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Abstract. According to IEEE, software quality is the degree to which software 

possesses a desired combination of attributes. Quality attributes have been of 

interest to the software community since 1970 and in the past few years this 

interest has increase. However, still is not clear how product quality should 

apply in the development process. The need to know what quality 

characteristics influence a specific entity and which is the information required 

to cover its measurement is the objective of this work. This paper presents an 

ontology to document a quality scheme with a specification based on ISO/IEC 

25010. This contribution includes rules and queries that help to determine the 

data required to carry out the measurement process.  
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1 Introduction 

The delimitation of what defines an adequate level of quality in a software system is a 

highly context dependent question [1]. This problem changes with the product and 

perspective of the stakeholders and, therefore, software product quality can easily 

become an area full of problems and conflicts as long each stakeholder group has its 

own perspective on what is important. 

Everyone involved in the software engineering process is responsible for quality 

[2]. Achieving quality attributes must be considered throughout design, 

implementation, and deployment [3]. However, maintain the traceability of this 

attributes in the development process is very difficult. Frequently, the attributes get 

lost between different stages because there is no mechanism that supports the quality 

decisions made in the previous phases. Or worse, the development team does not

know which attributes are related and how they impact in the overall quality of the 

software product (SP). In this context, software community needs a mechanism that 

not only provides the basic information related to quality but also leads to the correct 

definition of a quality scheme (QS). A QS can be defined as a set of triplets where 

each element is composed by one software attribute (that is, a part of a software entity 

that requires some specific quality property), one software metric (that should be used 

to measure the quality of the attribute) and one quality subcharacteristic (that should 

be evaluated over the attribute). The application of a QS over a SP can be done by 



executing the measurement process over the specified artifact. However, before this 

application is necessary to collect all the required information. Given that this 

information may not be available is useful to analyze how a subset of data covers the 

required metrics. To this purpose, this paper presents an ontological approach that 

allows developers to document a QS and helps to analyze its coverage (taking into 

account the availability of the information). This proposal defines three basic 

elements: i) a quality scheme ontology (QSO) that establishes a way to define an 

adequate QS; ii) a set of SWRL (Semantic Web Rule Language) rules [4] and 

SPARQL (SPARQL Protocol and RDF Query Language) queries [5] that allows 

developers to know the degree in which the available information covers the scheme; 

and iii) an interactive activity which indicates how to use the previous elements. The 

QSO proposed is based on three semantic models: software product quality semantic 

model, metric semantic model and software semantic model. Although a lot of 

authors have proposed ontologies for quality models and software metrics [6-8]. 

These ontologies are very detailed representation of a specific domain and their 

combination is a complex task. Furthermore, the existing quality model ontologies are 

outdated because the current normative [9] is relatively new. Therefore, none of these 

ontologies is valid in the actual context.  

The remainder of this paper is organized as follows. Section 2 describes the QSO 

that should be used to define a QS for a specific SP. Section 3 explains the set of rules 

and queries developed in order to derivate the coverage degree. Section 4 presents the 

activity defined to apply the ontological approach. Finally, Section 5 is devoted to the 

conclusions of the work. 

2 Quality Scheme Ontology 

The QSO developed is a domain ontology, since is applicable to a domain with a 

specific view point [10]. This ontology is based on the combination of three semantic 

models that represent specifics domains: 

1. A software product quality semantic model that represents a product quality model.  

2. A metric semantic model that represents concepts related to software metrics.

3. A software semantic model that represents the content of a software product.  

A quality model is an essential component of a QS since is a model with the objective 

to describe, assess and/or predict quality [11]. Software quality models are a well-

accepted means to support quality management of software systems. Furthermore, the 

use of metrics to develop strategies for improving the quality of the end product is a

good practice [2]. A software metric is a measure of some property of a piece of 

software code or its specifications [12]. Software quality metrics are useful to register 

the current quality state of an end-product or process. To define a correct QS is 

necessary to specify which artifacts of the software product have to be evaluated.   

The proposed QSO unifies the three individual domains in a single model. An 

attribute of a SP needs to be described by a quality subcharacteristic and has to be 

measured by a metric. In this sense, the three elements define one specification of the 
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set of triples included at QS. Therefore, for each quality subcharacteristic, the 

capability of a SP is determined by a set of internal attributes that can be measured. 

Figure 1 shows the QSO. The gray nodes represent the concepts while the arrows 

refer to the relationships. The arrow head indicates the direction of the relationship 

and its label indicates the name. The empty arrows model “is-a” relationship, disjoint 

and complete. The relationships highlighted in yellow represent links between the 

different models. The boxes model the data properties of the concepts. 

The upper part of Figure 1 shows the Software Product Quality Semantic Model. 

Many quality models have been proposed to support stakeholders in dealing with 

software quality. By novelty and completeness, the SP quality model presented in 

ISO/IEC 25010 [9] is the most rigorous and complete of all. For these reasons, this 

model has been taken as basis for this work. 

The product quality model identifies the main characteristics of a SP in different 

levels of hierarchy. It is composed of eight characteristics which are further 

subdivided into subcharacteristics. A characteristic represents an external quality view 

while a subcharacteristic refers to properties that can be evaluated when the software 

is used as a part of a system. Each subcharacteristic is decomposed into a set of 

attributes. An attribute is an entity which can be verified or measured in the SP. A

detail description of these concepts and relationships can be checked in [9]. 

In order to build this ontology, each characteristic and subcharacteristic identified 

in the quality model was transformed in a concept. The relationships between these 

concepts were modeled defining links between them. This definition took the form is-

decomposed-in. For example, the characteristic Functional Suitability is related with 

the subcharacteristic Functional Appropriateness by the relationship called is-

decomposed-in-functional-appropriateness. To group these concepts in different 

categories, the concepts Characteristic and Subcharacteristic were included. This 

classification was made linking the concepts by an is-a relationship. This relationship 

allows to modeling the taxonomy proposed in ISO/IEC 25010 [9]. The Quality Model

concept was also included in the semantic model. The relationship of this concept 

with each characteristic was made by defining a new relationship that took the name 

contains (e.g. contains-security). The includes relationship helps to determine which 

characteristic are included in a Quality Model (since none of the characteristic is 

mandatory). Once the main concepts were defined, a set of properties was included in 

the model with the aim to refine the represented semantic. These properties include: 

characteristic description, subcharacteristic description and source.

To complete the definition of the ontology, a set of SWRL rules related with the 

contains relationship were specified. Equation 1 describes an example restriction that 

shows that all security characteristic decomposed in an integrity subcharacteristic 

must contain this subcharacteristic. Similar restrictions were added to the model to 

guarantee that all characteristics contain the appropriate set of subcharacteristics. 

 Security(?x) isDecomposedInIntegrity(?x,?y)→contains(?x,?y) (1) 

The bottom part of Figure 1 shows the Metric Semantic Model. The metric 

ontology focuses in the traditional metric definition [2, 13, 14] and incorporates some 

concepts of the current normative [15, 16]. According to ISO 9126, a metric is 
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basically defined by the specification of its name, purpose, application method, 

measurement formula, interpretation, scale type, measure type, input to measurement 

and target audience. The identification of the metric is given by its name. For this 

reason, the metric name must be related with the information obtained when the 

metric is applied. The purpose of the metric is expressed as the question to be 

answered by the application of the metric. The metric application method provides an 

outline of application while the measurement formula stipulates the mathematical 

expression used for the calculation and explains the meanings of the used data 

elements. The interpretation of the measured value supplies the range and preferred 

values. The scale type defines the dimension of the metric. Scale types used are: 

nominal scale, ordinal scale, interval scale, ratio scale and absolute scale. The 

measure type involves the specification of the way in which the metric is obtained. 

Types used are: size, time and count type. The input to the measurement process 

refers to the source of data used in the measurement. Finally, the target audience 

identifies the users of the measurement results. 

Although all this concepts define a metric, only a set of them was used as part of 

the metric ontology. The selection was made taking into account the final objective: 

document the metrics related with different quality attributes that should be used to 

evaluate a specific SP. In order to do this, the input to measurement and the target 

audience are not represented in the model. To define a QS, the specific source of 

information for a metric is not important since the measurement process is not 

executed. The target audience is also a concept that shows a dependency with the use 

of the metric and, therefore, is excluded of the model. The rest of the concepts were 

taken to compose the semantic model. Furthermore, in order to improve and complete 

the ontology some properties were refined. The first refinement was the incorporation 

of the concepts Direct Metric and Indirect Metric. A Direct Metric is an atomic 

metrics and an Indirect Metric is defined in term of another metrics. To define a 

metric three complementary changes were made: the addition of the hierarchies Unit

and Scale and the incorporation of the Equation concept. The Unit hierarchy was 

designed using as reference the proposal of Rijgersberg [17] while the Scale hierarchy 

was modeled using the approach described by Olsina [8]. In order to include an 

approach that allow to describing how a metric should be calculated, the Equation

concept was added to the model. This concept represents a mathematical formula 

composed of mathematical terms, operators and variables.  

The derivation of knowledge that refers to specific types of operations, units and 

range delimitations is made by mean of SWRL rules. Equation 2 shows as example 

that a unit must be assigned into a metric only if its scale is numerical, then the unit 

will be the one specified in the scale.  

Metric(?m) NumericalScale(?s) isDimensionedIn(?m,?s) isMeasuredIn(?s,?u) 

Unit(?u) → hasAsUnit(?m,?u)  (2) 

The middle part of Figure 1 shows the Software Semantic Model. Its purpose is to

model the domain of SPs. A SP is a set of computer programs, procedures, and 

possibly associated documentation and data, designed for delivery to a specific user. 

It always includes the development of one or more computer programs.  
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Fig. 1. Quality Scheme Ontology. 
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The development process carried out for the construction of each computer 

program usually involves the creation of different artifacts. An artifact is a product 

produced during the development of software that contains information of some part 

of it. All artifacts can be divided in a set of entities. An entity is an object that can be 

characterized by measuring its attributes. Therefore, an attribute is a measurable 

physical or abstract property of an entity.  

The semantic model developed is based on this description which is adapted from 

[2,15,16,18]. Each of the main concepts identified in the domain was transformed into 

an ontology concept. The links between the concepts were modeled as relationships. 

The name of these relationships describes the way in which the concepts are related 

(e.g. is-divided-in). To allow a correct identification of the instances derived from a 

concept, the model includes some attributes labeled as name and type.

The designed ontologies and the proposed SWRL rules were implemented using 

Protégé (http://protege.stanford.edu/). Each ontology was implemented in an 

individual OWL (Web Ontology Language) file in order to increase the possibility of 

reuse it in other contexts. The elements were specified in English and Spanish to 

allow multiple language support. The OWL files were imported in a new document 

with aim to model the final ontology. This new model incorporates the specification 

of the relationships that link the three semantic models. 

Given that it is difficult to quantify the quality of ontologies due to the absence of 

formal evaluation methods, an analysis of the structural dimensions was applied over 

the final ontology. Table 1 describes the set of selected metrics and its results.  

Table 1. Metrics applied to the Quality Scheme Ontology. 

Abbrev. Description Definition Value

P Number of non-inheritance relationships. - 68

H Number of inheritance relationships. - 72

NOC Number of classes. - 87

NOR Number of relations. - 140

NORC Number of root classes. - 15

NOLC Number of leaf classes. - 72

NAT Number of attributes for all classes. - 32

RR Relationship richness. P / (H+P) 0.485

IR Inheritance richness. H / NOC 0.827

DOSH Depth of subsumption hierarchy. - 5

AR Attribute richness. NAT/NOC 0.367

The final ontology has an IR of 0.827 which together with the DOSH value (5) 

indicate that the proposed ontology is of a vertical nature. This means that represents 

knowledge of a specific domain, allowing to instantiate schemes that fit to the quality 

specification. Furthermore, the AR value (0.367 attributes per concept) shows that the 

attributes allow to restricting the domain. The RR is very close to the average (48.5%) 

which implies that the number of hierarchical relationships is a bit greater than the 

number of the other kind of associations. In this sense, the ontology maintains an 

adequate balance between inheritance relations and associations. 
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3 Analysis of the Required and Available Information 

3.1 SWRL Rules Applied to the Derivation of Knowledge 

In order to analyze a software QS, a set of SWRL rules was specified (Table 2). The 

SWRL is a language that is used to express rules in the form of an implication 

between an antecedent (body) and consequent (head) [4] and, therefore, allows to 

derivate new knowledge from the instances of a model.

Since all direct metric refers to a measure or is used as component in an indirect 

metric, the first rule specifies that a Direct Metric implies a need of information 

(Required Data). However, if a required data is available it establishes an Available 

Data (rule 2). In this sense, if a Direct Metric is also an Available Data (that is, the 

information exists when the measurement process take place) then the metric is a 

mathematical term than can be calculated (Calculable Term). This fact is expressed in 

rule 3. But, the fact that a mathematical term can be calculated it may involve that 

other mathematical terms can be calculated. To this purpose, rules 4 and 5 are 

defined. In rule 4, if a Simple Term has as argument a mathematical term that is 

calculable then it is a Calculable Term. The same happens with Complex Terms (rule 

5). Then, if the mathematical term that resumes the Measurement Function associated 

with an Indirect Metric is calculable, the metric is itself a Calculable Term (rule 6).

Finally, rule 7 specifies that if a Metric is a Calculable Term, then it is a Calculable 

Metric. This rule allows to determinate if a metric (independently of its type) can be 

calculated with the available data. 

Table 2. SWRL rules. 

Id. SWRL Rule

1 DirectMetric(?x) → RequiredData(?x)

2 RequiredData(?x) ˄ available(?x, true) → AvailableData(?x)

3 DirectMetric(?x) ˄ AvailableData(?x) → CalculableTerm(?x)

4 SimpleTerm(?s) ˄ CalculableTerm(?a) ˄ hasAsArgument(?s, ?a) → CalculableTerm(?s)

5
ComplexTerm(?c) ˄ CalculableTerm(?a1) ˄ CalculableTerm(?a2) ˄ hasAsFirstArgument(?c, ?a1) ˄

hasAsSecondArgument(?c, ?a2) → CalculableTerm(?c)

6
IndirectMetric(?m) ˄ MeasurementFunction(?f) ˄ CalculableTerm(?t) ˄ hasDefinition(?f, ?t) ˄              

isCalculatedBy(?m, ?f) → CalculableTerm(?m)

7 Metric(?m) ˄ CalculableTerm(?m) → CalculableMetric(?m)

3.2 SPARQL Queries 

A QS is defined for a specific SP. However, the quality is measured using the 

attributes of the entities of the different artifacts of the software product. Therefore, 

the coverage analysis of a QS over a set of available information must be done at 

artifact level and the results must be detailed at entity level. To this purpose, the 

coverage analysis is done at entity level. These results are combined in order to obtain 

a value at artifact level. 

An Ontological Approach to Analyze the Data Required by a System Quality Scheme



100% coverage in a quality entity exists if all the metrics related to the entity are 

calculable. That is, if is available all the information required to calculate the metrics 

related with the attributes of an entity E in reference to a quality 

characteristic/subcharacteristic Q. However, a full coverage requires of the 

availability of all the information and, usually, the data recompilation is not a 

complete activity. Some data may be difficult to obtain or may not exist in early 

stages of the development process, but still the available data can lead to an 

acceptable coverage level of the quality scheme proposed. In these cases, the 

coverage will be less than 100%. Equation 3 shows how calculate the coverage level 

of an entity E for a quality characteristic/subcharacteristic Q.  

 (# Calculable metrics of E for Q / # Metrics of E for Q) x 100 (3) 

In order to obtain the coverage level for two variables E (entity) and Q 

(subcharacteristic), a SPARQL query was specified and implemented in Protégé 

(Figure 2). SPARQL is a semantic query language for databases, able to retrieve and 

manipulate data stored in Resource Description Framework format. A SPARQL query 

contains three main clauses: SELECT, WHERE and FILTER. In the proposed query, 

the SELECT clause specifies Equation 3 by calculating the relation between the 

quantity of calculable metrics and the overall metrics. The individuals to be counted 

in both cases are obtained from the WHERE clause in combination with the FILTER 

clause. While the WHERE clause searches all the metrics and calculable metrics 

related to an entity E and a quality property Q, the FILTER clause specifies the values 

for E and Q. A similar query was designed to link an entity E with a characteristic Q. 

The developed query helps to analyze at entity level and, therefore, can be used as 

base for the analysis at artifact level. To summarize the artifact level analysis another 

SPARQL query was specified. This query helps to estimate the coverage of a quality 

property Q (characteristic or subcharacteristic) over an artifact A. For space reasons 

the query is not presented in this work. 

Fig. 2. SPARQL query. 

4 Activity: Analysis of the Quality Scheme Coverage 

An activity was defined to combine an instantiation of the QSO (that is, a QS) with 

the coverage queries. After a QS has been created (at any moment of the development 

process) the coverage can be analyzed. The decision of when execute the coverage 

analysis depends on the need of analyze the quality of a SP according to the QS

specification. The coverage analysis provides a mechanism that helps to know how 

the available data are useful to estimate several measures. 

An Ontological Approach to Analyze the Data Required by a System Quality Scheme



Given that the coverage analysis is made using the available information, this 

process can be executed several times using different sets of available data. For 

example, the data can be obtained (at different times) from an execution process used 

over the existing components or from outcomes of a simulation run. Whatever be the 

source of data, the availability of the information is the one that allows estimate the 

quantity of metrics of the QS that can be derived. To obtain these results, the member 

of the development team that wants to analyze the coverage (User) must follow the 

activity described in Figure 3. When the process starts, User wants to know which the 

required data is and, in response, the set of SWRL rules (explained in the section 3.1) 

should be executed over the Ontology. After that, User must indicate which of the 

required data (obtained as result of the previous activity) is available. Then, User

must indicate that wants to find the calculable metrics based on the existing 

information. In response, the SWRL rules should be executed (again) over the 

Ontology. Once the calculable metrics are obtained, User must define which artifact 

(A) and which quality characteristic (Q) wants to analyze, and then, must indicate that 

wants to find the coverage level for both elements. Finally, the SPARQL query should 

be executed over the Ontology (with A and Q as arguments). The three final activities 

can be repeated for multiple pairs (A,Q) once the calculable metrics are obtained. 

By following this activity, any user can use the proposed ontology and its 

complements to analyze how impact the available data in the quality of a SP. 

Fig. 3. Activity to follow to analyze the coverage of a quality scheme. 

5 Conclusions and Future Work 

The quality of a software system is directly related to the ability of the system to 

satisfy its functional, nonfunctional, implied, and specified requirements. In this 

paper, an ontology to document quality schemes is proposed. The ontology is 

complemented with a set of SWRL rules and SPARQL queries that allow developers 

to analyze how a set of available data can be used to calculate the required metrics. 

Also, an activity is defined to show how to use the ontology and the other elements. 

The implementation of a tool that automates the elaboration of the quality schemes 

and the analysis of its coverage is the next step in this direction. The ontology and the 

set of rules and queries designed can be taken as base of this tool, using an ontology-

based approach. The main purpose of this tool should be the creation, storage, 

modification and query of the quality schemes along with the possibility of analyze 
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the coverage for all quality characteristics. With this technological support, the 

development team could easily understand the quality aspects related with a specific 

software artifact and see how impact the available data in the measurement of quality. 

The QSO can be adapted to other types of quality models since the software 

product quality semantic model is an independent ontology. Although in this work the 

view is centered in the internal quality attributes of a SP, the semantic model can be 

replaced with a model that refers to quality in use. Also, it can be replaced with 

quality models developed by other authors. The same changes are applicable to the 

software ontology. Given that the semantic model is independent, the proposed 

approach allows refining the model to represent a more detailed description of a SP. 

The improvement of this model is the main objective of the future work to be made. 
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