning over FSOs [21]. Our objective is to generalise the logic of the reasoner to
n� and to use it as a cognitive primitive for modelling other cognitive concepts within
a cognitive architecture. We now sketch the algorithmic design of the FSR.

6�: (6/4I1I1I1, 40/47=0.851) 6�: (6/5I1I1I2, 40/48=0.833)
Φ1: Most bicycles are good for children Φ1: Many children have bicycles

Φ2: Few sports are good for bicycles Φ2: Few sports are good for bicycles

Φ3: Few sports are good for children Φ3: Few sports are good for children

Fig 2. Sample fuzzy-syllogistic ontology with affirmative relationships and the best matching
fuzzy-syllogistic moods from the syllogistic figures 1 and 2.
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4.1 Reasoning Algorithm
FSR is concerned with identifying for any given concept c∈C, all possible triple

concept relationships  r∈R, r={M,P,S}, of the given FSO=k(C, R, A) and to reason
with the most appropriate fuzzy-syllogistic moods of its FSS k�. Whereby associated
assertions a∈A may be used for exemplifying a particular reasoning.

For instance, for  the concept c=Bicycle, multiple triple relationships r={Bicycle,
Child, Sports} exist in the sample FSO=6(C, R, A) (Fig 2). The reasoner iterates for
the FSSs  k ,  k=[2,n],  and for  their  moods,  in order to match the moods with the�

closest fuzzy-syllogistic quantities of relationships r. The reasoner determines the FSS
k=6 and the mood 6/k1IAk2I4, 0<k1,k2<6 as best matches for this example.

In the below example with , I in Φ � 3 may include A and therefore is less true.
Whereas in 3 , � 3/1I in Φ3 is still too general. The best matching quantifiers are found in
6� (Fig 3).

�: (IAI3, 10/10=1.0)
Φ1: Some bicycles are good for children
Φ2: All bicycles are good for sports
Φ3: Some sports are good for children

3�: (3/2IA1I3, 6/6=1.0)
Φ1: Most bicycles are good for children
Φ2: All bicycles are good for sports
Φ3: Several sports are good for children

5 CONCLUSION

The  FSSs  ,  � 2 ,  � 6  were  introduced  as  the  fundamental  logic  of  the  fuzzy-�

syllogistic  reasoner  (FSR)  and  its  usage  was  exemplified  on  a  sample  fuzzy-
syllogistic  ontology (FSO).  The  relative  truth  ratio  rτ  of  a  mood was  introduced,
which adapts the structural truth ratio τ of the mood to the amount of elements of its
syllogistic cases. FSR with FSOs is a generic possibilistic reasoning approach, since
the employed reasoning logic n  is generic.�

We are currently implementing a sample educational application that extends an
existing probabilist ontology learning tool and generates a FSO=k(C, R, A) for a given

6�: (6/4IA1I3, 6/6=1.0) 6�: (6/5IA1I4, 8/9=0.888)
Φ1: Most bicycles are good for children Φ1: Many children have bicycles

Φ2: All bicycles are good for sports Φ2: All bicycles are good for sports
Φ3: Few sports are good for children Φ3: Few sports are good for children

Fig 3. Sample fuzzy-syllogistic ontology with affirmative relationships and the best matching
fuzzy-syllogistic moods from the syllogistic figures 3 and 4.
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domain. For a user-chosen concept C from the ontology FSO, FSR is then used to
reason with all associated quantities R and present the user all associated scenarios A.
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