
Maintaining Constraint-based Configuration
Systems: Challenges ahead

Florian Reinfrank, Gerald Ninaus, Franz Wotawa, Alexander Felfernig
Institute for Software Technology

Graz University of Technology
8020 Graz, Austria

firstname.lastname@ist.tugraz.at

Abstract. Constraint-based configuration systems like
knowledge-based recommendation and configuration are used
in many different product areas such as cars, bikes, mobile
phones, and computers. The development and maintenance
of such systems is a time-consuming and error prone task be-
cause the content of such systems and the responsible knowl-
edge engineers are changing over time.

Much research has been done to support knowledge engi-
neers in their maintenance task. In this paper we give a short
overview of previous research in the context of intelligent tech-
niques to support the maintenance task and give an overview
of future research aspects in this area. This paper focuses
on intelligent simulation techniques for generating metrics,
predicting boundary values for automated test case genera-
tion, assignment-based (instead of constraint-based) anomaly
management, and processes for the development of constraint-
based configuration systems.

1 Introduction

The number of e-commerce web sites and the quantity
of offered products and services is increasing enormously
[2]. This triggered the demand of intelligent techniques that
improve the accessibility of complex item assortments for
users. Such techniques can be divided into configuration-
based systems and recommendation systems. When the e-
commerce system has highly configurable products (e.g. cars),
configuration-based systems can help users to configure the
product based on their needs. If, on the other hand, the e-
commerce system contains many different products, intelli-
gent recommendation techniques can help to find the prod-
uct, which fits best to the user’s needs [16]. We can differen-
tiate between collaborative systems (e.g., www.amazon.com
[16]), content-based systems (e.g., www.youtube.com [16]),
critiquing-based systems (e.g., www.movielens.org [4]), and
constraint-based recommendation systems (e.g., www.my-
productadvisor.com [6]). The favored type of recommenda-
tion systems depends on the domain in which the recom-
mendation system will be used. For example, in highly struc-
tured domains where almost all information about a product
is available in a structured form, critiquing and constraint-
based recommendation systems are often the most valuable
recommendation approach.

Such systems are used, for example in the notebook do-
main. Such product domains - like the notebook domain -
change over time because new product characteristics can fit
to new customer needs. For example, ten years ago the num-
ber of cpu cores for notebooks was not a configurable variable.
Nowadays, users can choose between one, two, or four cpu
cores. This example shows that constraint-based recommen-
dation systems have to be updated over time. While adding
a variable to the product might be easy to handle, adding
and editing constraints can be a time consuming and error
prone task. This problem occurs in complex constraint-based
recommendation systems with many existing constraints.

A lot of research has been done in the last years to tackle
this challenge. For example, recommendation techniques can
help to support knowledge engineers in their maintenance
tasks, via reducing the sets of constraints so that the engi-
neer can focus on the relevant constraints. Other examples
for the support of the maintenance tasks are anomaly de-
tection, dependency detection, and metrics measurement. An
example application for the maintenance of constraint-based
configuration systems is iCone (Intelligent Environment for
the Development and Maintenance of configuration knowl-
edge bases) [21, 26].1

Based on intelligent techniques to support knowledge engi-
neers in their maintenance tasks, this paper focuses on fur-
ther aspects in the maintenance of constraint-based configu-
ration systems and picks up four research aspects (see be-
low) for improving existing development and maintenance
environments for constraint-based configuration systems like
knowledge-based configuration and recommendation systems.

The paper is organized as follows: Section 2 (preliminaries)
gives an overview of constraint-based configuration systems
and a running example. Section 3 contains four aspects of the
context of constraint-based configuration system development
and maintenance. Section 3.1 is dealing with simulation tech-
niques for constraint-based configuration systems. Section 3.2
shows principles of test case generation based on software en-
gineering for constraint-based systems. An introduction for
assignment-based anomaly management is given in Section
3.3. Section 3.4 goes beyond maintaining constraint-based
configuration systems and takes a look into development pro-

1 http://ase-projects-studies.ist.tugraz.at:8080/iCone

39 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

http://ase-projects-studies.ist.tugraz.at:8080/iCone

cesses for configuration systems. Section 4 summarizes this
paper.

2 Preliminaries

In this Section we will describe constraint-based configura-
tion systems, the terms assignment, consistency, and redun-
dancy, and introduce a short knowledge-based recommenda-
tion system for notebooks as an example for a constraint-
based configuration system.

We use the terminology of constraint satisfaction problems
(CSP) [25] to represent configuration systems. Constraint-
based configuration systems are defined as a triple KB =
{V,D, F}. V is a set of product and customer variables. All
variables have a selection strategy vsel which describes, if a
variable can have more than one value. vsel = singleselect
shows that the variable v can have zero or one assignment, e.g.
each product has one price, e.g. price = 399. If a variable can
have more than one value, we differ between multipleAND
and multipleOR. vsel = multipleAND points out that a vari-
able can have more than one assignment. For example, a note-
book can have two wireless connections like bluetooth AND
WLAN , s.t. wireless connectionsel = multipleAND. On the
other hand, a customer wants to have a notebook with two
OR four cpu cores. We denote such a selection strategy as
multipleOR, s.t. cpu coressel = multipleOR.

Each variable vi ∈ V has a domain dom(vi) ∈ D that
contains the set of all possible values (not only the assigned
values). Each variable can have zero to n finite assignments.
Products FP , customer requirements FR, and constraints
which are defining the relationship between product variables
and customer variables FC are in the filter set F .

Customer requirements represent the preferences of cus-
tomers in the recommendation / configuration process. The
set of customer preferences is denoted as FR. For example,
a customer can have the preference that a notebook should
be cheaper than 599 EUR, s.t. {price < 599} ∈ FR. Fur-
thermore, customers can be asked for their usage scenarios,
which might can be multimedia, office, gaming. If a user
has more than one usage scenario, we duplicate the vari-
able usage scenario for this user, s.t. usage scenario1 =
multimedia ∧ usage scenario2 = office.

Constraints which can also be denoted as filters in FC de-
fine the relationship between customer preferences and prod-
uct variables and are defined in the set FC ∈ F . For example,
the relationship between the customer’s usage scenario and
the product attributes is f1 := usage scenario = gaming →
cpu cores > 2. Additionally, constraint-based recommenda-
tion systems have a set of products. This set is denoted as
FP ∈ F and contains one disjunctive query with all products,
s.t. FP = {product0 ∨ product1 ∨ ... ∨ productn} and each
product is a conjunctive query of the product variables, s.t.
product0 = {price = 399 ∧ cpu cores = 2}. The aggregation
of customer requirements, constraints, and products represent
the filters, s.t. FR ∪ FC ∪ FP = F .

Each filter can be divided into assignments. An assign-
ment consists of a variable v, a relationship, and a value d
which is an element of the domain dom(v). The different types
of relationships depend on the values in the corresponding do-
main. If, for example, the domain consists only of numbers,
we can say that the types of relationships are <,≤,=, 6=,≥, >

whereas for domains with strings we reduce the different types
of relations to =, 6=.

To consider the selection strategy of variables within the
filters, we have to duplicate the variables. For example,
if a customer wants to have a notebook for gaming and
office, we replace the variable usage scenario ∈ V with
usage scenario1 ∈ V and usage scenario2 ∈ V with the
same domain in the knowledge base KB. We also have
to extend the affected filters in F , such that we have
to replace the affected assignments in the example con-
straint usage scenario = gaming → cpu cores > 2 ∈
FC with the assignments (usage scenario1 = Gaming ∨
usage scenario2 = Gaming)→ cpu cores > 2 ∈ FC .

To check if at least one product fits to the customer’s prefer-
ences, we do consistency checks, s.t. V ∪D∪F 6= ∅. If at least
one product in the constraint-based configuration system is
presented to the customer, we can say, that the knowledge
base is consistent. Otherwise, the knowledge base contains
inconsistencies. For dealing with inconsistencies, we refer the
reader to [3, 5, 10, 11, 12, 15].

If the knowledge base is consistent, we can further evalu-
ate whether the knowledge base contains redundancies. A
redundancy is given, if the removal of a constraint from FC

leads to the same semantics [15, 20].
In the following we describe a notebook domain. The

simplified domain is represented as a knowledge-based
recommendation system.

V = {price, cpu cores, usage scenario}
pricesel = singleselect
cpu coressel = singleselect
usage scenariossel = multipleAND

D = {
dom(price) = {399, 599, 799, 999},
dom(cpu cores) = {2, 4},
dom(usage scenario) = {office, multimedia,

gaming}
}

FC = {
f1 := usage scenario = office→ (price < 599∧

cpu cores = 2)
f2 := usage scenario = multimedia→ ((price <

999 ∧ cpu cores = 4) ∨ price < 799)
f3 := usage scenario = gaming → cpu cores = 4
}

FR = ∅

FP = {
(price = 399∧cpu cores = 2)∨ (p0)
(price = 599∧cpu cores = 4)∨ (p1)
(price = 799∧cpu cores = 2)∨ (p2)
(price = 999∧ cpu cores = 4) (p3)
}

F = FC ∪ FR ∪ FP

KB = V ∪D ∪ F

40Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

3 Challenges in the Development and
Maintenance of Constraint-based
Configuration Systems

In the following, we describe basic approaches to increase
the maintainability, understandability, and functionality of
constraint-based configuration systems. Therefore we use sim-
ulation techniques (Section 3.1), automated test case gener-
ation (Section 3.2), assignment-based anomaly management
(Section 3.3), and the consideration of the development pro-
cess (Section 3.4).

3.1 Simulation

In the context of constraint-based configuration systems
we use simulation to approximate the number of consistent
constraint sets compared to the number of all possible con-
straint sets. This technique can be used to calculate metrics
- like the number of valid configurations - or to approximate
the dependency between variables [21]. On the one hand we
loose minimal accuracy when calculating the possible number
of consistent constraint sets whereas, on the other hand, it is
possible to approximate metrics which can not be calculated
in an efficient manner. In the following, we describe the basic
functionality of simulation for constraint-based configuration
systems and give an example simulation in Figure 1.

Figure 1. Example simulation for approximated consistency. We

assume that a high number of consistency checks leads to a repre-

sentative sample of the configuration knowledge base (Law of large

numbers). In this example the average number of consistent con-

figurations is approx. 50%.

Due to the huge complexity for calculating all possible in-
stances for all possible assignments in constraint-based con-
figuration systems, we use Gibbs’ simulation to estimate the
consistency rate coverage for a specific set of assignments A
[22]. An assignment is a filter constraint which contains one
variable av, one domain element ad, and a relationship be-
tween variable and domain element ar (see Section 2). Algo-
rithm 1 is divided into three functions and shows the basic
algorithm for estimating the consistency rate for a set of as-
signments.

The function Gibbs(KB,A) is the main function of this
algorithm. It has a knowledge base KB and a set of as-
signments A as input. The knowledge base contains sets of
variables V ∈ KB and filters C ∈ KB (see Section 2). The
set CC (checks) contains all results from consistency checks.

Algorithm 1 GibbsSampling

function Gibbs(KB, A): ∆
CC = ∅ . set of consistency check results {0, 1}
mincalls = 200 . constant
threshold = 0.01 . constant
consistent = 0
verify = Double.Max V alue
while n < mincalls ∨ verify > threshold do

randA = A ∪ generateRandAssign(KB)
F.addAll(randA) . F ∈ KB
if isConsistent(KB) then

consistent + +
CC.add(1)

else
CC.add(0)

end if
F.removeAll(randA)
verify = verifyChecks(CC)
n + +

end while
return consistent/n

end function
function generateRandAssign(KB):A

A = ∅ . A: set of assignments
n = Random(F ∈ KB): . generate n assignments
for i = 0; i < n; i + + do

av = Random(V ∈ KB) . V ∈ KB
ar = Random(Rel)
ad = Random(dom(av) ∈ D ∈ KB)
A.add(a)

end for
return A

end function
function verifyChecks(CC):∆

CC1 = CC.split(0, |CC|/2)
CC2 = CC.split((|CC|/2) + 1, |CC|)
mean1 = mean(CC1)
mean2 = mean(CC2)
if mean1 ≥ mean2 then

return mean1−mean2
else

return mean2−mean1
end if

end function

A consistency check is either consistent (1) or inconsistent
(0). The number of minimum calls is constant and given in
variable mincalls. The total number of consistent checks is
given in the programming variable consistent. threshold is
a constant and required to test if the current set of consis-
tency checks has a high accuracy. The variable verify con-
tains the result of the last verification returned by the function
V ERIFY CHECKS. If the variable verify is greater than
the threshold, we can not guarantee that the current result
is accurate. In that case we have to execute the loop again.
In the while-loop we first have to generate a new set of ran-
dom assignments. Since assignments are also special types of
constraints, we add the set randA to the set FC ∈ KB and
do a consistency check. If KB with the randomly generated
assignments is consistent, we add 1 to the set CC and incre-

41 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

ment the variable consistent. Otherwise, we add 0 to the set
CC. Finally, we verify all previous consistency checks. If the
variable verify is lower than the variable threshold and we
have more consistency checks than mincalls, we can return
the number of consistent checks divided by the total number
of checks.

The function generateRandAssign(KB) is responsible for
the generation of new assignments. Random(F) returns the
number of assignments which have to be generated ran-
domly. This number depends on the number of filters in the
knowledge base, the number of available variables and do-
main elements, since in small knowledge bases it can happen
that we can not generate more than mincalls assignments.
Random(V) takes a variable from the knowledge base. If the
variable is already part of another assignment, the variable
won’t be used again except the selection strategy vsel is ei-
ther multipleAND or multipleOR. Random(R) selects a re-
lation between the variable and the domain elements. In our
case, variables can have textual domain elements (e.g. the
brand of a notebook) or numeric domain elements (e.g. the
price of a notebook). While the set of relations for textual
domain elements is Rel = {=, 6=}, the set is extended to
Rel = {=, 6=, <,≤, >,≥} for numerical domain elements (see
Section 2). Finally, Random(dom(av)) selects a domain ele-
ment from dom(av) randomly.

The function verifyChecks(CC) tests if the numbers of
consistent and inconsistent checks are normally distributed.
Therefore, we first divide the set with the consistency check
results CC into two parts. We evaluate the mean of both sets
CC1 and CC2 and test, if both mean values mean(CC1) and
mean(CC2) are close to each other. If they have nearly the

same values, (
√

(mean(CC1)−mean(CC2))2 ≤ threshold),
we can say that the consistent checks are normally dis-
tributed and return the difference between mean(CC1) and
mean(CC2).

In our iCone implementation we use the simulation tech-
nique in three different ways. First, we evaluate the coverage
metric which defines the number of consistent configurations
compared to the number of all possible configurations [22].
Second, we use this technique to generate random assign-
ments for test cases (see Section 3.2). Finally, we use this
technique to approximate the consistency rate coverage for at
least two variables and their domain elements. Figure 2 shows
the probability that the combination of two assignments is
consistent. For example, approximately 100% of the note-
book configurations are consistent, if the usage scenario =
multimedia ∧ cpu cores = 2.

3.2 Test Case generation

In this Section we want to describe a basic approach to gen-
erate test cases for constraint-based configuration systems.

In software engineering, boundary value analysis are those
situations directly on, above, and beneath the edges of input
equivalence classes [19]. To use this type of software test-
ing in the context of configuration systems, we can say that
the edges are within variable assignments. For example, if
price = 399 is consistent, price = 599 is consistent too, and
price = 799 is inconsistent, the boundary would be between
the domain elements 599 and 799. In Figure 2 we can see that,
under circumstances, some combinations are inconsistent (e.g.

Figure 2. Example simulation for approximated consistency

usage scenario = multimedia∧ cpu cores = 2) and some are
consistent (e.g. usage scenario = gaming ∧ cpu cores = 2 =
inconsistent). We can use the simulation technology (see Sec-
tion 3.1) to generate various sets of filter constraints to get
some boundaries. Table 1 shows a list of randomly generated
test cases. Note that the number of assignments in the test
case can be different (see Algorithm 1).

tc filterconstraint coverage

t0 cpu cores = 2∧ 0.50
usage scenario = office

t1 cpu cores = 2∧ 0.50
usage scenario = multimedia

t2 price = 799∧ 0.00
usage scenario = gaming

t3 price = 599∧ 0.50
usage scenario = gaming

t4 cpu cores = 4∧ 0.50
usage scenario = multimedia

t5 cpu cores = 4 ∼ 0.54

Table 1. An example for randomly generated test cases.

The next step is to evaluate these randomly generated
boundary test cases according to the domain experts’ knowl-
edge. Our example test cases show, that between the test cases
t2 and t3 is a boundary because the coverage is different.

After the randomly detected boundaries via simulation we
have to evaluate the boundary. Such evaluations have to be
done by stakeholders of the knowledge base and can be done
via micro tasks [7]. In this context, several stakeholders can
be asked if the results of randomly generated test cases are
valid or not. Such answers can be collected within a case base.
Table 2 gives an example case base.

87.5% of the stakeholders agree that t2 is correct, which
means that the test case should be inconsistent and the test
case currently leads to an inconsistency. On the other hand,
62.5% of the stakeholders think that t3 should not be consis-
tent. This example represents a conflict between the knowl-
edge engineers’ opinions of the knowledge base. For such sce-
narios we have to offer relevant information to the stakehold-

42Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

stakeholder testcase correct?

s0 t2 yes
s1 t2 yes
s2 t2 yes
s3 t2 yes
s4 t2 yes
s5 t2 no
s6 t2 yes
s7 t2 yes
s0 t3 no
s1 t3 no
s2 t3 yes
s3 t3 yes
s4 t3 no
s5 t3 no
s6 t3 no
s7 t3 yes

Table 2. An example case base for evaluating randomly gener-

ated test cases.

ers such as mails, forum, and content-based recommendation
[16].

Finally, a result of the discussion leads to a consistent
knowledge base (filter constraints f ∈ FC have to be updated
or removed) which represents the real product domain. If the
knowledge base has to be maintained, intelligent techniques
like the detection of minimal conflicts and diagnoses [21] help
to detect the causes for the difference between the knowledge
base and the real world.

3.3 Assignment-based anomaly
management

The anomaly management research describes different ap-
proaches to detect and explain anomalies [21, 26]. For ex-
ample, QuickXplain can detect conflicts [17], FastDiag finds
minimal diagnoses for these conflicts [13], Sequential [20] and
CoreDiag [15] can remove maximal sets of filter constraints
without changing the semantics of the knowledge base (re-
dundancy detection). Well-formedness violations can detect
domain elements which can never be selected (deadelements)
or have to be selected (fullmandatories) or can only exit if
specific domain elements of other variables are selected as well
(unnecessaryrefinements) [21].

While all of these algorithms focus on filters, little at-
tention has been paid to the context of assignment-based
anomaly detection. Compared to constraint-based perspec-
tives, an assignment-based view can a) find out which assign-
ments within a filter lead to the anomaly and b) detect more
redundancies when one assignment within a filter constraint
with more than one assignment can not be detected with com-
mon algorithms.

Alternatively, we can check the assignments within a filter
instead of the filter itself for anomalies. Algorithm 2 gives an
example for an assignment-based algorithm. This algorithm
extends the Sequential algorithm introduced by Piette [20].
First of all, we have to generate the negation of all filter
constraints in the knowledge base. We denote the negation
F̄C and define a disjunctive query of the original knowledge
base ¬f1∨ 6 f2∨ 6 f3. If the negation of the knowledge base
in combination with the original knowledge base is inconsis-
tent, s.t. FC ∪ F̄C is inconsistent, the knowledge base has not
changed its semantics. If a filter will be removed from the

Algorithm 2 AssignmentSequential

function AssignmentSequential(KB): R
. KB: knowledge base

F̄C = ¬f1 ∨ ¬f2 ∨ ¬f3
R = ∅
for all f ∈ FC do

for all a ∈ A(f) do
A.remove(a)
if (FC ∪ F̄C)isinconsistent then

R.add(a)
else

A.add(a)
end if

end for
end for
return R

end function

knowledge base (but not from the negation of the knowledge
base) and the combination is still inconsistent, we can say that
the knowledge base has kept its semantics and the removed
filter constraint is redundant.

While the Sequential algorithm removes filter constraint
by filter constraint from FC , we divide the filter constraint
into its assignments and remove assignment by assignment.
Therefore, we introduce the set A(f) which describes the set
of assignments of filter constraint f ∈ FC . When we remove
an assignment from A(f), we next have to consider the rela-
tions between the assignments. Figure 3 shows the graphical
representation of all filter constraints and their assignments
in our example knowledge base in a conjunctive order. When
we remove an assignment a from A(f) we will further replace
the upper relation. For example, the removal of the assign-
ment usage scenario = office of filter f1 replaces the upper
implication→ with the top node of those elements which will
not be connected to the conjunctive constraint. In our case,
this is relation ’∧’.

Algorithm 2 introduces an approach to detect redundant as-
signments within a knowledge base. The approach is straight
forward: First, we have to generate the negation of F̄C . Then
we select filter by filter. For each filter we remove assignment
by assignment a. Finally, we check if the knowledge base with
the changed filter f is still inconsistent with F̄C . If it is incon-
sistent, we can say that the removed assignment a is redun-
dant.

Figure 4 shows the redundant assignments of our example
knowledge base. In the first row we see the original filters
and the result for the usage scenario variable (green box).
Then we remove assignment by assignment and see the re-
sult of the filter constraints in the column result. The yellow
boxes suggest that the adapted filter constraints lead to the
same semantics as the original knowledge base. We can re-
move cpu cores = 2 from filter constraint f1 and the assign-
ments price < 999 and cpu cores = 4 from filter constraint
f2 without changing the semantics of the knowledge base.

Similar adaptations can also be done e.g., for QuickXPlain
[17], FastDiag [14], and CoreDiag [15]. While these algorithms
use a divide and conquer approach based on filters, future
research can also consider assignments instead of filters to
calculate the anomalies.

43 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

Figure 3. Conjunctive query of all filters f ∈ FC in our example knowledge base. In Algorithm 2 we remove assignment by assignment

from the knowledge base and check the consistency instead of the whole filter (f1, f2, f3).

Figure 4. Results for consistency checks. The columns f1, f2, and f3 show the filter constraints when one assignment will be removed.

The first row shows the results (green background) of the original filter constraints. The yellow background suggests, that the removal of

the assignments leads to the same results.

3.4 Constraint-based configuration system
development

A lot of research has been done in the maintenance of
constraint-based systems. For example, we can evaluate the
quality of knowledge bases [22] and check if the knowledge
base has anomalies [5, 21]. Therefore, we can evaluate if we
are doing the knowledge base maintenance efficiently.

Less work has been done in the context of knowledge

base development, a task which is crucial for an effective
constraint-based configuration system. Next, we want to sum-
marize previous work in the context of knowledge base devel-
opment processes and try to give hints for transferring re-
search results from the software engineering discipline into
the knowledge base development research area.

44Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

Development processes for constraint-based
configuration systems

An overview of knowledge base engineering processes is
given in [9, 24].

Common-KADS focuses on different models (organiza-
tion, task, agent, communication, and expertise) of the knowl-
edge base. For example, the expertise model tries to describe
knowledge from a static, functional, and a dynamic view.
While this system tries to consider all stakeholders, it does
not prioritize the knowledge and does not try to solve con-
flicts in the knowledge before it will be transferred into a
constraint-based configuration system [23].

The MIKE engineering process can be seen as an iterative
process and is divided into the activities elicitation, interpre-
tation, formalization / operationalization, design, and imple-
mentation. The entire development process, i.e. the sequence
of knowledge acquisition, design, and implementation, is per-
formed in a cycle inspired by a spiral model as process model.
Every cycle produces a prototype as output which can be eval-
uated by tests in the real target environment. The evaluation
of each activity will be done by domain experts. While the
result of the implementation activity can be evaluated by do-
main experts, a deep understanding of modelling techniques is
required to evaluate the results of elicitation, interpretation,
and formalization activities [1].

Protege-II is used to model method and domain ontolo-
gies. A method ontology defines the concepts and relation-
ships that are used by a problem solving method for provid-
ing its functionality. Domain ontologies define a shared con-
ceptualization of a domain. Both ontologies can be reused in
other domains which may reduce the effort to build-up a new
knowledge base with similar elements [18].

Development in the Software Engineering Discipline

Compared to development processes for constraint-based
configuration systems we give an overview of actual trends
in the engineering of such systems and create a link to the
currently existing development processes for constraint-based
configuration systems.

A relevant task in software engineering is requirements
engineering. Transferring this aspect into the context of de-
veloping constraint-based configuration systems we can say
that products, product variables, questions to customers,
variable domains, and filters can be functional requirements
whereas interface development (e.g. to an ERP-system), per-
formance, and collaborative development are non-functional
requirements. When knowledge base engineering processes
have to be finalized with a given budget and time, we also have
to prioritize such requirements. Therefore, we have to rank the
requirements based on their necessity and effort (time and
budget) for a functional knowledge base. The prioritization
should be done by different stakeholders to include as many
knowledge as possible into the prioritization process.

While many different constraint-based configuration sys-
tems will be developed, each of them is developed from
scratch. Similar to requirements engineering, most of the as-
pects of a new knowledge base are new and reuse is not pos-
sible. On the other hand, several requirements are domain
independent. For such requirements, the implementation in a

software could be done with design patterns. Such patterns
can help to reduce the time effort for the realization of a re-
quirement in a knowledge engineering process. For example,
a notebook recommendation system contains products, ques-
tions to customers, and relationships between products and
customers (filter constraints). In this domain, products have
different prices and customers will be asked for their max-
imum price. While the product variable product price may
have hundreds of different prices (domain elements), the cus-
tomer will not choose e.g. between product price = 799.90 or
product price = 799.99 but wants to have for example ten dif-
ferent prices (e.g. customer price ≤ 400 or product price ≤
600 or ... or product price ≤ 2200). The relationship between
those variables can be denoted as mapping which could be a
design pattern.

4 Conclusion

In this paper we gave an overview of future research in
the context of developing and maintaining constraint-based
configuration systems. Such systems can be constraint-based
configuration, knowledge-based recommendation systems, or
feature models. We introduced a simulation technique in the
context of constraint-based configuration systems, show some
hints for automatic test case generation and gave an overview
of assignment-based anomaly detection instead of constraint-
based conflicts, redundancies, and well-formedness detection.
Finally, we showed how requirements engineering and design
patterns can be used for knowledge base engineering pro-
cesses.

Acknowledgements

The work presented in this paper has been conducted within
the scope of the research project ICONE (Intelligent Assis-
tance for Configuration Knowledge Base Development and
Maintenance) funded by the Austrian Research Promotion
Agency (827587).

REFERENCES

[1] J. Angele, D. Fensel, D. Landes, and R. Studer. Develop-
ing knowledge-based systems with mike. Automated Software
Engineering, 5(4):389–418, 1998.

[2] Ivan Arribas, Francisco Perez, and Emili Tortosa-Ausina.
Measuring international economic integration: Theory and ev-
idence of globalization. World Development, 37(1):127 – 145,
2009.

[3] David Benavides, Alexander Felfernig, Jos A. Galindo, and
Florian Reinfrank. Automated analysis in feature modelling
and product configuration. ICSR, pages 160 – 175, 2013.

[4] Li Chen and Pearl Pu. Evaluating critiquing-based recom-
mender agents. In Proceedings of the 21st national confer-
ence on Artificial intelligence - Volume 1, AAAI’06, pages
157–162. AAAI Press, 2006.

[5] Alexander Felfernig, David Benavides, Jos A. Galindo, and
Florian Reinfrank. Towards anomaly explanation in feature
models. Workshop on Configuration, pages 117 – 124, 2013.

[6] Alexander Felfernig and Robin Burke. Constraint-based rec-
ommender systems: technologies and research issues. In Pro-
ceedings of the 10th international conference on Electronic
commerce, ICEC ’08, pages 3:1–3:10, New York, NY, USA,
2008. ACM.

45 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

[7] Alexander Felfernig, Sarah Haas, Gerald Ninaus, Michael
Schwarz, Thomas Ulz, and Martin Stettinger. Recturk:
Constraint-based recommendation based on human compu-
tation. CrowdRec, June 2014.

[8] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha
Tiihonen, editors. Knowledge-based configuration. From re-
search to business cases, volume 1. Morgan Kaufmann, 2014.

[9] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha
Tiihonen, editors. Knowledge Engineering for configuration
systems, pages 139 – 155. Volume 1 of Felfernig et al. [8],
2014.

[10] Alexander Felfernig, Florian Reinfrank, and Gerald Ninaus.
Resolving anomalies in configuration knowledge bases. IS-
MIS, 1(1):1 – 10, 2012.

[11] Alexander Felfernig, Florian Reinfrank, Gerald Ninaus, and
Paul Blazek. Conflict Detection and Diagnosis Techniques for
Anomaly Management, pages 73 – 87. Volume 1 of Felfernig
et al. [8], 2014.

[12] Alexander Felfernig, Florian Reinfrank, Gerald Ninaus, and
Paul Blazek. Redundancy Detection in Configuration Knowl-
edge, pages 157 – 166. Volume 1 of Felfernig et al. [8], 2014.

[13] Alexander Felfernig and Monika Schubert. Personalized
diagnoses for inconsistent user requirements. AI EDAM,
25(2):175–183, 2011.

[14] Alexander Felfernig, Monika Schubert, and Christoph Zehent-
ner. An efficient diagnosis algorithm for inconsistent con-
straint sets. AI EDAM, 26(1):53–62, 2012.

[15] Alexander Felfernig, Christoph Zehentner, and Paul Blazek.
Corediag: Eliminating redundancy in constraint sets. In Mar-
tin Sachenbacher, Oskar Dressler, and Michael Hofbaur, ed-
itors, DX 2011. 22nd International Workshop on Principles
of Diagnosis, pages 219 – 224, Murnau, GER, 2010.

[16] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and
Gerhard Friedrich. Recommender Systems: An Introduction,
volume 1. University Press, Cambridge, 2010.

[17] Ulrich Junker. Quickxplain: preferred explanations and relax-
ations for over-constrained problems. In Proceedings of the
19th national conference on Artifical intelligence, AAAI’04,
pages 167–172. AAAI Press, 2004.

[18] Mark A Musen, Henrik Eriksson, John H Gennari, and Sam-
son W and Tu. Protg-ii: A suite of tools for development
of intelligent systems from reusable components. Proc Annu
Symp Comput Appl Med Care, 1994.

[19] Glenford J. Myers, Tom Badgett, and Corey Sandler. The art
of software testing. John Wiley & Sons, 3 edition, 2012.

[20] Cédric Piette. Let the solver deal with redundancy. In Pro-
ceedings of the 2008 20th IEEE International Conference on
Tools with Artificial Intelligence - Volume 01, pages 67–73,
Washington, DC, USA, 2008. IEEE Computer Society.

[21] Florian Reinfrank, Gerald Ninaus, and Alexander Felfernig.
Intelligent techniques for the maintenance of constraint-based
systems. Configuration Workshop, 2015.

[22] Florian Reinfrank, Gerald Ninaus, Bernhard Peischl, and
Franz Wotawa. A goal-question-metrics model for configu-
ration knowledge bases. Configuration Workshop, 2015.

[23] G. Schreiber, B. Wielinga, R. de Hoog, H. Akkermans, and
W. Van de Velde. Commonkads: a comprehensive methodol-
ogy for kbs development. IEEE Expert, 9(6):28–37, Dec 1994.

[24] Rudi Studer, V. Richard Benjamins, and Dieter Fensel.
Knowledge engineering: Principles and methods. Data &
Knowlege Engineering, 25:161 – 197, 1998.

[25] Edward Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

[26] Franz Wotawa, Florian Reinfrank, Gerald Ninaus, and
Alexander Felfernig. icone: intelligent environment for the de-
velopment and maintenance of configuration knowledge bases.
IJCAI 2015 Joint Workshop on Constraints and Preferences
for Configuration and Recommendation, 2015.

46Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

